[BACK]Return to elliptic CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / pari / src / test / in

Annotation of OpenXM_contrib/pari/src/test/in/elliptic, Revision 1.1.1.1

1.1       maekawa     1: \p 38
                      2: \e
                      3: ellinit([0,0,0,-1,0])
                      4: ellinit([0,0,0,-17,0],1)
                      5: ellj(I)
                      6: ellsub(ellinit([0,0,0,-17,0]),[-1,4],[-4,2])
                      7: \\
                      8: acurve=ellinit([0,0,1,-1,0])
                      9: apoint=[2,2]
                     10: elladd(acurve,apoint,apoint)
                     11: ellak(acurve,1000000007)
                     12: ellan(acurve,100)
                     13: ellap(acurve,10007)
                     14: ellap(acurve,10007,1)
                     15: deu=direuler(p=2,100,1/(1-ellap(acurve,p)*x+if(acurve[12]%p,p,0)*x^2))
                     16: ellan(acurve,100)==deu
                     17: ellisoncurve(acurve,apoint)
                     18: acurve=ellchangecurve(acurve,[-1,1,2,3])
                     19: apoint=ellchangepoint(apoint,[-1,1,2,3])
                     20: ellisoncurve(acurve,apoint)
                     21: ellglobalred(acurve)
                     22: ellheight(acurve,apoint)
                     23: ellheight(acurve,apoint,1)
                     24: ellordinate(acurve,1)
                     25: ellztopoint(acurve,ellpointtoz(acurve,apoint))
                     26: ellpow(acurve,apoint,10)
                     27: ellwp(acurve)
                     28: ellpointtoz(acurve,apoint)
                     29: q*Ser(ellan(acurve,100),q)
                     30: \\
                     31: bcurve=ellinit([0,0,0,-3,0])
                     32: elllocalred(bcurve,2)
                     33: elltaniyama(bcurve)
                     34: \\
                     35: ccurve=ellinit([0,0,-1,-1,0])
                     36: l=elllseries(ccurve,2)
                     37: elllseries(ccurve,2,1.2)-l
                     38: \\
                     39: tcurve=ellinit([1,0,1,-19,26]);
                     40: ellorder(tcurve,[1,2])
                     41: elltors(tcurve)
                     42: \\
                     43: mcurve=ellinit([0,0,0,-17,0])
                     44: mpoints=[[-1,4],[-4,2]]~
                     45: mhbi=ellbil(mcurve,mpoints,[9,24])
                     46: ma=ellheightmatrix(mcurve,mpoints)
                     47: matsolve(ma,mhbi)
                     48: \\
                     49: cmcurve=ellinit([0,-3/4,0,-2,-1])
                     50: ellpow(cmcurve,[x,y],quadgen(-7))
                     51: \p 96
                     52: precision(cmcurve)
                     53: getheap
                     54: print("Total time spent: ",gettime);
                     55: \q

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>