Annotation of OpenXM_contrib/pari/src/test/in/elliptic, Revision 1.1.1.1
1.1 maekawa 1: \p 38
2: \e
3: ellinit([0,0,0,-1,0])
4: ellinit([0,0,0,-17,0],1)
5: ellj(I)
6: ellsub(ellinit([0,0,0,-17,0]),[-1,4],[-4,2])
7: \\
8: acurve=ellinit([0,0,1,-1,0])
9: apoint=[2,2]
10: elladd(acurve,apoint,apoint)
11: ellak(acurve,1000000007)
12: ellan(acurve,100)
13: ellap(acurve,10007)
14: ellap(acurve,10007,1)
15: deu=direuler(p=2,100,1/(1-ellap(acurve,p)*x+if(acurve[12]%p,p,0)*x^2))
16: ellan(acurve,100)==deu
17: ellisoncurve(acurve,apoint)
18: acurve=ellchangecurve(acurve,[-1,1,2,3])
19: apoint=ellchangepoint(apoint,[-1,1,2,3])
20: ellisoncurve(acurve,apoint)
21: ellglobalred(acurve)
22: ellheight(acurve,apoint)
23: ellheight(acurve,apoint,1)
24: ellordinate(acurve,1)
25: ellztopoint(acurve,ellpointtoz(acurve,apoint))
26: ellpow(acurve,apoint,10)
27: ellwp(acurve)
28: ellpointtoz(acurve,apoint)
29: q*Ser(ellan(acurve,100),q)
30: \\
31: bcurve=ellinit([0,0,0,-3,0])
32: elllocalred(bcurve,2)
33: elltaniyama(bcurve)
34: \\
35: ccurve=ellinit([0,0,-1,-1,0])
36: l=elllseries(ccurve,2)
37: elllseries(ccurve,2,1.2)-l
38: \\
39: tcurve=ellinit([1,0,1,-19,26]);
40: ellorder(tcurve,[1,2])
41: elltors(tcurve)
42: \\
43: mcurve=ellinit([0,0,0,-17,0])
44: mpoints=[[-1,4],[-4,2]]~
45: mhbi=ellbil(mcurve,mpoints,[9,24])
46: ma=ellheightmatrix(mcurve,mpoints)
47: matsolve(ma,mhbi)
48: \\
49: cmcurve=ellinit([0,-3/4,0,-2,-1])
50: ellpow(cmcurve,[x,y],quadgen(-7))
51: \p 96
52: precision(cmcurve)
53: getheap
54: print("Total time spent: ",gettime);
55: \q
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>