Annotation of OpenXM_contrib/pari/src/test/in/polyser, Revision 1.1.1.1
1.1 maekawa 1: \p 38
2: \e
3: apol=x^3+5*x+1
4: changevar(x+y,[z,t])
5: deriv((x+y)^5,y)
6: ((x+y)^5)'
7: dz=vector(30,k,1);dd=vector(30,k,k==1);dm=dirdiv(dd,dz)
8: direuler(s=1,40,1+s*X+s^2*X)
9: dirmul(abs(dm),dz)
10: zz=yy;yy=xx;eval(zz)
11: factorpadic(apol,7,8)
12: factorpadic(apol,7,8,1)
13: intformal(sin(x),x)
14: intformal((-x^2-2*a*x+8*a)/(x^4-14*x^3+(2*a+49)*x^2-14*a*x+a^2),x)
15: newtonpoly(x^4+3*x^3+27*x^2+9*x+81,3)
16: padicappr(apol,1+O(7^8))
17: padicappr(x^3+5*x+1,Mod(x*(1+O(7^8)),x^2+x-1))
18: Pol(sin(x),x)
19: Pol([1,2,3,4,5],x)
20: Polrev([1,2,3,4,5],x)
21: polcoeff(sin(x),7)
22: polcyclo(105)
23: pcy=polcyclo(405)
24: pcy * pcy
25: poldegree(x^3/(x-1))
26: poldisc(x^3+4*x+12)
27: poldiscreduced(x^3+4*x+12)
28: polinterpolate([0,2,3],[0,4,9],5)
29: polisirreducible(x^5+3*x^3+5*x^2+15)
30: pollegendre(10)
31: zpol=0.3+pollegendre(10)
32: polrecip(3*x^7-5*x^3+6*x-9)
33: polresultant(x^3-1,x^3+1)
34: polresultant(x^3-1.,x^3+1.,,1)
35: polroots(x^5-5*x^2-5*x-5)
36: polroots(x^4-1000000000000000000000,1)
37: polrootsmod(x^16-1,41)
38: polrootspadic(x^4+1,41,6)
39: polsturm(zpol)
40: polsturm(zpol,0.91,1)
41: polsylvestermatrix(a2*x^2+a1*x+a0,b1*x+b0)
42: polsym(x^17-1,17)
43: poltchebi(10)
44: polzagier(6,3)
45: \\
46: serconvol(sin(x),x*cos(x))
47: serlaplace(x*exp(x*y)/(exp(x)-1))
48: serreverse(tan(x))
49: subst(sin(x),x,y)
50: subst(sin(x),x,x+x^2)
51: taylor(y/(x-y),y)
52: \\ thueinit
53: \\ thue
54: variable(name^4-other)
55: getheap
56: print("Total time spent: ",gettime);
57: \q
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>