Annotation of OpenXM_contrib/pari/src/test/in/compat, Revision 1.1.1.1
1.1 maekawa 1: \e
2: default(compatible,3)
3: +3
4: -5
5: 5+3
6: 5-3
7: 5/3
8: 5\3
9: 5\/3
10: 5%3
11: 5^3
12: \precision=57
13: pi
14: \precision=38
15: o(x^12)
16: padicno=(5/3)*127+O(127^5)
17: initrect(0,500,500)
18: \\ A
19: abs(-0.01)
20: acos(0.5)
21: acosh(3)
22: acurve=initell([0,0,1,-1,0])
23: apoint=[2,2]
24: isoncurve(acurve,apoint)
25: addell(acurve,apoint,apoint)
26: addprimes([nextprime(10^9),nextprime(10^10)])
27: adj([1,2;3,4])
28: agm(1,2)
29: agm(1+o(7^5),8+o(7^5))
30: algdep(2*cos(2*pi/13),6)
31: algdep2(2*cos(2*pi/13),6,15)
32: \\allocatemem(3000000)
33: akell(acurve,1000000007)
34: nfpol=x^5-5*x^3+5*x+25
35: nf=initalg(nfpol)
36: ba=algtobasis(nf,mod(x^3+5,nfpol))
37: anell(acurve,100)
38: apell(acurve,10007)
39: apell2(acurve,10007)
40: apol=x^3+5*x+1
41: apprpadic(apol,1+O(7^8))
42: apprpadic(x^3+5*x+1,mod(x*(1+O(7^8)),x^2+x-1))
43: 4*arg(3+3*i)
44: 3*asin(sqrt(3)/2)
45: asinh(0.5)
46: assmat(x^5-12*x^3+0.0005)
47: 3*atan(sqrt(3))
48: atanh(0.5)
49: \\ B
50: basis(x^3+4*x+5)
51: basis2(x^3+4*x+5)
52: basistoalg(nf,ba)
53: bernreal(12)
54: bernvec(6)
55: bestappr(pi,10000)
56: bezout(123456789,987654321)
57: bigomega(12345678987654321)
58: mcurve=initell([0,0,0,-17,0])
59: mpoints=[[-1,4],[-4,2]]~
60: mhbi=bilhell(mcurve,mpoints,[9,24])
61: bin(1.1,5)
62: binary(65537)
63: bittest(10^100,100)
64: boundcf(pi,5)
65: boundfact(40!+1,100000)
66: move(0,0,0);box(0,500,500)
67: setrand(1);buchimag(1-10^7,1,1)
68: setrand(1);bnf=buchinitfu(x^2-x-57,0.2,0.2)
69: buchcertify(bnf)
70: buchfu(bnf)
71: setrand(1);buchinitforcefu(x^2-x-100000)
72: setrand(1);bnf=buchinitfu(x^2-x-57,0.2,0.2)
73: setrand(1);buchreal(10^9-3,0,0.5,0.5)
74: setrand(1);buchgen(x^4-7,0.2,0.2)
75: setrand(1);buchgenfu(x^2-x-100000)
76: setrand(1);buchgenforcefu(x^2-x-100000)
77: setrand(1);buchgenfu(x^4+24*x^2+585*x+1791,0.1,0.1)
78: buchnarrow(bnf)
79: buchray(bnf,[[5,3;0,1],[1,0]])
80: bnr=buchrayinitgen(bnf,[[5,3;0,1],[1,0]])
81: bnr2=buchrayinitgen(bnf,[[25,13;0,1],[1,1]])
82: bytesize(%)
83: \\ C
84: ceil(-2.5)
85: centerlift(mod(456,555))
86: cf(pi)
87: cf2([1,3,5,7,9],(exp(1)-1)/(exp(1)+1))
88: changevar(x+y,[z,t])
89: char([1,2;3,4],z)
90: char(mod(x^2+x+1,x^3+5*x+1),z)
91: char1([1,2;3,4],z)
92: char2(mod(1,8191)*[1,2;3,4],z)
93: acurve=chell(acurve,[-1,1,2,3])
94: chinese(mod(7,15),mod(13,21))
95: apoint=chptell(apoint,[-1,1,2,3])
96: isoncurve(acurve,apoint)
97: classno(-12391)
98: classno(1345)
99: classno2(-12391)
100: classno2(1345)
101: coeff(sin(x),7)
102: compimag(qfi(2,1,3),qfi(2,1,3))
103: compo(1+o(7^4),3)
104: compositum(x^4-4*x+2,x^3-x-1)
105: compositum2(x^4-4*x+2,x^3-x-1)
106: comprealraw(qfr(5,3,-1,0.),qfr(7,1,-1,0.))
107: concat([1,2],[3,4])
108: conductor(bnf,[[25,13;0,1],[1,1]])
109: conductorofchar(bnr,[2])
110: conj(1+i)
111: conjvec(mod(x^2+x+1,x^3-x-1))
112: content([123,456,789,234])
113: convol(sin(x),x*cos(x))
114: core(54713282649239)
115: core2(54713282649239)
116: coredisc(54713282649239)
117: coredisc2(54713282649239)
118: cos(1)
119: cosh(1)
120: move(0,200,150)
121: cursor(0)
122: cvtoi(1.7)
123: cyclo(105)
124: \\ D
125: degree(x^3/(x-1))
126: denom(12345/54321)
127: deplin(mod(1,7)*[2,-1;1,3])
128: deriv((x+y)^5,y)
129: ((x+y)^5)'
130: det([1,2,3;1,5,6;9,8,7])
131: det2([1,2,3;1,5,6;9,8,7])
132: detint([1,2,3;4,5,6])
133: diagonal([2,4,6])
134: dilog(0.5)
135: dz=vector(30,k,1);dd=vector(30,k,k==1);dm=dirdiv(dd,dz)
136: deu=direuler(p=2,100,1/(1-apell(acurve,p)*x+if(acurve[12]%p,p,0)*x^2))
137: anell(acurve,100)==deu
138: dirmul(abs(dm),dz)
139: dirzetak(initalg(x^3-10*x+8),30)
140: disc(x^3+4*x+12)
141: discf(x^3+4*x+12)
142: discrayabs(bnr,mat(6))
143: discrayabs(bnr)
144: discrayabscond(bnr2)
145: lu=ideallistunitgen(bnf,55);discrayabslist(bnf,lu)
146: discrayabslistlong(bnf,20)
147: discrayrel(bnr,mat(6))
148: discrayrel(bnr)
149: discrayrelcond(bnr2)
150: divisors(8!)
151: divres(345,123)
152: divres(x^7-1,x^5+1)
153: divsum(8!,x,x)
154: \\draw([0,0,0])
155: postdraw([0,0,0])
156: \\ E
157: eigen([1,2,3;4,5,6;7,8,9])
158: eint1(2)
159: erfc(2)
160: eta(q)
161: euler
162: z=y;y=x;eval(z)
163: exp(1)
164: extract([1,2,3,4,5,6,7,8,9,10],1000)
165: \\ F
166: 10!
167: fact(10)
168: factcantor(x^11+1,7)
169: centerlift(lift(factfq(x^3+x^2+x-1,3,t^3+t^2+t-1)))
170: factmod(x^11+1,7)
171: factor(17!+1)
172: p=x^5+3021*x^4-786303*x^3-6826636057*x^2-546603588746*x+3853890514072057
173: fa=[11699,6;2392997,2;4987333019653,2]
174: factoredbasis(p,fa)
175: factoreddiscf(p,fa)
176: factoredpolred(p,fa)
177: factoredpolred2(p,fa)
178: factornf(x^3+x^2-2*x-1,t^3+t^2-2*t-1)
179: factorpadic(apol,7,8)
180: factorpadic2(apol,7,8)
181: factpol(x^15-1,3,1)
182: factpol(x^15-1,0,1)
183: factpol2(x^15-1,0)
184: fibo(100)
185: floor(-1/2)
186: floor(-2.5)
187: for(x=1,5,print(x!))
188: fordiv(10,x,print(x))
189: forprime(p=1,30,print(p))
190: forstep(x=0,pi,pi/12,print(sin(x)))
191: forvec(x=[[1,3],[-2,2]],print1([x[1],x[2]]," "));print(" ");
192: frac(-2.7)
193: \\ G
194: galois(x^6-3*x^2-1)
195: nf3=initalg(x^6+108);galoisconj(nf3)
196: galoisconjforce(nf3)
197: aut=%[2];galoisapply(nf3,aut,mod(x^5,x^6+108))
198: gamh(10)
199: gamma(10.5)
200: gauss(hilbert(10),[1,2,3,4,5,6,7,8,9,0]~)
201: gaussmodulo([2,3;5,4],[7,11],[1,4]~)
202: gaussmodulo2([2,3;5,4],[7,11],[1,4]~)
203: gcd(12345678,87654321)
204: getheap()
205: getrand()
206: getstack()
207: \\gettime()isattheend
208: globalred(acurve)
209: getstack()
210: \\ H
211: hclassno(2000003)
212: hell(acurve,apoint)
213: hell2(acurve,apoint)
214: hermite(amat=1/hilbert(7))
215: hermite2(amat)
216: hermitehavas(amat)
217: hermitemod(amat,detint(amat))
218: hermiteperm(amat)
219: hess(hilbert(7))
220: hilb(2/3,3/4,5)
221: hilbert(5)
222: hilbp(mod(5,7),mod(6,7))
223: hvector(10,x,1/x)
224: hyperu(1,1,1)
225: \\ I
226: i^2
227: nf1=initalgred(nfpol)
228: initalgred2(nfpol)
229: vp=primedec(nf,3)[1]
230: idx=idealmul(nf,idmat(5),vp)
231: idealinv(nf,idx)
232: idy=ideallllred(nf,idx,[1,5,6])
233: idealadd(nf,idx,idy)
234: idealaddone(nf,idx,idy)
235: idealaddmultone(nf,[idy,idx])
236: idealappr(nf,idy)
237: idealapprfact(nf,idealfactor(nf,idy))
238: idealcoprime(nf,idx,idx)
239: idz=idealintersect(nf,idx,idy)
240: idealfactor(nf,idz)
241: ideallist(bnf,20)
242: idx2=idealmul(nf,idx,idx)
243: idt=idealmulred(nf,idx,idx)
244: idealdiv(nf,idy,idt)
245: idealdivexact(nf,idx2,idx)
246: idealhermite(nf,vp)
247: idealhermite2(nf,vp[2],3)
248: idealnorm(nf,idt)
249: idp=idealpow(nf,idx,7)
250: idealpowred(nf,idx,7)
251: idealtwoelt(nf,idy)
252: idealtwoelt2(nf,idy,10)
253: idealval(nf,idp,vp)
254: idmat(5)
255: if(3<2,print("bof"),print("ok"));
256: imag(2+3*i)
257: image([1,3,5;2,4,6;3,5,7])
258: image(pi*[1,3,5;2,4,6;3,5,7])
259: incgam(2,1)
260: incgam1(2,1)
261: incgam2(2,1)
262: incgam3(2,1)
263: incgam4(4,1,6)
264: indexrank([1,1,1;1,1,1;1,1,2])
265: indsort([8,7,6,5])
266: initell([0,0,0,-1,0])
267: initrect(1,700,700)
268: nfz=initzeta(x^2-2);
269: integ(sin(x),x)
270: integ((-x^2-2*a*x+8*a)/(x^4-14*x^3+(2*a+49)*x^2-14*a*x+a^2),x)
271: intersect([1,2;3,4;5,6],[2,3;7,8;8,9])
272: \precision=19
273: intgen(x=0,pi,sin(x))
274: sqr(2*intgen(x=0,4,exp(-x^2)))
275: 4*intinf(x=1,10^20,1/(1+x^2))
276: intnum(x=-0.5,0.5,1/sqrt(1-x^2))
277: 2*intopen(x=0,100,sin(x)/x)
278: \precision=38
279: inverseimage([1,1;2,3;5,7],[2,2,6]~)
280: isdiagonal([1,0,0;0,5,0;0,0,0])
281: isfund(12345)
282: isideal(bnf[7],[5,1;0,1])
283: isincl(x^2+1,x^4+1)
284: isinclfast(initalg(x^2+1),initalg(x^4+1))
285: isirreducible(x^5+3*x^3+5*x^2+15)
286: isisom(x^3+x^2-2*x-1,x^3+x^2-2*x-1)
287: isisomfast(initalg(x^3-2),initalg(x^3-6*x^2-6*x-30))
288: isprime(12345678901234567)
289: isprincipal(bnf,[5,1;0,1])
290: isprincipalgen(bnf,[5,1;0,1])
291: isprincipalraygen(bnr,primedec(bnf,7)[1])
292: ispsp(73!+1)
293: isqrt(10!^2+1)
294: isset([-3,5,7,7])
295: issqfree(123456789876543219)
296: issquare(12345678987654321)
297: isunit(bnf,mod(3405*x-27466,x^2-x-57))
298: \\ J
299: jacobi(hilbert(6))
300: jbesselh(1,1)
301: jell(i)
302: \\ K
303: kbessel(1+i,1)
304: kbessel2(1+i,1)
305: x
306: y
307: ker(matrix(4,4,x,y,x/y))
308: ker(matrix(4,4,x,y,sin(x+y)))
309: keri(matrix(4,4,x,y,x+y))
310: kerint(matrix(4,4,x,y,x*y))
311: kerint1(matrix(4,4,x,y,x*y))
312: kerint2(matrix(4,6,x,y,2520/(x+y)))
313: f(u)=u+1;
314: print(f(5));kill(f);
315: f=12
316: killrect(1)
317: kro(5,7)
318: kro(3,18)
319: \\ L
320: laplace(x*exp(x*y)/(exp(x)-1))
321: lcm(15,-21)
322: length(divisors(1000))
323: legendre(10)
324: lex([1,3],[1,3,5])
325: lexsort([[1,5],[2,4],[1,5,1],[1,4,2]])
326: lift(chinese(mod(7,15),mod(4,21)))
327: lindep([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)])
328: lindep2([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)],14)
329: move(0,0,900);line(0,900,0)
330: lines(0,vector(5,k,50*k),vector(5,k,10*k*k))
331: m=1/hilbert(7)
332: mp=concat(m,idmat(7))
333: lll(m)
334: lll1(m)
335: lllgram(m)
336: lllgram1(m)
337: lllgramint(m)
338: lllgramkerim(mp~*mp)
339: lllint(m)
340: lllintpartial(m)
341: lllkerim(mp)
342: lllrat(m)
343: \precision=96
344: ln(2)
345: lngamma(10^50*i)
346: \precision=2000
347: log(2)
348: logagm(2)
349: \precision=19
350: bcurve=initell([0,0,0,-3,0])
351: localred(bcurve,2)
352: ccurve=initell([0,0,-1,-1,0])
353: l=lseriesell(ccurve,2,-37,1)
354: lseriesell(ccurve,2,-37,1.2)-l
355: \\ M
356: sbnf=smallbuchinit(x^3-x^2-14*x-1)
357: makebigbnf(sbnf)
358: concat(mat(vector(4,x,x)~),vector(4,x,10+x)~)
359: matextract(matrix(15,15,x,y,x+y),vector(5,x,3*x),vector(3,y,3*y))
360: ma=mathell(mcurve,mpoints)
361: gauss(ma,mhbi)
362: (1.*hilbert(7))^(-1)
363: matsize([1,2;3,4;5,6])
364: matrix(5,5,x,y,gcd(x,y))
365: matrixqz([1,3;3,5;5,7],0)
366: matrixqz2([1/3,1/4,1/6;1/2,1/4,-1/4;1/3,1,0])
367: matrixqz3([1,3;3,5;5,7])
368: max(2,3)
369: min(2,3)
370: minim([2,1;1,2],4,6)
371: mod(-12,7)
372: modp(-12,7)
373: mod(10873,49649)^-1
374: modreverse(mod(x^2+1,x^3-x-1))
375: move(0,243,583);cursor(0)
376: mu(3*5*7*11*13)
377: \\ N
378: newtonpoly(x^4+3*x^3+27*x^2+9*x+81,3)
379: nextprime(100000000000000000000000)
380: setrand(1);a=matrix(3,5,j,k,vvector(5,l,random()\10^8))
381: aid=[idx,idy,idz,idmat(5),idx]
382: bb=algtobasis(nf,mod(x^3+x,nfpol))
383: da=nfdetint(nf,[a,aid])
384: nfdiv(nf,ba,bb)
385: nfdiveuc(nf,ba,bb)
386: nfdivres(nf,ba,bb)
387: nfhermite(nf,[a,aid])
388: nfhermitemod(nf,[a,aid],da)
389: nfmod(nf,ba,bb)
390: nfmul(nf,ba,bb)
391: nfpow(nf,bb,5)
392: nfreduce(nf,ba,idx)
393: setrand(1);as=matrix(3,3,j,k,vvector(5,l,random()\10^8))
394: vaid=[idx,idy,idmat(5)]
395: haid=[idmat(5),idmat(5),idmat(5)]
396: nfsmith(nf,[as,haid,vaid])
397: nfval(nf,ba,vp)
398: norm(1+i)
399: norm(mod(x+5,x^3+x+1))
400: norml2(vector(10,x,x))
401: nucomp(qfi(2,1,9),qfi(4,3,5),3)
402: form=qfi(2,1,9);nucomp(form,form,3)
403: numdiv(2^99*3^49)
404: numer((x+1)/(x-1))
405: nupow(form,111)
406: \\ O
407: 1/(1+x)+o(x^20)
408: omega(100!)
409: ordell(acurve,1)
410: order(mod(33,2^16+1))
411: tcurve=initell([1,0,1,-19,26]);
412: orderell(tcurve,[1,2])
413: ordred(x^3-12*x+45*x-1)
414: \\ P
415: padicprec(padicno,127)
416: pascal(8)
417: perf([2,0,1;0,2,1;1,1,2])
418: permutation(7,1035)
419: permutation2num([4,7,1,6,3,5,2])
420: pf(-44,3)
421: phi(257^2)
422: pi
423: plot(x=-5,5,sin(x))
424: \\ploth(x=-5,5,sin(x))
425: \\ploth2(t=0,2*pi,[sin(5*t),sin(7*t)])
426: \\plothraw(vector(100,k,k),vector(100,k,k*k/100))
427: pnqn([2,6,10,14,18,22,26])
428: pnqn([1,1,1,1,1,1,1,1;1,1,1,1,1,1,1,1])
429: point(0,225,334)
430: points(0,vector(10,k,10*k),vector(10,k,5*k*k))
431: pointell(acurve,zell(acurve,apoint))
432: polint([0,2,3],[0,4,9],5)
433: polred(x^5-2*x^4-4*x^3-96*x^2-352*x-568)
434: polred2(x^4-28*x^3-458*x^2+9156*x-25321)
435: polredabs(x^5-2*x^4-4*x^3-96*x^2-352*x-568)
436: polredabs2(x^5-2*x^4-4*x^3-96*x^2-352*x-568)
437: polsym(x^17-1,17)
438: polvar(name^4-other)
439: poly(sin(x),x)
440: polylog(5,0.5)
441: polylog(-4,t)
442: polylogd(5,0.5)
443: polylogdold(5,0.5)
444: polylogp(5,0.5)
445: poly([1,2,3,4,5],x)
446: polyrev([1,2,3,4,5],x)
447: polzag(6,3)
448: \\draw([0,20,20])
449: postdraw([0,20,20])
450: postploth(x=-5,5,sin(x))
451: postploth2(t=0,2*pi,[sin(5*t),sin(7*t)])
452: postplothraw(vector(100,k,k),vector(100,k,k*k/100))
453: powell(acurve,apoint,10)
454: cmcurve=initell([0,-3/4,0,-2,-1])
455: powell(cmcurve,[x,y],quadgen(-7))
456: powrealraw(qfr(5,3,-1,0.),3)
457: pprint((x-12*y)/(y+13*x));
458: pprint([1,2;3,4])
459: pprint1(x+y);pprint(x+y);
460: \precision=96
461: pi
462: prec(pi,20)
463: precision(cmcurve)
464: \precision=38
465: prime(100)
466: primedec(nf,2)
467: primedec(nf,3)
468: primedec(nf,11)
469: primes(100)
470: forprime(p=2,100,print(p," ",lift(primroot(p))))
471: principalideal(nf,mod(x^3+5,nfpol))
472: principalidele(nf,mod(x^3+5,nfpol))
473: print((x-12*y)/(y+13*x));
474: print([1,2;3,4])
475: print1(x+y);print1(" equals ");print(x+y);
476: prod(1,k=1,10,1+1/k!)
477: prod(1.,k=1,10,1+1/k!)
478: pi^2/6*prodeuler(p=2,10000,1-p^-2)
479: prodinf(n=0,(1+2^-n)/(1+2^(-n+1)))
480: prodinf1(n=0,-2^-n/(1+2^(-n+1)))
481: psi(1)
482: \\ Q
483: quaddisc(-252)
484: quadgen(-11)
485: quadpoly(-11)
486: \\ R
487: rank(matrix(5,5,x,y,x+y))
488: rayclassno(bnf,[[5,3;0,1],[1,0]])
489: rayclassnolist(bnf,lu)
490: move(0,50,50);rbox(0,50,50)
491: print1("give a value for s? ");s=read();print(1/s)
492: 37.
493: real(5-7*i)
494: recip(3*x^7-5*x^3+6*x-9)
495: redimag(qfi(3,10,12))
496: redreal(qfr(3,10,-20,1.5))
497: redrealnod(qfr(3,10,-20,1.5),18)
498: reduceddisc(x^3+4*x+12)
499: regula(17)
500: kill(y);print(x+y);reorder([x,y]);print(x+y);
501: resultant(x^3-1,x^3+1)
502: resultant2(x^3-1.,x^3+1.)
503: reverse(tan(x))
504: rhoreal(qfr(3,10,-20,1.5))
505: rhorealnod(qfr(3,10,-20,1.5),18)
506: rline(0,200,150)
507: cursor(0)
508: rmove(0,5,5);cursor(0)
509: rndtoi(prod(1,k=1,17,x-exp(2*i*pi*k/17)))
510: qpol=y^3-y-1;setrand(1);bnf2=buchinit(qpol);nf2=bnf2[7];
511: un=mod(1,qpol);w=mod(y,qpol);p=un*(x^5-5*x+w)
512: aa=rnfpseudobasis(nf2,p)
513: rnfbasis(bnf2,aa)
514: rnfdiscf(nf2,p)
515: rnfequation(nf2,p)
516: rnfequation2(nf2,p)
517: rnfhermitebasis(bnf2,aa)
518: rnfisfree(bnf2,aa)
519: rnfsteinitz(nf2,aa)
520: rootmod(x^16-1,41)
521: rootpadic(x^4+1,41,6)
522: roots(x^5-5*x^2-5*x-5)
523: rootsold(x^4-1000000000000000000000)
524: round(prod(1,k=1,17,x-exp(2*i*pi*k/17)))
525: rounderror(prod(1,k=1,17,x-exp(2*i*pi*k/17)))
526: rpoint(0,20,20)
527: \\ S
528: initrect(3,600,600);scale(3,-7,7,-2,2);cursor(3)
529: q*series(anell(acurve,100),q)
530: aset=set([5,-2,7,3,5,1])
531: bset=set([7,5,-5,7,2])
532: setintersect(aset,bset)
533: setminus(aset,bset)
534: setprecision(28)
535: setrand(10)
536: setsearch(aset,3)
537: setsearch(bset,3)
538: setserieslength(12)
539: setunion(aset,bset)
540: arat=(x^3+x+1)/x^3;settype(arat,14)
541: shift(1,50)
542: shift([3,4,-11,-12],-2)
543: shiftmul([3,4,-11,-12],-2)
544: sigma(100)
545: sigmak(2,100)
546: sigmak(-3,100)
547: sign(-1)
548: sign(0)
549: sign(0.)
550: signat(hilbert(5)-0.11*idmat(5))
551: signunit(bnf)
552: simplefactmod(x^11+1,7)
553: simplify(((x+i+1)^2-x^2-2*x*(i+1))^2)
554: sin(pi/6)
555: sinh(1)
556: size([1.3*10^5,2*i*pi*exp(4*pi)])
557: smallbasis(x^3+4*x+12)
558: smalldiscf(x^3+4*x+12)
559: smallfact(100!+1)
560: smallinitell([0,0,0,-17,0])
561: smallpolred(x^4+576)
562: smallpolred2(x^4+576)
563: smith(matrix(5,5,j,k,random()))
564: smith(1/hilbert(6))
565: smithpol(x*idmat(5)-matrix(5,5,j,k,1))
566: solve(x=1,4,sin(x))
567: sort(vector(17,x,5*x%17))
568: sqr(1+o(2))
569: sqred(hilbert(5))
570: sqrt(13+o(127^12))
571: srgcd(x^10-1,x^15-1)
572: move(0,100,100);string(0,pi)
573: move(0,200,200);string(0,"(0,0)")
574: \\draw([0,10,10])
575: postdraw([0,10,10])
576: apol=0.3+legendre(10)
577: sturm(apol)
578: sturmpart(apol,0.91,1)
579: subcyclo(31,5)
580: subell(initell([0,0,0,-17,0]),[-1,4],[-4,2])
581: subst(sin(x),x,y)
582: subst(sin(x),x,x+x^2)
583: sum(0,k=1,10,2^-k)
584: sum(0.,k=1,10,2^-k)
585: sylvestermatrix(a2*x^2+a1*x+a0,b1*x+b0)
586: \precision=38
587: 4*sumalt(n=0,(-1)^n/(2*n+1))
588: 4*sumalt2(n=0,(-1)^n/(2*n+1))
589: suminf(n=1,2.^-n)
590: 6/pi^2*sumpos(n=1,n^-2)
591: supplement([1,3;2,4;3,6])
592: \\ T
593: sqr(tan(pi/3))
594: tanh(1)
595: taniyama(bcurve)
596: taylor(y/(x-y),y)
597: tchebi(10)
598: teich(7+o(127^12))
599: texprint((x+y)^3/(x-y)^2)
600: theta(0.5,3)
601: thetanullk(0.5,7)
602: torsell(tcurve)
603: trace(1+i)
604: trace(mod(x+5,x^3+x+1))
605: trans(vector(2,x,x))
606: %*%~
607: trunc(-2.7)
608: trunc(sin(x^2))
609: tschirnhaus(x^5-x-1)
610: type(mod(x,x^2+1))
611: \\ U
612: unit(17)
613: n=33;until(n==1,print1(n," ");if(n%2,n=3*n+1,n=n/2));print(1)
614: \\ V
615: valuation(6^10000-1,5)
616: vec(sin(x))
617: vecmax([-3,7,-2,11])
618: vecmin([-3,7,-2,11])
619: vecsort([[1,8,5],[2,5,8],[3,6,-6],[4,8,6]],2)
620: vecsort([[1,8,5],[2,5,8],[3,6,-6],[4,8,6]],[2,1])
621: \\ W
622: weipell(acurve)
623: wf(i)
624: wf2(i)
625: m=5;while(m<20,print1(m," ");m=m+1);print()
626: \\ Z
627: zell(acurve,apoint)
628: zeta(3)
629: zeta(0.5+14.1347251*i)
630: zetak(nfz,-3)
631: zetak(nfz,1.5+3*i)
632: zidealstar(nf2,54)
633: bid=zidealstarinit(nf2,54)
634: zideallog(nf2,w,bid)
635: znstar(3120)
636: getstack()
637: getheap()
638: print("Total time spent: ",gettime());
639: \q
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>