[BACK]Return to dp.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2000 / builtin

File: [local] / OpenXM_contrib2 / asir2000 / builtin / dp.c (download)

Revision 1.98, Thu Mar 31 08:43:25 2016 UTC (8 years, 1 month ago) by noro
Branch: MAIN
Changes since 1.97: +108 -35 lines

Added dp_true_nf_and_quotient, dp_true_nf_and_quotient_mod,
      dp_weyl_true_nf_and_quotient_marked, dp_weyl_true_nf_and_quotient_marked_mod,
      dp_weyl_true_nf_and_quotient, dp_weyl_true_nf_and_quotient_mod.

/*
 * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED 
 * All rights reserved.
 * 
 * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
 * non-exclusive and royalty-free license to use, copy, modify and
 * redistribute, solely for non-commercial and non-profit purposes, the
 * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
 * conditions of this Agreement. For the avoidance of doubt, you acquire * only a limited right to use the SOFTWARE hereunder, and FLL or any
 * third party developer retains all rights, including but not limited to
 * copyrights, in and to the SOFTWARE.
 * 
 * (1) FLL does not grant you a license in any way for commercial
 * purposes. You may use the SOFTWARE only for non-commercial and
 * non-profit purposes only, such as academic, research and internal
 * business use.
 * (2) The SOFTWARE is protected by the Copyright Law of Japan and
 * international copyright treaties. If you make copies of the SOFTWARE,
 * with or without modification, as permitted hereunder, you shall affix
 * to all such copies of the SOFTWARE the above copyright notice.
 * (3) An explicit reference to this SOFTWARE and its copyright owner
 * shall be made on your publication or presentation in any form of the
 * results obtained by use of the SOFTWARE.
 * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
 * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
 * for such modification or the source code of the modified part of the
 * SOFTWARE.
 * 
 * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
 * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
 * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
 * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
 * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
 * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
 * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
 * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
 * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
 * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
 * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
 * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
 * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
 * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
 * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
 * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
 *
 * $OpenXM: OpenXM_contrib2/asir2000/builtin/dp.c,v 1.98 2016/03/31 08:43:25 noro Exp $ 
*/
#include "ca.h"
#include "base.h"
#include "parse.h"

extern int dp_fcoeffs;
extern int dp_nelim;
extern int dp_order_pair_length;
extern struct order_pair *dp_order_pair;
extern struct order_spec *dp_current_spec;
extern struct modorder_spec *dp_current_modspec;
extern int nd_rref2;

int do_weyl;

void Pdp_sort();
void Pdp_mul_trunc(),Pdp_quo();
void Pdp_ord(), Pdp_ptod(), Pdp_dtop(), Phomogenize();
void Pdp_ptozp(), Pdp_ptozp2(), Pdp_red(), Pdp_red2(), Pdp_lcm(), Pdp_redble();
void Pdp_sp(), Pdp_hm(), Pdp_ht(), Pdp_hc(), Pdp_rest(), Pdp_td(), Pdp_sugar();
void Pdp_set_sugar();
void Pdp_cri1(),Pdp_cri2(),Pdp_subd(),Pdp_mod(),Pdp_red_mod(),Pdp_tdiv();
void Pdp_prim(),Pdp_red_coef(),Pdp_mag(),Pdp_set_kara(),Pdp_rat();
void Pdp_nf(),Pdp_true_nf(),Pdp_true_nf_marked(),Pdp_true_nf_marked_mod();

void Pdp_true_nf_and_quotient(),Pdp_true_nf_and_quotient_mod();
void Pdp_true_nf_and_quotient_marked(),Pdp_true_nf_and_quotient_marked_mod();

void Pdp_nf_mod(),Pdp_true_nf_mod();
void Pdp_criB(),Pdp_nelim();
void Pdp_minp(),Pdp_sp_mod();
void Pdp_homo(),Pdp_dehomo();
void Pdp_gr_mod_main(),Pdp_gr_f_main();
void Pdp_gr_main(),Pdp_gr_hm_main(),Pdp_gr_d_main(),Pdp_gr_flags();
void Pdp_interreduce();
void Pdp_f4_main(),Pdp_f4_mod_main(),Pdp_f4_f_main();
void Pdp_gr_print();
void Pdp_mbase(),Pdp_lnf_mod(),Pdp_nf_tab_mod(),Pdp_mdtod(), Pdp_nf_tab_f();
void Pdp_vtoe(), Pdp_etov(), Pdp_dtov(), Pdp_idiv(), Pdp_sep();
void Pdp_cont();
void Pdp_gr_checklist();
void Pdp_ltod(),Pdpv_ord(),Pdpv_ht(),Pdpv_hm(),Pdpv_hc();

void Pdp_weyl_red();
void Pdp_weyl_sp();

void Pdp_weyl_nf(),Pdp_weyl_nf_mod();
void Pdp_weyl_true_nf_and_quotient(),Pdp_weyl_true_nf_and_quotient_mod();
void Pdp_weyl_true_nf_and_quotient_marked(),Pdp_weyl_true_nf_and_quotient_marked_mod();

void Pdp_weyl_gr_main(),Pdp_weyl_gr_mod_main(),Pdp_weyl_gr_f_main();
void Pdp_weyl_f4_main(),Pdp_weyl_f4_mod_main(),Pdp_weyl_f4_f_main();
void Pdp_weyl_mul(),Pdp_weyl_mul_mod(),Pdp_weyl_act();
void Pdp_weyl_set_weight();
void Pdp_set_weight(),Pdp_set_top_weight(),Pdp_set_module_weight();
void Pdp_nf_f(),Pdp_weyl_nf_f();
void Pdp_lnf_f();
void Pnd_gr(),Pnd_gr_trace(),Pnd_f4(),Pnd_f4_trace();
void Pnd_gr_postproc(), Pnd_weyl_gr_postproc();
void Pnd_gr_recompute_trace(), Pnd_btog();
void Pnd_weyl_gr(),Pnd_weyl_gr_trace();
void Pnd_nf(),Pnd_weyl_nf();
void Pdp_initial_term();
void Pdp_order();
void Pdp_inv_or_split();
void Pdp_compute_last_t();
void Pdp_compute_last_w();
void Pdp_compute_essential_df();
void Pdp_get_denomlist();
void Pdp_symb_add();
void Pdp_mono_raddec();
void Pdp_mono_reduce();
void Pdp_rref2(),Psumi_updatepairs(),Psumi_symbolic();

LIST dp_initial_term();
LIST dp_order();
void parse_gr_option(LIST f,NODE opt,LIST *v,Num *homo,
	int *modular,struct order_spec **ord);
NODE dp_inv_or_split(NODE gb,DP f,struct order_spec *spec, DP *inv);

LIST remove_zero_from_list(LIST);

struct ftab dp_tab[] = {
	/* content reduction */
	{"dp_ptozp",Pdp_ptozp,1},
	{"dp_ptozp2",Pdp_ptozp2,2},
	{"dp_prim",Pdp_prim,1},
	{"dp_red_coef",Pdp_red_coef,2},
	{"dp_cont",Pdp_cont,1},

/* polynomial ring */
	/* special operations */
	{"dp_mul_trunc",Pdp_mul_trunc,3},
	{"dp_quo",Pdp_quo,2},

	/* s-poly */
	{"dp_sp",Pdp_sp,2},
	{"dp_sp_mod",Pdp_sp_mod,3},

	/* m-reduction */
	{"dp_red",Pdp_red,3},
	{"dp_red_mod",Pdp_red_mod,4},

	/* normal form */
	{"dp_nf",Pdp_nf,4},
	{"dp_nf_mod",Pdp_nf_mod,5},
	{"dp_nf_f",Pdp_nf_f,4},

	{"dp_true_nf",Pdp_true_nf,4},
	{"dp_true_nf_mod",Pdp_true_nf_mod,5},
	{"dp_true_nf_marked",Pdp_true_nf_marked,4},
	{"dp_true_nf_marked_mod",Pdp_true_nf_marked_mod,5},

	{"dp_true_nf_and_quotient",Pdp_true_nf_and_quotient,3},
	{"dp_true_nf_and_quotient_mod",Pdp_true_nf_and_quotient_mod,4},
	{"dp_true_nf_and_quotient_marked",Pdp_true_nf_and_quotient_marked,4},
	{"dp_true_nf_and_quotient_marked_mod",Pdp_true_nf_and_quotient_marked_mod,5},

	{"dp_lnf_mod",Pdp_lnf_mod,3},
	{"dp_nf_tab_f",Pdp_nf_tab_f,2},
	{"dp_nf_tab_mod",Pdp_nf_tab_mod,3},
	{"dp_lnf_f",Pdp_lnf_f,2},

	/* Buchberger algorithm */
	{"dp_gr_main",Pdp_gr_main,-5},
	{"dp_interreduce",Pdp_interreduce,3},
	{"dp_gr_mod_main",Pdp_gr_mod_main,5},
	{"dp_gr_f_main",Pdp_gr_f_main,4},
	{"dp_gr_checklist",Pdp_gr_checklist,2},
	{"nd_f4",Pnd_f4,4},
	{"nd_gr",Pnd_gr,4},
	{"nd_gr_trace",Pnd_gr_trace,5},
	{"nd_f4_trace",Pnd_f4_trace,5},
	{"nd_gr_postproc",Pnd_gr_postproc,5},
	{"nd_gr_recompute_trace",Pnd_gr_recompute_trace,5},
	{"nd_btog",Pnd_btog,-6},
	{"nd_weyl_gr_postproc",Pnd_weyl_gr_postproc,5},
	{"nd_weyl_gr",Pnd_weyl_gr,4},
	{"nd_weyl_gr_trace",Pnd_weyl_gr_trace,5},
	{"nd_nf",Pnd_nf,5},
	{"nd_weyl_nf",Pnd_weyl_nf,5},

	/* F4 algorithm */
	{"dp_f4_main",Pdp_f4_main,3},
	{"dp_f4_mod_main",Pdp_f4_mod_main,4},

/* weyl algebra */
	/* multiplication */
	{"dp_weyl_mul",Pdp_weyl_mul,2},
	{"dp_weyl_mul_mod",Pdp_weyl_mul_mod,3},
	{"dp_weyl_act",Pdp_weyl_act,2},

	/* s-poly */
	{"dp_weyl_sp",Pdp_weyl_sp,2},

	/* m-reduction */
	{"dp_weyl_red",Pdp_weyl_red,3},

	/* normal form */
	{"dp_weyl_nf",Pdp_weyl_nf,4},
	{"dp_weyl_nf_mod",Pdp_weyl_nf_mod,5},
	{"dp_weyl_nf_f",Pdp_weyl_nf_f,4},

	{"dp_weyl_true_nf_and_quotient",Pdp_weyl_true_nf_and_quotient,3},
	{"dp_weyl_true_nf_and_quotient_mod",Pdp_weyl_true_nf_and_quotient_mod,4},
	{"dp_weyl_true_nf_and_quotient_marked",Pdp_weyl_true_nf_and_quotient_marked,4},
	{"dp_weyl_true_nf_and_quotient_marked_mod",Pdp_weyl_true_nf_and_quotient_marked_mod,5},


	/* Buchberger algorithm */
	{"dp_weyl_gr_main",Pdp_weyl_gr_main,-5},
	{"dp_weyl_gr_mod_main",Pdp_weyl_gr_mod_main,5},
	{"dp_weyl_gr_f_main",Pdp_weyl_gr_f_main,4},

	/* F4 algorithm */
	{"dp_weyl_f4_main",Pdp_weyl_f4_main,3},
	{"dp_weyl_f4_mod_main",Pdp_weyl_f4_mod_main,4},

	/* misc */
	{"dp_inv_or_split",Pdp_inv_or_split,3},
	{"dp_set_weight",Pdp_set_weight,-1},
	{"dp_set_module_weight",Pdp_set_module_weight,-1},
	{"dp_set_top_weight",Pdp_set_top_weight,-1},
	{"dp_weyl_set_weight",Pdp_weyl_set_weight,-1},

	{"dp_get_denomlist",Pdp_get_denomlist,0},
	{0,0,0},
};

struct ftab dp_supp_tab[] = {
	/* setting flags */
	{"dp_sort",Pdp_sort,1},
	{"dp_ord",Pdp_ord,-1},
	{"dpv_ord",Pdpv_ord,-2},
	{"dp_set_kara",Pdp_set_kara,-1},
	{"dp_nelim",Pdp_nelim,-1},
	{"dp_gr_flags",Pdp_gr_flags,-1},
	{"dp_gr_print",Pdp_gr_print,-1},

	/* converters */
	{"homogenize",Phomogenize,3},
	{"dp_ptod",Pdp_ptod,-2},
	{"dp_dtop",Pdp_dtop,2},
	{"dp_homo",Pdp_homo,1},
	{"dp_dehomo",Pdp_dehomo,1},
	{"dp_etov",Pdp_etov,1},
	{"dp_vtoe",Pdp_vtoe,1},
	{"dp_dtov",Pdp_dtov,1},
	{"dp_mdtod",Pdp_mdtod,1},
	{"dp_mod",Pdp_mod,3},
	{"dp_rat",Pdp_rat,1},
	{"dp_ltod",Pdp_ltod,-2},

	/* criteria */
	{"dp_cri1",Pdp_cri1,2},
	{"dp_cri2",Pdp_cri2,2},
	{"dp_criB",Pdp_criB,3},

	/* simple operation */
	{"dp_subd",Pdp_subd,2},
	{"dp_lcm",Pdp_lcm,2},
	{"dp_hm",Pdp_hm,1},
	{"dp_ht",Pdp_ht,1},
	{"dp_hc",Pdp_hc,1},
	{"dpv_hm",Pdpv_hm,1},
	{"dpv_ht",Pdpv_ht,1},
	{"dpv_hc",Pdpv_hc,1},
	{"dp_rest",Pdp_rest,1},
	{"dp_initial_term",Pdp_initial_term,1},
	{"dp_order",Pdp_order,1},
	{"dp_symb_add",Pdp_symb_add,2},

	/* degree and size */
	{"dp_td",Pdp_td,1},
	{"dp_mag",Pdp_mag,1},
	{"dp_sugar",Pdp_sugar,1},
	{"dp_set_sugar",Pdp_set_sugar,2},

	/* misc */
	{"dp_mbase",Pdp_mbase,1},
	{"dp_redble",Pdp_redble,2},
	{"dp_sep",Pdp_sep,2},
	{"dp_idiv",Pdp_idiv,2},
	{"dp_tdiv",Pdp_tdiv,2},
	{"dp_minp",Pdp_minp,2},
	{"dp_compute_last_w",Pdp_compute_last_w,5},
	{"dp_compute_last_t",Pdp_compute_last_t,5},
	{"dp_compute_essential_df",Pdp_compute_essential_df,2},
	{"dp_mono_raddec",Pdp_mono_raddec,2},
	{"dp_mono_reduce",Pdp_mono_reduce,2},

	{"dp_rref2",Pdp_rref2,2},
	{"sumi_updatepairs",Psumi_updatepairs,3},
	{"sumi_symbolic",Psumi_symbolic,5},

	{0,0,0}
};

NODE compute_last_w(NODE g,NODE gh,int n,int **v,int row1,int **m1,int row2,int **m2);
Q compute_last_t(NODE g,NODE gh,Q t,VECT w1,VECT w2,NODE *homo,VECT *wp);

void Pdp_compute_last_t(NODE arg,LIST *rp)
{
	NODE g,gh,homo,n;
	LIST hlist;
	VECT v1,v2,w;
	Q t;

	g = (NODE)BDY((LIST)ARG0(arg));
	gh = (NODE)BDY((LIST)ARG1(arg));
	t = (Q)ARG2(arg);
	v1 = (VECT)ARG3(arg);
	v2 = (VECT)ARG4(arg);
	t = compute_last_t(g,gh,t,v1,v2,&homo,&w);
	MKLIST(hlist,homo);
	n = mknode(3,t,w,hlist);
	MKLIST(*rp,n);
}

void Pdp_compute_last_w(NODE arg,LIST *rp)
{
	NODE g,gh,r;
	VECT w,rv;
	LIST l;
	MAT w1,w2;
	int row1,row2,i,j,n;
	int *v;
	int **m1,**m2;
	Q q;

	g = (NODE)BDY((LIST)ARG0(arg));
	gh = (NODE)BDY((LIST)ARG1(arg));
	w = (VECT)ARG2(arg);
	w1 = (MAT)ARG3(arg);
	w2 = (MAT)ARG4(arg);
	n = w1->col;
	row1 = w1->row;
	row2 = w2->row;
	if ( w ) {
		v = W_ALLOC(n);
		for ( i = 0; i < n; i++ ) v[i] = QTOS((Q)w->body[i]);
	} else v = 0;
	m1 = almat(row1,n);
	for ( i = 0; i < row1; i++ )
		for ( j = 0; j < n; j++ ) m1[i][j] = QTOS((Q)w1->body[i][j]);
	m2 = almat(row2,n);
	for ( i = 0; i < row2; i++ )
		for ( j = 0; j < n; j++ ) m2[i][j] = QTOS((Q)w2->body[i][j]);
	r = compute_last_w(g,gh,n,&v,row1,m1,row2,m2);
	if ( !r ) *rp = 0;
	else {
		MKVECT(rv,n);
		for ( i = 0; i < n; i++ ) {
			STOQ(v[i],q); rv->body[i] = (pointer)q;
		}
		MKLIST(l,r);
		r = mknode(2,rv,l);
		MKLIST(*rp,r);
	}
}

NODE compute_essential_df(DP *g,DP *gh,int n);

void Pdp_compute_essential_df(NODE arg,LIST *rp)
{
	VECT g,gh;
	NODE r;

	g = (VECT)ARG0(arg);
	gh = (VECT)ARG1(arg);
	r = (NODE)compute_essential_df((DP *)BDY(g),(DP *)BDY(gh),g->len);
	MKLIST(*rp,r);
}

void Pdp_inv_or_split(NODE arg,Obj *rp)
{
	NODE gb,newgb;
	DP f,inv;
	struct order_spec *spec;
	LIST list;

	do_weyl = 0; dp_fcoeffs = 0;
	asir_assert(ARG0(arg),O_LIST,"dp_inv_or_split");
	asir_assert(ARG1(arg),O_DP,"dp_inv_or_split");
	if ( !create_order_spec(0,(Obj)ARG2(arg),&spec) )
		error("dp_inv_or_split : invalid order specification");
	gb = BDY((LIST)ARG0(arg));
	f = (DP)ARG1(arg);
	newgb = (NODE)dp_inv_or_split(gb,f,spec,&inv);
	if ( !newgb ) {
		/* invertible */
		*rp = (Obj)inv;
	} else {
		MKLIST(list,newgb);
		*rp = (Obj)list;
	}
}

void Pdp_sort(NODE arg,DP *rp)
{
	dp_sort((DP)ARG0(arg),rp);
}

void Pdp_mdtod(NODE arg,DP *rp)
{
	MP m,mr,mr0;
	DP p;
	P t;

	p = (DP)ARG0(arg);
	if ( !p )
		*rp = 0;
	else {
		for ( mr0 = 0, m = BDY(p); m; m = NEXT(m) ) {
			mptop(m->c,&t); NEXTMP(mr0,mr); mr->c = t; mr->dl = m->dl;
		}
		NEXT(mr) = 0; MKDP(p->nv,mr0,*rp); (*rp)->sugar = p->sugar;
	}
}

void Pdp_sep(NODE arg,VECT *rp)
{
	DP p,r;
	MP m,t;
	MP *w0,*w;
	int i,n,d,nv,sugar;
	VECT v;
	pointer *pv;

	p = (DP)ARG0(arg); m = BDY(p);
	d = QTOS((Q)ARG1(arg));
	for ( t = m, n = 0; t; t = NEXT(t), n++ );
	if ( d > n )
		d = n;
	MKVECT(v,d); *rp = v;
	pv = BDY(v); nv = p->nv; sugar = p->sugar;
	w0 = (MP *)MALLOC(d*sizeof(MP)); bzero(w0,d*sizeof(MP));
	w = (MP *)MALLOC(d*sizeof(MP)); bzero(w,d*sizeof(MP));
	for ( t = BDY(p), i = 0; t; t = NEXT(t), i++, i %= d  ) {
		NEXTMP(w0[i],w[i]); w[i]->c = t->c; w[i]->dl = t->dl;
	}
	for ( i = 0; i < d; i++ ) {
		NEXT(w[i]) = 0; MKDP(nv,w0[i],r); r->sugar = sugar;
		pv[i] = (pointer)r;
	}
}

void Pdp_idiv(NODE arg,DP *rp)
{
	dp_idiv((DP)ARG0(arg),(Q)ARG1(arg),rp);
}

void Pdp_cont(NODE arg,Q *rp)
{
	dp_cont((DP)ARG0(arg),rp);
}

void Pdp_dtov(NODE arg,VECT *rp)
{
	dp_dtov((DP)ARG0(arg),rp);
}

void Pdp_mbase(NODE arg,LIST *rp)
{
	NODE mb;

	asir_assert(ARG0(arg),O_LIST,"dp_mbase");
	dp_mbase(BDY((LIST)ARG0(arg)),&mb);
	MKLIST(*rp,mb);
}

void Pdp_etov(NODE arg,VECT *rp)
{
	DP dp;
	int n,i;
	int *d;
	VECT v;
	Q t;

	dp = (DP)ARG0(arg);
	asir_assert(dp,O_DP,"dp_etov");
	n = dp->nv; d = BDY(dp)->dl->d;
	MKVECT(v,n);
	for ( i = 0; i < n; i++ ) {
		STOQ(d[i],t); v->body[i] = (pointer)t;
	}
	*rp = v;
}

void Pdp_vtoe(NODE arg,DP *rp)
{
	DP dp;
	DL dl;
	MP m;
	int n,i,td;
	int *d;
	VECT v;

	v = (VECT)ARG0(arg);
	asir_assert(v,O_VECT,"dp_vtoe");
	n = v->len;
	NEWDL(dl,n); d = dl->d;
	for ( i = 0, td = 0; i < n; i++ ) {
		d[i] = QTOS((Q)(v->body[i])); td += MUL_WEIGHT(d[i],i);
	}
	dl->td = td;
	NEWMP(m); m->dl = dl; m->c = (P)ONE; NEXT(m) = 0;
	MKDP(n,m,dp); dp->sugar = td;
	*rp = dp;
}

void Pdp_lnf_mod(NODE arg,LIST *rp)
{
	DP r1,r2;
	NODE b,g,n;
	int mod;

	asir_assert(ARG0(arg),O_LIST,"dp_lnf_mod");
	asir_assert(ARG1(arg),O_LIST,"dp_lnf_mod");
	asir_assert(ARG2(arg),O_N,"dp_lnf_mod");
	b = BDY((LIST)ARG0(arg)); g = BDY((LIST)ARG1(arg));
	mod = QTOS((Q)ARG2(arg));
	dp_lnf_mod((DP)BDY(b),(DP)BDY(NEXT(b)),g,mod,&r1,&r2);
	NEWNODE(n); BDY(n) = (pointer)r1;
	NEWNODE(NEXT(n)); BDY(NEXT(n)) = (pointer)r2;
	NEXT(NEXT(n)) = 0; MKLIST(*rp,n);
}

void Pdp_lnf_f(NODE arg,LIST *rp)
{
	DP r1,r2;
	NODE b,g,n;

	asir_assert(ARG0(arg),O_LIST,"dp_lnf_f");
	asir_assert(ARG1(arg),O_LIST,"dp_lnf_f");
	b = BDY((LIST)ARG0(arg)); g = BDY((LIST)ARG1(arg));
	dp_lnf_f((DP)BDY(b),(DP)BDY(NEXT(b)),g,&r1,&r2);
	NEWNODE(n); BDY(n) = (pointer)r1;
	NEWNODE(NEXT(n)); BDY(NEXT(n)) = (pointer)r2;
	NEXT(NEXT(n)) = 0; MKLIST(*rp,n);
}

void Pdp_nf_tab_mod(NODE arg,DP *rp)
{
	asir_assert(ARG0(arg),O_DP,"dp_nf_tab_mod");
	asir_assert(ARG1(arg),O_VECT,"dp_nf_tab_mod");
	asir_assert(ARG2(arg),O_N,"dp_nf_tab_mod");
	dp_nf_tab_mod((DP)ARG0(arg),(LIST *)BDY((VECT)ARG1(arg)),
		QTOS((Q)ARG2(arg)),rp);
}

void Pdp_nf_tab_f(NODE arg,DP *rp)
{
	asir_assert(ARG0(arg),O_DP,"dp_nf_tab_f");
	asir_assert(ARG1(arg),O_VECT,"dp_nf_tab_f");
	dp_nf_tab_f((DP)ARG0(arg),(LIST *)BDY((VECT)ARG1(arg)),rp);
}

void Pdp_ord(NODE arg,Obj *rp)
{
	struct order_spec *spec;
	LIST v;
	struct oLIST f;
	Num homo;
	int modular;
	
	f.id = O_LIST; f.body = 0;
	if ( !arg && !current_option )
		*rp = dp_current_spec->obj;
	else {
		if ( current_option )
			parse_gr_option(&f,current_option,&v,&homo,&modular,&spec);
		else if ( !create_order_spec(0,(Obj)ARG0(arg),&spec) )
			error("dp_ord : invalid order specification");
		initd(spec); *rp = spec->obj;
	}
}

void Pdp_ptod(NODE arg,DP *rp)
{
	P p;
	NODE n;
	VL vl,tvl;
	struct oLIST f;
	int ac;
	LIST v;
	Num homo;
	int modular;
	struct order_spec *ord;

	asir_assert(ARG0(arg),O_P,"dp_ptod");
	p = (P)ARG0(arg);
	ac = argc(arg);
	if ( ac == 1 ) {
		if ( current_option ) {
			f.id = O_LIST; f.body = mknode(1,p);
			parse_gr_option(&f,current_option,&v,&homo,&modular,&ord);
			initd(ord);
		} else
			error("dp_ptod : invalid argument");
	} else {
		asir_assert(ARG1(arg),O_LIST,"dp_ptod");
		v = (LIST)ARG1(arg);
	}
	for ( vl = 0, n = BDY(v); n; n = NEXT(n) ) {
		if ( !vl ) {
			NEWVL(vl); tvl = vl;
		} else {
			NEWVL(NEXT(tvl)); tvl = NEXT(tvl);
		}
		VR(tvl) = VR((P)BDY(n));
	}
	if ( vl )
		NEXT(tvl) = 0;
	ptod(CO,vl,p,rp);
}

void Phomogenize(NODE arg,P *rp)
{
	P p;
	DP d,h;
	NODE n;
	V hv;
	VL vl,tvl,last;
	struct oLIST f;
	LIST v;

	asir_assert(ARG0(arg),O_P,"homogenize");
	p = (P)ARG0(arg);
	asir_assert(ARG1(arg),O_LIST,"homogenize");
	v = (LIST)ARG1(arg);
	asir_assert(ARG2(arg),O_P,"homogenize");
	hv = VR((P)ARG2(arg));
	for ( vl = 0, n = BDY(v); n; n = NEXT(n) ) {
		if ( !vl ) {
			NEWVL(vl); tvl = vl;
		} else {
			NEWVL(NEXT(tvl)); tvl = NEXT(tvl);
		}
		VR(tvl) = VR((P)BDY(n));
	}
	if ( vl ) {
		last = tvl;
		NEXT(tvl) = 0;
	}
	ptod(CO,vl,p,&d);
	dp_homo(d,&h);
	NEWVL(NEXT(last)); last = NEXT(last);
	VR(last) = hv; NEXT(last) = 0;
	dtop(CO,vl,h,rp);
}

void Pdp_ltod(NODE arg,DPV *rp)
{
	NODE n;
	VL vl,tvl;
	LIST f,v;
	int sugar,i,len,ac,modular;
	Num homo;
	struct order_spec *ord;
	DP *e;
	NODE nd,t;

	ac = argc(arg);
	asir_assert(ARG0(arg),O_LIST,"dp_ptod");
	f = (LIST)ARG0(arg);
	if ( ac == 1 ) {
		if ( current_option ) {
			parse_gr_option(f,current_option,&v,&homo,&modular,&ord);
			initd(ord);
		} else
			error("dp_ltod : invalid argument");
	} else {
		asir_assert(ARG1(arg),O_LIST,"dp_ptod");
		v = (LIST)ARG1(arg);
	}
	for ( vl = 0, n = BDY(v); n; n = NEXT(n) ) {
		if ( !vl ) {
			NEWVL(vl); tvl = vl;
		} else {
			NEWVL(NEXT(tvl)); tvl = NEXT(tvl);
		}
		VR(tvl) = VR((P)BDY(n));
	}
	if ( vl )
		NEXT(tvl) = 0;

	nd = BDY(f);
	len = length(nd);
	e = (DP *)MALLOC(len*sizeof(DP));
	sugar = 0;
	for ( i = 0, t = nd; i < len; i++, t = NEXT(t) ) {
		ptod(CO,vl,(P)BDY(t),&e[i]);
		if ( e[i] )
			sugar = MAX(sugar,e[i]->sugar);
	}
	MKDPV(len,e,*rp);
}

void Pdp_dtop(NODE arg,P *rp)
{
	NODE n;
	VL vl,tvl;

	asir_assert(ARG0(arg),O_DP,"dp_dtop");
	asir_assert(ARG1(arg),O_LIST,"dp_dtop");
	for ( vl = 0, n = BDY((LIST)ARG1(arg)); n; n = NEXT(n) ) {
		if ( !vl ) {
			NEWVL(vl); tvl = vl;
		} else {
			NEWVL(NEXT(tvl)); tvl = NEXT(tvl);
		}
		VR(tvl) = VR((P)BDY(n));
	}
	if ( vl )
		NEXT(tvl) = 0;
	dtop(CO,vl,(DP)ARG0(arg),rp);
}

extern LIST Dist;

void Pdp_ptozp(NODE arg,Obj *rp)
{
	Q t;
    NODE tt,p;
    NODE n,n0;
    char *key;
	DP pp;
	LIST list;
    int get_factor=0;

	asir_assert(ARG0(arg),O_DP,"dp_ptozp");

    /* analyze the option */
    if ( current_option ) {
      for ( tt = current_option; tt; tt = NEXT(tt) ) {
        p = BDY((LIST)BDY(tt));
        key = BDY((STRING)BDY(p));
        /*  value = (Obj)BDY(NEXT(p)); */
        if ( !strcmp(key,"factor") )  get_factor=1;
        else {
          error("ptozp: unknown option.");
        }
      }
    }

	dp_ptozp3((DP)ARG0(arg),&t,&pp);

    /* printexpr(NULL,t); */
	/* if the option factor is given, then it returns the answer
       in the format [zpoly, num] where num*zpoly is equal to the argument.*/
    if (get_factor) {
	  n0 = mknode(2,pp,t);
      MKLIST(list,n0);
	  *rp = (Obj)list;
    } else
      *rp = (Obj)pp;
}
	
void Pdp_ptozp2(NODE arg,LIST *rp)
{
	DP p0,p1,h,r;
	NODE n0;

	p0 = (DP)ARG0(arg); p1 = (DP)ARG1(arg);
	asir_assert(p0,O_DP,"dp_ptozp2");
	asir_assert(p1,O_DP,"dp_ptozp2");
	dp_ptozp2(p0,p1,&h,&r);
	NEWNODE(n0); BDY(n0) = (pointer)h;
	NEWNODE(NEXT(n0)); BDY(NEXT(n0)) = (pointer)r;
	NEXT(NEXT(n0)) = 0;
	MKLIST(*rp,n0);
}

void Pdp_prim(NODE arg,DP *rp)
{
	DP t;

	asir_assert(ARG0(arg),O_DP,"dp_prim");
	dp_prim((DP)ARG0(arg),&t); dp_ptozp(t,rp);
}
	
void Pdp_mod(NODE arg,DP *rp)
{
	DP p;
	int mod;
	NODE subst;

	asir_assert(ARG0(arg),O_DP,"dp_mod");
	asir_assert(ARG1(arg),O_N,"dp_mod");
	asir_assert(ARG2(arg),O_LIST,"dp_mod");
	p = (DP)ARG0(arg); mod = QTOS((Q)ARG1(arg));
	subst = BDY((LIST)ARG2(arg));
	dp_mod(p,mod,subst,rp);
}

void Pdp_rat(NODE arg,DP *rp)
{
	asir_assert(ARG0(arg),O_DP,"dp_rat");
	dp_rat((DP)ARG0(arg),rp);
}

extern int DP_Multiple;

void Pdp_nf(NODE arg,DP *rp)
{
	NODE b;
	DP *ps;
	DP g;
	int full;

	do_weyl = 0; dp_fcoeffs = 0;
	asir_assert(ARG0(arg),O_LIST,"dp_nf");
	asir_assert(ARG1(arg),O_DP,"dp_nf");
	asir_assert(ARG2(arg),O_VECT,"dp_nf");
	asir_assert(ARG3(arg),O_N,"dp_nf");
	if ( !(g = (DP)ARG1(arg)) ) {
		*rp = 0; return;
	}
	b = BDY((LIST)ARG0(arg)); ps = (DP *)BDY((VECT)ARG2(arg));
	full = (Q)ARG3(arg) ? 1 : 0;
	dp_nf_z(b,g,ps,full,DP_Multiple,rp);
}

void Pdp_weyl_nf(NODE arg,DP *rp)
{
	NODE b;
	DP *ps;
	DP g;
	int full;

	asir_assert(ARG0(arg),O_LIST,"dp_weyl_nf");
	asir_assert(ARG1(arg),O_DP,"dp_weyl_nf");
	asir_assert(ARG2(arg),O_VECT,"dp_weyl_nf");
	asir_assert(ARG3(arg),O_N,"dp_weyl_nf");
	if ( !(g = (DP)ARG1(arg)) ) {
		*rp = 0; return;
	}
	b = BDY((LIST)ARG0(arg)); ps = (DP *)BDY((VECT)ARG2(arg));
	full = (Q)ARG3(arg) ? 1 : 0;
	do_weyl = 1;
	dp_nf_z(b,g,ps,full,DP_Multiple,rp);
	do_weyl = 0;
}

/* nf computation using field operations */

void Pdp_nf_f(NODE arg,DP *rp)
{
	NODE b;
	DP *ps;
	DP g;
	int full;

	do_weyl = 0;
	asir_assert(ARG0(arg),O_LIST,"dp_nf_f");
	asir_assert(ARG1(arg),O_DP,"dp_nf_f");
	asir_assert(ARG2(arg),O_VECT,"dp_nf_f");
	asir_assert(ARG3(arg),O_N,"dp_nf_f");
	if ( !(g = (DP)ARG1(arg)) ) {
		*rp = 0; return;
	}
	b = BDY((LIST)ARG0(arg)); ps = (DP *)BDY((VECT)ARG2(arg));
	full = (Q)ARG3(arg) ? 1 : 0;
	dp_nf_f(b,g,ps,full,rp);
}

void Pdp_weyl_nf_f(NODE arg,DP *rp)
{
	NODE b;
	DP *ps;
	DP g;
	int full;

	asir_assert(ARG0(arg),O_LIST,"dp_weyl_nf_f");
	asir_assert(ARG1(arg),O_DP,"dp_weyl_nf_f");
	asir_assert(ARG2(arg),O_VECT,"dp_weyl_nf_f");
	asir_assert(ARG3(arg),O_N,"dp_weyl_nf_f");
	if ( !(g = (DP)ARG1(arg)) ) {
		*rp = 0; return;
	}
	b = BDY((LIST)ARG0(arg)); ps = (DP *)BDY((VECT)ARG2(arg));
	full = (Q)ARG3(arg) ? 1 : 0;
	do_weyl = 1;
	dp_nf_f(b,g,ps,full,rp);
	do_weyl = 0;
}

void Pdp_nf_mod(NODE arg,DP *rp)
{
	NODE b;
	DP g;
	DP *ps;
	int mod,full,ac;
	NODE n,n0;

	do_weyl = 0;
	ac = argc(arg);
	asir_assert(ARG0(arg),O_LIST,"dp_nf_mod");
	asir_assert(ARG1(arg),O_DP,"dp_nf_mod");
	asir_assert(ARG2(arg),O_VECT,"dp_nf_mod");
	asir_assert(ARG3(arg),O_N,"dp_nf_mod");
	asir_assert(ARG4(arg),O_N,"dp_nf_mod");
	if ( !(g = (DP)ARG1(arg)) ) {
		*rp = 0; return;
	}
	b = BDY((LIST)ARG0(arg)); ps = (DP *)BDY((VECT)ARG2(arg));
	full = QTOS((Q)ARG3(arg)); mod = QTOS((Q)ARG4(arg));
	for ( n0 = n = 0; b; b = NEXT(b) ) {
		NEXTNODE(n0,n);
		BDY(n) = (pointer)QTOS((Q)BDY(b));
	}
	if ( n0 )
		NEXT(n) = 0;
	dp_nf_mod(n0,g,ps,mod,full,rp);
}

void Pdp_true_nf(NODE arg,LIST *rp)
{
	NODE b,n;
	DP *ps;
	DP g;
	DP nm;
	P dn;
	int full;

	do_weyl = 0; dp_fcoeffs = 0;
	asir_assert(ARG0(arg),O_LIST,"dp_true_nf");
	asir_assert(ARG1(arg),O_DP,"dp_true_nf");
	asir_assert(ARG2(arg),O_VECT,"dp_true_nf");
	asir_assert(ARG3(arg),O_N,"dp_nf");
	if ( !(g = (DP)ARG1(arg)) ) {
		nm = 0; dn = (P)ONE;
	} else {
		b = BDY((LIST)ARG0(arg)); ps = (DP *)BDY((VECT)ARG2(arg));
		full = (Q)ARG3(arg) ? 1 : 0;
		dp_true_nf(b,g,ps,full,&nm,&dn);
	}
	NEWNODE(n); BDY(n) = (pointer)nm;
	NEWNODE(NEXT(n)); BDY(NEXT(n)) = (pointer)dn;
	NEXT(NEXT(n)) = 0; MKLIST(*rp,n);
}

DP *dp_true_nf_and_quotient_marked(NODE b,DP g,DP *ps,DP *hps,DP *rp,P *dnp);

void Pdp_true_nf_and_quotient_marked(NODE arg,LIST *rp)
{
	NODE b,n;
	DP *ps,*hps;
	DP g;
	DP nm;
	VECT quo;
	P dn;
	int full;

	do_weyl = 0; dp_fcoeffs = 0;
	asir_assert(ARG0(arg),O_LIST,"dp_true_nf_and_quotient_marked");
	asir_assert(ARG1(arg),O_DP,"dp_true_nf_and_quotient_marked");
	asir_assert(ARG2(arg),O_VECT,"dp_true_nf_and_quotient_marked");
	asir_assert(ARG3(arg),O_VECT,"dp_true_nf_and_quotient_marked");
	if ( !(g = (DP)ARG1(arg)) ) {
		nm = 0; dn = (P)ONE;
	} else {
		b = BDY((LIST)ARG0(arg)); 
		ps = (DP *)BDY((VECT)ARG2(arg));
		hps = (DP *)BDY((VECT)ARG3(arg));
		NEWVECT(quo); quo->len = ((VECT)ARG2(arg))->len;
		quo->body = (pointer *)dp_true_nf_and_quotient_marked(b,g,ps,hps,&nm,&dn);
	}
	n = mknode(3,nm,dn,quo);
	MKLIST(*rp,n);
}

void Pdp_true_nf_and_quotient(NODE arg,LIST *rp)
{
  NODE narg = mknode(4,ARG0(arg),ARG1(arg),ARG2(arg),ARG2(arg));
  Pdp_true_nf_and_quotient_marked(narg,rp);
}


DP *dp_true_nf_and_quotient_marked_mod (NODE b,DP g,DP *ps,DP *hps,int mod,DP *rp,P *dnp);

void Pdp_true_nf_and_quotient_marked_mod(NODE arg,LIST *rp)
{
	NODE b,n;
	DP *ps,*hps;
	DP g;
	DP nm;
	VECT quo;
	P dn;
	int full,mod;

	do_weyl = 0; dp_fcoeffs = 0;
	asir_assert(ARG0(arg),O_LIST,"dp_true_nf_and_quotient_marked_mod");
	asir_assert(ARG1(arg),O_DP,"dp_true_nf_and_quotient_marked_mod");
	asir_assert(ARG2(arg),O_VECT,"dp_true_nf_and_quotient_marked_mod");
	asir_assert(ARG3(arg),O_VECT,"dp_true_nf_and_quotient_marked_mod");
	asir_assert(ARG4(arg),O_N,"dp_true_nf_and_quotient_marked_mod");
	if ( !(g = (DP)ARG1(arg)) ) {
		nm = 0; dn = (P)ONE;
	} else {
		b = BDY((LIST)ARG0(arg)); 
		ps = (DP *)BDY((VECT)ARG2(arg));
		hps = (DP *)BDY((VECT)ARG3(arg));
		mod = QTOS((Q)ARG4(arg));
		NEWVECT(quo); quo->len = ((VECT)ARG2(arg))->len;
		quo->body = (pointer *)dp_true_nf_and_quotient_marked_mod(b,g,ps,hps,mod,&nm,&dn);
	}
	n = mknode(3,nm,dn,quo);
	MKLIST(*rp,n);
}

void Pdp_true_nf_and_quotient_mod(NODE arg,LIST *rp)
{
  NODE narg = mknode(5,ARG0(arg),ARG1(arg),ARG2(arg),ARG2(arg),ARG3(arg));
  Pdp_true_nf_and_quotient_marked_mod(narg,rp);
}

void Pdp_true_nf_marked(NODE arg,LIST *rp)
{
	NODE b,n;
	DP *ps,*hps;
	DP g;
	DP nm;
	Q cont;
	P dn;
	int full;

	do_weyl = 0; dp_fcoeffs = 0;
	asir_assert(ARG0(arg),O_LIST,"dp_true_nf_marked");
	asir_assert(ARG1(arg),O_DP,"dp_true_nf_marked");
	asir_assert(ARG2(arg),O_VECT,"dp_true_nf_marked");
	asir_assert(ARG3(arg),O_VECT,"dp_true_nf_marked");
	if ( !(g = (DP)ARG1(arg)) ) {
		nm = 0; dn = (P)ONE;
	} else {
		b = BDY((LIST)ARG0(arg)); 
		ps = (DP *)BDY((VECT)ARG2(arg));
		hps = (DP *)BDY((VECT)ARG3(arg));
		dp_true_nf_marked(b,g,ps,hps,&nm,&cont,&dn);
	}
	n = mknode(3,nm,cont,dn);
	MKLIST(*rp,n);
}

void Pdp_true_nf_marked_mod(NODE arg,LIST *rp)
{
	NODE b,n;
	DP *ps,*hps;
	DP g;
	DP nm;
	P dn;
	int mod;

	do_weyl = 0; dp_fcoeffs = 0;
	asir_assert(ARG0(arg),O_LIST,"dp_true_nf_marked_mod");
	asir_assert(ARG1(arg),O_DP,"dp_true_nf_marked_mod");
	asir_assert(ARG2(arg),O_VECT,"dp_true_nf_marked_mod");
	asir_assert(ARG3(arg),O_VECT,"dp_true_nf_marked_mod");
	asir_assert(ARG4(arg),O_N,"dp_true_nf_marked_mod");
	if ( !(g = (DP)ARG1(arg)) ) {
		nm = 0; dn = (P)ONE;
	} else {
		b = BDY((LIST)ARG0(arg)); 
		ps = (DP *)BDY((VECT)ARG2(arg));
		hps = (DP *)BDY((VECT)ARG3(arg));
		mod = QTOS((Q)ARG4(arg));
		dp_true_nf_marked_mod(b,g,ps,hps,mod,&nm,&dn);
	}
	n = mknode(2,nm,dn);
	MKLIST(*rp,n);
}

void Pdp_weyl_nf_mod(NODE arg,DP *rp)
{
	NODE b;
	DP g;
	DP *ps;
	int mod,full,ac;
	NODE n,n0;

	ac = argc(arg);
	asir_assert(ARG0(arg),O_LIST,"dp_weyl_nf_mod");
	asir_assert(ARG1(arg),O_DP,"dp_weyl_nf_mod");
	asir_assert(ARG2(arg),O_VECT,"dp_weyl_nf_mod");
	asir_assert(ARG3(arg),O_N,"dp_weyl_nf_mod");
	asir_assert(ARG4(arg),O_N,"dp_weyl_nf_mod");
	if ( !(g = (DP)ARG1(arg)) ) {
		*rp = 0; return;
	}
	b = BDY((LIST)ARG0(arg)); ps = (DP *)BDY((VECT)ARG2(arg));
	full = QTOS((Q)ARG3(arg)); mod = QTOS((Q)ARG4(arg));
	for ( n0 = n = 0; b; b = NEXT(b) ) {
		NEXTNODE(n0,n);
		BDY(n) = (pointer)QTOS((Q)BDY(b));
	}
	if ( n0 )
		NEXT(n) = 0;
	do_weyl = 1;
	dp_nf_mod(n0,g,ps,mod,full,rp);
	do_weyl = 0;
}

void Pdp_true_nf_mod(NODE arg,LIST *rp)
{
	NODE b;
	DP g,nm;
	P dn;
	DP *ps;
	int mod,full;
	NODE n;

	do_weyl = 0;
	asir_assert(ARG0(arg),O_LIST,"dp_nf_mod");
	asir_assert(ARG1(arg),O_DP,"dp_nf_mod");
	asir_assert(ARG2(arg),O_VECT,"dp_nf_mod");
	asir_assert(ARG3(arg),O_N,"dp_nf_mod");
	asir_assert(ARG4(arg),O_N,"dp_nf_mod");
	if ( !(g = (DP)ARG1(arg)) ) {
		nm = 0; dn = (P)ONEM;
	} else {
		b = BDY((LIST)ARG0(arg)); ps = (DP *)BDY((VECT)ARG2(arg));
		full = QTOS((Q)ARG3(arg)); mod = QTOS((Q)ARG4(arg));
		dp_true_nf_mod(b,g,ps,mod,full,&nm,&dn);
	}
	NEWNODE(n); BDY(n) = (pointer)nm;
	NEWNODE(NEXT(n)); BDY(NEXT(n)) = (pointer)dn;
	NEXT(NEXT(n)) = 0; MKLIST(*rp,n);
}

void Pdp_weyl_true_nf_and_quotient_marked(NODE arg,LIST *rp)
{
	NODE b,n;
	DP *ps,*hps;
	DP g;
	DP nm;
	VECT quo;
	P dn;
	int full;

	do_weyl = 1; dp_fcoeffs = 0;
	asir_assert(ARG0(arg),O_LIST,"dp_weyl_true_nf_and_quotient_marked");
	asir_assert(ARG1(arg),O_DP,"dp_weyl_true_nf_and_quotient_marked");
	asir_assert(ARG2(arg),O_VECT,"dp_weyl_true_nf_and_quotient_marked");
	asir_assert(ARG3(arg),O_VECT,"dp_weyl_true_nf_and_quotient_marked");
	if ( !(g = (DP)ARG1(arg)) ) {
		nm = 0; dn = (P)ONE;
	} else {
		b = BDY((LIST)ARG0(arg)); 
		ps = (DP *)BDY((VECT)ARG2(arg));
		hps = (DP *)BDY((VECT)ARG3(arg));
		NEWVECT(quo); quo->len = ((VECT)ARG2(arg))->len;
		quo->body = (pointer *)dp_true_nf_and_quotient_marked(b,g,ps,hps,&nm,&dn);
	}
	n = mknode(3,nm,dn,quo);
	MKLIST(*rp,n);
}

void Pdp_weyl_true_nf_and_quotient(NODE arg,LIST *rp)
{
  NODE narg = mknode(4,ARG0(arg),ARG1(arg),ARG2(arg),ARG2(arg));
  Pdp_weyl_true_nf_and_quotient_marked(narg,rp);
}


void Pdp_weyl_true_nf_and_quotient_marked_mod(NODE arg,LIST *rp)
{
	NODE b,n;
	DP *ps,*hps;
	DP g;
	DP nm;
	VECT quo;
	P dn;
	int full,mod;

	do_weyl = 1; dp_fcoeffs = 0;
	asir_assert(ARG0(arg),O_LIST,"dp_weyl_true_nf_and_quotient_marked_mod");
	asir_assert(ARG1(arg),O_DP,"dp_weyl_true_nf_and_quotient_marked_mod");
	asir_assert(ARG2(arg),O_VECT,"dp_weyl_true_nf_and_quotient_marked_mod");
	asir_assert(ARG3(arg),O_VECT,"dp_weyl_true_nf_and_quotient_marked_mod");
	asir_assert(ARG4(arg),O_N,"dp_weyl_true_nf_and_quotient_marked_mod");
	if ( !(g = (DP)ARG1(arg)) ) {
		nm = 0; dn = (P)ONE;
	} else {
		b = BDY((LIST)ARG0(arg)); 
		ps = (DP *)BDY((VECT)ARG2(arg));
		hps = (DP *)BDY((VECT)ARG3(arg));
		mod = QTOS((Q)ARG4(arg));
		NEWVECT(quo); quo->len = ((VECT)ARG2(arg))->len;
		quo->body = (pointer *)dp_true_nf_and_quotient_marked_mod(b,g,ps,hps,mod,&nm,&dn);
	}
	n = mknode(3,nm,dn,quo);
	MKLIST(*rp,n);
}

void Pdp_weyl_true_nf_and_quotient_mod(NODE arg,LIST *rp)
{
  NODE narg = mknode(5,ARG0(arg),ARG1(arg),ARG2(arg),ARG2(arg),ARG3(arg));
  Pdp_weyl_true_nf_and_quotient_marked_mod(narg,rp);
}


void Pdp_tdiv(NODE arg,DP *rp)
{
	MP m,mr,mr0;
	DP p;
	Q c;
	N d,q,r;
	int sgn;

	asir_assert(ARG0(arg),O_DP,"dp_tdiv");
	asir_assert(ARG1(arg),O_N,"dp_tdiv");
	p = (DP)ARG0(arg); d = NM((Q)ARG1(arg)); sgn = SGN((Q)ARG1(arg));
	if ( !p )
		*rp = 0;
	else {
		for ( mr0 = 0, m = BDY(p); m; m = NEXT(m) ) {
			divn(NM((Q)m->c),d,&q,&r);
			if ( r ) {
				*rp = 0; return;
			} else {
				NEXTMP(mr0,mr); NTOQ(q,SGN((Q)m->c)*sgn,c);
				mr->c = (P)c; mr->dl = m->dl;
			}
		}
		NEXT(mr) = 0; MKDP(p->nv,mr0,*rp); (*rp)->sugar = p->sugar;
	}
}

void Pdp_red_coef(NODE arg,DP *rp)
{
	MP m,mr,mr0;
	P q,r;
	DP p;
	P mod;

	p = (DP)ARG0(arg); mod = (P)ARG1(arg);
	asir_assert(p,O_DP,"dp_red_coef");
	asir_assert(mod,O_P,"dp_red_coef");
	if ( !p )
		*rp = 0;
	else {
		for ( mr0 = 0, m = BDY(p); m; m = NEXT(m) ) {
			divsrp(CO,m->c,mod,&q,&r);
			if ( r ) {
				NEXTMP(mr0,mr); mr->c = r; mr->dl = m->dl;
			}
		}
		if ( mr0 ) {
			NEXT(mr) = 0; MKDP(p->nv,mr0,*rp); (*rp)->sugar = p->sugar;
		} else
			*rp = 0;
	}
}

void Pdp_redble(NODE arg,Q *rp)
{
	asir_assert(ARG0(arg),O_DP,"dp_redble");
	asir_assert(ARG1(arg),O_DP,"dp_redble");
	if ( dp_redble((DP)ARG0(arg),(DP)ARG1(arg)) )
		*rp = ONE;
	else
		*rp = 0;
}

void Pdp_red_mod(NODE arg,LIST *rp)
{
	DP h,r;
	P dmy;
	NODE n;

	do_weyl = 0;
	asir_assert(ARG0(arg),O_DP,"dp_red_mod");
	asir_assert(ARG1(arg),O_DP,"dp_red_mod");
	asir_assert(ARG2(arg),O_DP,"dp_red_mod");
	asir_assert(ARG3(arg),O_N,"dp_red_mod");
	dp_red_mod((DP)ARG0(arg),(DP)ARG1(arg),(DP)ARG2(arg),QTOS((Q)ARG3(arg)),
		&h,&r,&dmy);
	NEWNODE(n); BDY(n) = (pointer)h;
	NEWNODE(NEXT(n)); BDY(NEXT(n)) = (pointer)r;
	NEXT(NEXT(n)) = 0; MKLIST(*rp,n);
}

void Pdp_subd(NODE arg,DP *rp)
{
	DP p1,p2;

	p1 = (DP)ARG0(arg); p2 = (DP)ARG1(arg);
	asir_assert(p1,O_DP,"dp_subd");
	asir_assert(p2,O_DP,"dp_subd");
	dp_subd(p1,p2,rp);
}

void Pdp_symb_add(NODE arg,DP *rp)
{
	DP p1,p2,r;
	NODE s0;
	MP mp0,mp;
	int nv;

	p1 = (DP)ARG0(arg); p2 = (DP)ARG1(arg);
	asir_assert(p1,O_DP,"dp_symb_add");
	asir_assert(p2,O_DP,"dp_symb_add");
	if ( !p1 ) { *rp = p2; return; }
	else if ( !p2 ) { *rp = p1; return; }
	if ( p1->nv != p2->nv )
		error("dp_sumb_add : invalid input");
	nv = p1->nv;
	s0 = symb_merge(dp_dllist(p1),dp_dllist(p2),nv);
	for ( mp0 = 0; s0; s0 = NEXT(s0) ) {
		NEXTMP(mp0,mp); mp->dl = (DL)BDY(s0); mp->c = (P)ONE;
	}
	NEXT(mp) = 0;
	MKDP(nv,mp0,r); r->sugar = MAX(p1->sugar,p2->sugar);
	*rp = r;
}

void Pdp_mul_trunc(NODE arg,DP *rp)
{
	DP p1,p2,p;

	p1 = (DP)ARG0(arg); p2 = (DP)ARG1(arg); p = (DP)ARG2(arg);
	asir_assert(p1,O_DP,"dp_mul_trunc");
	asir_assert(p2,O_DP,"dp_mul_trunc");
	asir_assert(p,O_DP,"dp_mul_trunc");
	comm_muld_trunc(CO,p1,p2,BDY(p)->dl,rp);
}

void Pdp_quo(NODE arg,DP *rp)
{
	DP p1,p2;

	p1 = (DP)ARG0(arg); p2 = (DP)ARG1(arg);
	asir_assert(p1,O_DP,"dp_quo");
	asir_assert(p2,O_DP,"dp_quo");
	comm_quod(CO,p1,p2,rp);
}

void Pdp_weyl_mul(NODE arg,DP *rp)
{
	DP p1,p2;

	p1 = (DP)ARG0(arg); p2 = (DP)ARG1(arg);
	asir_assert(p1,O_DP,"dp_weyl_mul"); asir_assert(p2,O_DP,"dp_weyl_mul");
	do_weyl = 1;
	muld(CO,p1,p2,rp);
	do_weyl = 0;
}

void Pdp_weyl_act(NODE arg,DP *rp)
{
	DP p1,p2;

	p1 = (DP)ARG0(arg); p2 = (DP)ARG1(arg);
	asir_assert(p1,O_DP,"dp_weyl_act"); asir_assert(p2,O_DP,"dp_weyl_act");
	weyl_actd(CO,p1,p2,rp);
}


void Pdp_weyl_mul_mod(NODE arg,DP *rp)
{
	DP p1,p2;
	Q m;

	p1 = (DP)ARG0(arg); p2 = (DP)ARG1(arg); m = (Q)ARG2(arg);
	asir_assert(p1,O_DP,"dp_weyl_mul_mod");
	asir_assert(p2,O_DP,"dp_mul_mod");
	asir_assert(m,O_N,"dp_mul_mod");
	do_weyl = 1;
	mulmd(CO,QTOS(m),p1,p2,rp);
	do_weyl = 0;
}

void Pdp_red(NODE arg,LIST *rp)
{
	NODE n;
	DP head,rest,dmy1;
	P dmy;

	do_weyl = 0;
	asir_assert(ARG0(arg),O_DP,"dp_red");
	asir_assert(ARG1(arg),O_DP,"dp_red");
	asir_assert(ARG2(arg),O_DP,"dp_red");
	dp_red((DP)ARG0(arg),(DP)ARG1(arg),(DP)ARG2(arg),&head,&rest,&dmy,&dmy1);
	NEWNODE(n); BDY(n) = (pointer)head;
	NEWNODE(NEXT(n)); BDY(NEXT(n)) = (pointer)rest;
	NEXT(NEXT(n)) = 0; MKLIST(*rp,n);
}

void Pdp_weyl_red(NODE arg,LIST *rp)
{
	NODE n;
	DP head,rest,dmy1;
	P dmy;

	asir_assert(ARG0(arg),O_DP,"dp_weyl_red");
	asir_assert(ARG1(arg),O_DP,"dp_weyl_red");
	asir_assert(ARG2(arg),O_DP,"dp_weyl_red");
	do_weyl = 1;
	dp_red((DP)ARG0(arg),(DP)ARG1(arg),(DP)ARG2(arg),&head,&rest,&dmy,&dmy1);
	do_weyl = 0;
	NEWNODE(n); BDY(n) = (pointer)head;
	NEWNODE(NEXT(n)); BDY(NEXT(n)) = (pointer)rest;
	NEXT(NEXT(n)) = 0; MKLIST(*rp,n);
}

void Pdp_sp(NODE arg,DP *rp)
{
	DP p1,p2;

	do_weyl = 0;
	p1 = (DP)ARG0(arg); p2 = (DP)ARG1(arg);
	asir_assert(p1,O_DP,"dp_sp"); asir_assert(p2,O_DP,"dp_sp");
	dp_sp(p1,p2,rp);
}

void Pdp_weyl_sp(NODE arg,DP *rp)
{
	DP p1,p2;

	p1 = (DP)ARG0(arg); p2 = (DP)ARG1(arg);
	asir_assert(p1,O_DP,"dp_weyl_sp"); asir_assert(p2,O_DP,"dp_sp");
	do_weyl = 1;
	dp_sp(p1,p2,rp);
	do_weyl = 0;
}

void Pdp_sp_mod(NODE arg,DP *rp)
{
	DP p1,p2;
	int mod;

	do_weyl = 0;
	p1 = (DP)ARG0(arg); p2 = (DP)ARG1(arg);
	asir_assert(p1,O_DP,"dp_sp_mod"); asir_assert(p2,O_DP,"dp_sp_mod");
	asir_assert(ARG2(arg),O_N,"dp_sp_mod");
	mod = QTOS((Q)ARG2(arg));
	dp_sp_mod(p1,p2,mod,rp);
}

void Pdp_lcm(NODE arg,DP *rp)
{
	int i,n,td;
	DL d1,d2,d;
	MP m;
	DP p1,p2;

	p1 = (DP)ARG0(arg); p2 = (DP)ARG1(arg);
	asir_assert(p1,O_DP,"dp_lcm"); asir_assert(p2,O_DP,"dp_lcm");
	n = p1->nv; d1 = BDY(p1)->dl; d2 = BDY(p2)->dl;
	NEWDL(d,n);
	for ( i = 0, td = 0; i < n; i++ ) {
		d->d[i] = MAX(d1->d[i],d2->d[i]); td += MUL_WEIGHT(d->d[i],i);
	}
	d->td = td;
	NEWMP(m); m->dl = d; m->c = (P)ONE; NEXT(m) = 0;
	MKDP(n,m,*rp); (*rp)->sugar = td;	/* XXX */
}

void Pdp_hm(NODE arg,DP *rp)
{
	DP p;

	p = (DP)ARG0(arg); asir_assert(p,O_DP,"dp_hm");
	dp_hm(p,rp);
}

void Pdp_ht(NODE arg,DP *rp)
{
	DP p;
	MP m,mr;

	p = (DP)ARG0(arg); asir_assert(p,O_DP,"dp_ht");
	dp_ht(p,rp);
}

void Pdp_hc(NODE arg,P *rp)
{
	asir_assert(ARG0(arg),O_DP,"dp_hc");
	if ( !ARG0(arg) )
		*rp = 0;
	else
		*rp = BDY((DP)ARG0(arg))->c;
}

void Pdp_rest(NODE arg,DP *rp)
{
	asir_assert(ARG0(arg),O_DP,"dp_rest");
	if ( !ARG0(arg) )
		*rp = 0;
	else
		dp_rest((DP)ARG0(arg),rp);
}

void Pdp_td(NODE arg,Q *rp)
{
	DP p;

	p = (DP)ARG0(arg); asir_assert(p,O_DP,"dp_td");
	if ( !p )
		*rp = 0;
	else
		STOQ(BDY(p)->dl->td,*rp);
}

void Pdp_sugar(NODE arg,Q *rp)
{
	DP p;

	p = (DP)ARG0(arg); asir_assert(p,O_DP,"dp_sugar");
	if ( !p )
		*rp = 0;
	else
		STOQ(p->sugar,*rp);
}

void Pdp_initial_term(NODE arg,Obj *rp)
{
	struct order_spec *ord;
	Num homo;
	int modular,is_list;
	LIST v,f,l,initiallist;
	NODE n;

	f = (LIST)ARG0(arg);
	if ( f && OID(f) == O_LIST ) 
		is_list = 1;
	else {
		n = mknode(1,f); MKLIST(l,n); f = l;
		is_list = 0;
	}
	if ( current_option ) {
		parse_gr_option(f,current_option,&v,&homo,&modular,&ord);
		initd(ord);
	} else
		ord = dp_current_spec;
	initiallist = dp_initial_term(f,ord);		
	if ( !is_list )
		*rp = (Obj)BDY(BDY(initiallist));
	else
		*rp = (Obj)initiallist;
}

void Pdp_order(NODE arg,Obj *rp)
{
	struct order_spec *ord;
	Num homo;
	int modular,is_list;
	LIST v,f,l,ordlist;
	NODE n;

	f = (LIST)ARG0(arg);
	if ( f && OID(f) == O_LIST ) 
		is_list = 1;
	else {
		n = mknode(1,f); MKLIST(l,n); f = l;
		is_list = 0;
	}
	if ( current_option ) {
		parse_gr_option(f,current_option,&v,&homo,&modular,&ord);
		initd(ord);
	} else
		ord = dp_current_spec;
	ordlist = dp_order(f,ord);		
	if ( !is_list )
		*rp = (Obj)BDY(BDY(ordlist));
	else
		*rp = (Obj)ordlist;
}

void Pdp_set_sugar(NODE arg,Q *rp)
{
	DP p;
	Q q;
	int i;

	p = (DP)ARG0(arg);
	q = (Q)ARG1(arg);
	if ( p && q) {
		asir_assert(p,O_DP,"dp_set_sugar");
		asir_assert(q,O_N, "dp_set_sugar");
		i = QTOS(q);
		if (p->sugar < i) {
			p->sugar = i;
		}
	}
	*rp = 0;
}

void Pdp_cri1(NODE arg,Q *rp)
{
	DP p1,p2;
	int *d1,*d2;
	int i,n;

	p1 = (DP)ARG0(arg); p2 = (DP)ARG1(arg);
	asir_assert(p1,O_DP,"dp_cri1"); asir_assert(p2,O_DP,"dp_cri1");
	n = p1->nv; d1 = BDY(p1)->dl->d; d2 = BDY(p2)->dl->d;
	for ( i = 0; i < n; i++ )
		if ( d1[i] > d2[i] )
			break;
	*rp = i == n ? ONE : 0;
}

void Pdp_cri2(NODE arg,Q *rp)
{
	DP p1,p2;
	int *d1,*d2;
	int i,n;

	p1 = (DP)ARG0(arg); p2 = (DP)ARG1(arg);
	asir_assert(p1,O_DP,"dp_cri2"); asir_assert(p2,O_DP,"dp_cri2");
	n = p1->nv; d1 = BDY(p1)->dl->d; d2 = BDY(p2)->dl->d;
	for ( i = 0; i < n; i++ )
		if ( MIN(d1[i],d2[i]) >= 1 )
			break;
	*rp = i == n ? ONE : 0;
}

void Pdp_minp(NODE arg,LIST *rp)
{
	NODE tn,tn1,d,dd,dd0,p,tp;
	LIST l,minp;
	DP lcm,tlcm;
	int s,ts;

	asir_assert(ARG0(arg),O_LIST,"dp_minp");
	d = BDY((LIST)ARG0(arg)); minp = (LIST)BDY(d);
	p = BDY(minp); p = NEXT(NEXT(p)); lcm = (DP)BDY(p); p = NEXT(p);
	if ( !ARG1(arg) ) {
		s = QTOS((Q)BDY(p)); p = NEXT(p);
		for ( dd0 = 0, d = NEXT(d); d; d = NEXT(d) ) {
			tp = BDY((LIST)BDY(d)); tp = NEXT(NEXT(tp));
			tlcm = (DP)BDY(tp); tp = NEXT(tp);
			ts = QTOS((Q)BDY(tp)); tp = NEXT(tp);
			NEXTNODE(dd0,dd);
			if ( ts < s ) {
				BDY(dd) = (pointer)minp;
				minp = (LIST)BDY(d); lcm = tlcm; s = ts;
			} else if ( ts == s ) {
				if ( compd(CO,lcm,tlcm) > 0 ) {
					BDY(dd) = (pointer)minp;
					minp = (LIST)BDY(d); lcm = tlcm; s = ts;
				} else
					BDY(dd) = BDY(d);
			} else
				BDY(dd) = BDY(d);
		}
	} else {
		for ( dd0 = 0, d = NEXT(d); d; d = NEXT(d) ) {
			tp = BDY((LIST)BDY(d)); tp = NEXT(NEXT(tp));
			tlcm = (DP)BDY(tp);
			NEXTNODE(dd0,dd);
			if ( compd(CO,lcm,tlcm) > 0 ) {
				BDY(dd) = (pointer)minp; minp = (LIST)BDY(d); lcm = tlcm;
			} else
				BDY(dd) = BDY(d);
		}
	}
	if ( dd0 )
		NEXT(dd) = 0;
	MKLIST(l,dd0); MKNODE(tn,l,0); MKNODE(tn1,minp,tn); MKLIST(*rp,tn1);
}

void Pdp_criB(NODE arg,LIST *rp)
{
	NODE d,ij,dd,ddd;
	int i,j,s,n;
	DP *ps;
	DL ts,ti,tj,lij,tdl;

	asir_assert(ARG0(arg),O_LIST,"dp_criB"); d = BDY((LIST)ARG0(arg));
	asir_assert(ARG1(arg),O_N,"dp_criB"); s = QTOS((Q)ARG1(arg));
	asir_assert(ARG2(arg),O_VECT,"dp_criB"); ps = (DP *)BDY((VECT)ARG2(arg));
	if ( !d )
		*rp = (LIST)ARG0(arg);
	else {
		ts = BDY(ps[s])->dl;
		n = ps[s]->nv;
		NEWDL(tdl,n);
		for ( dd = 0; d; d = NEXT(d) ) {
			ij = BDY((LIST)BDY(d));
			i = QTOS((Q)BDY(ij)); ij = NEXT(ij);
			j = QTOS((Q)BDY(ij)); ij = NEXT(ij);
			lij = BDY((DP)BDY(ij))->dl;
			ti = BDY(ps[i])->dl; tj = BDY(ps[j])->dl;
			if ( lij->td != lcm_of_DL(n,lij,ts,tdl)->td
				|| !dl_equal(n,lij,tdl)
				|| (lij->td == lcm_of_DL(n,ti,ts,tdl)->td
					&& dl_equal(n,tdl,lij))
				|| (lij->td == lcm_of_DL(n,tj,ts,tdl)->td
					&& dl_equal(n,tdl,lij)) ) {
				MKNODE(ddd,BDY(d),dd);
				dd = ddd;
			}
		}
		MKLIST(*rp,dd);
	}
}

void Pdp_nelim(NODE arg,Q *rp)
{
	if ( arg ) {
		asir_assert(ARG0(arg),O_N,"dp_nelim");
		dp_nelim = QTOS((Q)ARG0(arg));
	}
	STOQ(dp_nelim,*rp);
}

void Pdp_mag(NODE arg,Q *rp)
{
	DP p;
	int s;
	MP m;

	p = (DP)ARG0(arg);
	asir_assert(p,O_DP,"dp_mag");
	if ( !p )
		*rp = 0;
	else {
		for ( s = 0, m = BDY(p); m; m = NEXT(m) )
			s += p_mag(m->c);
		STOQ(s,*rp);
	}
}

extern int kara_mag;

void Pdp_set_kara(NODE arg,Q *rp)
{
	if ( arg ) {
		asir_assert(ARG0(arg),O_N,"dp_set_kara");
		kara_mag = QTOS((Q)ARG0(arg));
	}
	STOQ(kara_mag,*rp);
}

void Pdp_homo(NODE arg,DP *rp)
{
	asir_assert(ARG0(arg),O_DP,"dp_homo");
	dp_homo((DP)ARG0(arg),rp);
}

void Pdp_dehomo(NODE arg,DP *rp)
{
	asir_assert(ARG0(arg),O_DP,"dp_dehomo");
	dp_dehomo((DP)ARG0(arg),rp);
}

void Pdp_gr_flags(NODE arg,LIST *rp)
{
	Obj name,value;
	NODE n;

	if ( arg ) {
		asir_assert(ARG0(arg),O_LIST,"dp_gr_flags");
		n = BDY((LIST)ARG0(arg));
		while ( n ) {
			name = (Obj)BDY(n); n = NEXT(n);
			if ( !n )
				break;
			else {
				value = (Obj)BDY(n); n = NEXT(n);
			}
			dp_set_flag(name,value);
		}
	}
	dp_make_flaglist(rp);
}

extern int DP_Print, DP_PrintShort;

void Pdp_gr_print(NODE arg,Q *rp)
{
	Q q;
	int s;

	if ( arg ) {
		asir_assert(ARG0(arg),O_N,"dp_gr_print");
		q = (Q)ARG0(arg);
		s = QTOS(q);
		switch ( s ) {
			case 0:
				DP_Print = 0; DP_PrintShort = 0;
				break;
			case 1:
				DP_Print = 1;
				break;
			case 2:
				DP_Print = 0; DP_PrintShort = 1;
				break;
			default:
				DP_Print = s; DP_PrintShort = 0;
				break;
		}
	} else {
		if ( DP_Print )	{
			STOQ(1,q);
		} else if ( DP_PrintShort ) {
			STOQ(2,q);
		} else
			q = 0;
	}
	*rp = q;
}

void parse_gr_option(LIST f,NODE opt,LIST *v,Num *homo,
	int *modular,struct order_spec **ord)
{
	NODE t,p;
	Q m;
	char *key;
	Obj value,dmy;
	int ord_is_set = 0;
	int modular_is_set = 0;
	int homo_is_set = 0;
	VL vl,vl0;
	LIST vars;
	char xiname[BUFSIZ];
	NODE x0,x;
	DP d;
	P xi;
	int nv,i;

	/* extract vars */
	vars = 0;
	for ( t = opt; t; t = NEXT(t) ) {
		p = BDY((LIST)BDY(t));
		key = BDY((STRING)BDY(p));
		value = (Obj)BDY(NEXT(p));
		if ( !strcmp(key,"v") ) {
			/* variable list */
			vars = (LIST)value;
			break;
		}
	}
	if ( vars ) {
		*v = vars; pltovl(vars,&vl);
	} else {
		for ( t = BDY(f); t; t = NEXT(t) )
			if ( BDY(t) && OID((Obj)BDY(t))==O_DP )
				break;
		if ( t ) {
			/* f is DP list */
			/* create dummy var list */
			d = (DP)BDY(t);
			nv = NV(d);
			for ( i = 0, vl0 = 0, x0 = 0; i < nv; i++ ) {
				NEXTVL(vl0,vl);
				NEXTNODE(x0,x);
				sprintf(xiname,"x%d",i);
				makevar(xiname,&xi);
				x->body = (pointer)xi;
				vl->v = VR((P)xi);
			}
			if ( vl0 ) {
				NEXT(vl) = 0;
				NEXT(x) = 0;
			}
			MKLIST(vars,x0);
			*v = vars;
			vl = vl0;
		} else {
			get_vars((Obj)f,&vl); vltopl(vl,v);
		}
	}

	for ( t = opt; t; t = NEXT(t) ) {
		p = BDY((LIST)BDY(t));
		key = BDY((STRING)BDY(p));
		value = (Obj)BDY(NEXT(p));
		if ( !strcmp(key,"v") ) {
			/* variable list; ignore */
		} else if ( !strcmp(key,"order") ) {
			/* order spec */
			if ( !vl )
				error("parse_gr_option : variables must be specified");
			create_order_spec(vl,value,ord);
			ord_is_set = 1;
		} else if ( !strcmp(key,"block") ) {
			create_order_spec(0,value,ord);
			ord_is_set = 1;
		} else if ( !strcmp(key,"matrix") ) {
			create_order_spec(0,value,ord);
			ord_is_set = 1;
		} else if ( !strcmp(key,"sugarweight") ) {
			/* weight */
			Pdp_set_weight(NEXT(p),&dmy);
		} else if ( !strcmp(key,"homo") ) {
			*homo = (Num)value;
			homo_is_set = 1;
		} else if ( !strcmp(key,"trace") ) {
			m = (Q)value;
			if ( !m )
				*modular = 0;
			else if ( PL(NM(m))>1 || (PL(NM(m)) == 1 
				&& BD(NM(m))[0] >= 0x80000000) )
				error("parse_gr_option : too large modulus");
			else
				*modular = QTOS(m);
			modular_is_set = 1;
		} else
			error("parse_gr_option : not implemented");
	}
	if ( !ord_is_set ) create_order_spec(0,0,ord);
	if ( !modular_is_set ) *modular = 0;
	if ( !homo_is_set ) *homo = 0;
}

void Pdp_gr_main(NODE arg,LIST *rp)
{
	LIST f,v;
	VL vl;
	Num homo;
	Q m;
	int modular,ac;
	struct order_spec *ord;

	do_weyl = 0;
	asir_assert(ARG0(arg),O_LIST,"dp_gr_main");
	f = (LIST)ARG0(arg);
	f = remove_zero_from_list(f);
	if ( !BDY(f) ) {
		*rp = f; return;
	}
	if ( (ac = argc(arg)) == 5 ) {
		asir_assert(ARG1(arg),O_LIST,"dp_gr_main");
		asir_assert(ARG2(arg),O_N,"dp_gr_main");
		asir_assert(ARG3(arg),O_N,"dp_gr_main");
		v = (LIST)ARG1(arg);
		homo = (Num)ARG2(arg);
		m = (Q)ARG3(arg);
		if ( !m )
			modular = 0;
		else if ( PL(NM(m))>1 || (PL(NM(m)) == 1 && BD(NM(m))[0] >= 0x80000000) )
			error("dp_gr_main : too large modulus");
		else
			modular = QTOS(m);
		create_order_spec(0,ARG4(arg),&ord);
	} else if ( current_option )
		parse_gr_option(f,current_option,&v,&homo,&modular,&ord);
	else if ( ac == 1 )
		parse_gr_option(f,0,&v,&homo,&modular,&ord);
	else
		error("dp_gr_main : invalid argument");
	dp_gr_main(f,v,homo,modular,0,ord,rp);
}

void Pdp_interreduce(NODE arg,LIST *rp)
{
	LIST f,v;
	VL vl;
	int ac;
	struct order_spec *ord;

	do_weyl = 0;
	asir_assert(ARG0(arg),O_LIST,"dp_interreduce");
	f = (LIST)ARG0(arg);
	f = remove_zero_from_list(f);
	if ( !BDY(f) ) {
		*rp = f; return;
	}
	if ( (ac = argc(arg)) == 3 ) {
		asir_assert(ARG1(arg),O_LIST,"dp_interreduce");
		v = (LIST)ARG1(arg);
		create_order_spec(0,ARG2(arg),&ord);
	}
	dp_interreduce(f,v,0,ord,rp);
}

void Pdp_gr_f_main(NODE arg,LIST *rp)
{
	LIST f,v;
	Num homo;
	int m,field,t;
	struct order_spec *ord;
	NODE n;

	do_weyl = 0;
	asir_assert(ARG0(arg),O_LIST,"dp_gr_f_main");
	asir_assert(ARG1(arg),O_LIST,"dp_gr_f_main");
	asir_assert(ARG2(arg),O_N,"dp_gr_f_main");
	f = (LIST)ARG0(arg); v = (LIST)ARG1(arg);
	f = remove_zero_from_list(f);
	if ( !BDY(f) ) {
		*rp = f; return;
	}
	homo = (Num)ARG2(arg);
#if 0
	asir_assert(ARG3(arg),O_N,"dp_gr_f_main");
	m = QTOS((Q)ARG3(arg));
	if ( m )
		error("dp_gr_f_main : trace lifting is not implemented yet");
	create_order_spec(0,ARG4(arg),&ord);
#else
	m = 0;
	create_order_spec(0,ARG3(arg),&ord);
#endif
	field = 0;
	for ( n = BDY(f); n; n = NEXT(n) ) {
		t = get_field_type(BDY(n));
		if ( !t )
			continue;
		if ( t < 0 )
			error("dp_gr_f_main : incosistent coefficients");
		if ( !field )
			field = t;
		else if ( t != field )
			error("dp_gr_f_main : incosistent coefficients");
	}
	dp_gr_main(f,v,homo,m?1:0,field,ord,rp);
}

void Pdp_f4_main(NODE arg,LIST *rp)
{
	LIST f,v;
	struct order_spec *ord;

	do_weyl = 0;
	asir_assert(ARG0(arg),O_LIST,"dp_f4_main");
	asir_assert(ARG1(arg),O_LIST,"dp_f4_main");
	f = (LIST)ARG0(arg); v = (LIST)ARG1(arg);
	f = remove_zero_from_list(f);
	if ( !BDY(f) ) {
		*rp = f; return;
	}
	create_order_spec(0,ARG2(arg),&ord);
	dp_f4_main(f,v,ord,rp);
}

/* dp_gr_checklist(list of dp) */

void Pdp_gr_checklist(NODE arg,LIST *rp)
{
	VECT g;
	LIST dp;
	NODE r;
	int n;

	do_weyl = 0;
	asir_assert(ARG0(arg),O_LIST,"dp_gr_checklist");
	asir_assert(ARG1(arg),O_N,"dp_gr_checklist");
	n = QTOS((Q)ARG1(arg));
	gbcheck_list(BDY((LIST)ARG0(arg)),n,&g,&dp);
	r = mknode(2,g,dp);
	MKLIST(*rp,r);
}

void Pdp_f4_mod_main(NODE arg,LIST *rp)
{
	LIST f,v;
	int m;
	struct order_spec *ord;

	do_weyl = 0;
	asir_assert(ARG0(arg),O_LIST,"dp_f4_mod_main");
	asir_assert(ARG1(arg),O_LIST,"dp_f4_mod_main");
	asir_assert(ARG2(arg),O_N,"dp_f4_mod_main");
	f = (LIST)ARG0(arg); v = (LIST)ARG1(arg); m = QTOS((Q)ARG2(arg));
	f = remove_zero_from_list(f);
	if ( !BDY(f) ) {
		*rp = f; return;
	}
	if ( !m )
		error("dp_f4_mod_main : invalid argument");
	create_order_spec(0,ARG3(arg),&ord);
	dp_f4_mod_main(f,v,m,ord,rp);
}

void Pdp_gr_mod_main(NODE arg,LIST *rp)
{
	LIST f,v;
	Num homo;
	int m;
	struct order_spec *ord;

	do_weyl = 0;
	asir_assert(ARG0(arg),O_LIST,"dp_gr_mod_main");
	asir_assert(ARG1(arg),O_LIST,"dp_gr_mod_main");
	asir_assert(ARG2(arg),O_N,"dp_gr_mod_main");
	asir_assert(ARG3(arg),O_N,"dp_gr_mod_main");
	f = (LIST)ARG0(arg); v = (LIST)ARG1(arg);
	f = remove_zero_from_list(f);
	if ( !BDY(f) ) {
		*rp = f; return;
	}
	homo = (Num)ARG2(arg); m = QTOS((Q)ARG3(arg));
	if ( !m )
		error("dp_gr_mod_main : invalid argument");
	create_order_spec(0,ARG4(arg),&ord);
	dp_gr_mod_main(f,v,homo,m,ord,rp);
}

void Pnd_f4(NODE arg,LIST *rp)
{
	LIST f,v;
	int m,homo,retdp;
	Obj val;
	struct order_spec *ord;

	do_weyl = 0;
	nd_rref2 = 0;
	asir_assert(ARG0(arg),O_LIST,"nd_f4");
	asir_assert(ARG1(arg),O_LIST,"nd_f4");
	asir_assert(ARG2(arg),O_N,"nd_f4");
	f = (LIST)ARG0(arg); v = (LIST)ARG1(arg);
	f = remove_zero_from_list(f);
	if ( !BDY(f) ) {
		*rp = f; return;
	}
	m = QTOS((Q)ARG2(arg));
	create_order_spec(0,ARG3(arg),&ord);
	homo = retdp = 0;
	if ( get_opt("homo",&val) && val ) homo = 1;
	if ( get_opt("dp",&val) && val ) retdp = 1;
	if ( get_opt("rref2",&val) && val ) nd_rref2 = 1;
	nd_gr(f,v,m,homo,retdp,1,ord,rp);
}

void Pnd_gr(NODE arg,LIST *rp)
{
	LIST f,v;
	int m,homo,retdp;
	Obj val;
	struct order_spec *ord;

	do_weyl = 0;
	asir_assert(ARG0(arg),O_LIST,"nd_gr");
	asir_assert(ARG1(arg),O_LIST,"nd_gr");
	asir_assert(ARG2(arg),O_N,"nd_gr");
	f = (LIST)ARG0(arg); v = (LIST)ARG1(arg);
	f = remove_zero_from_list(f);
	if ( !BDY(f) ) {
		*rp = f; return;
	}
	m = QTOS((Q)ARG2(arg));
	create_order_spec(0,ARG3(arg),&ord);
	homo = retdp = 0;
	if ( get_opt("homo",&val) && val ) homo = 1;
	if ( get_opt("dp",&val) && val ) retdp = 1;
	nd_gr(f,v,m,homo,retdp,0,ord,rp);
}

void Pnd_gr_postproc(NODE arg,LIST *rp)
{
	LIST f,v;
	int m,do_check;
	struct order_spec *ord;

	do_weyl = 0;
	asir_assert(ARG0(arg),O_LIST,"nd_gr");
	asir_assert(ARG1(arg),O_LIST,"nd_gr");
	asir_assert(ARG2(arg),O_N,"nd_gr");
	f = (LIST)ARG0(arg); v = (LIST)ARG1(arg);
	f = remove_zero_from_list(f);
	if ( !BDY(f) ) {
		*rp = f; return;
	}
	m = QTOS((Q)ARG2(arg));
	create_order_spec(0,ARG3(arg),&ord);
	do_check = ARG4(arg) ? 1 : 0;
	nd_gr_postproc(f,v,m,ord,do_check,rp);
}

void Pnd_gr_recompute_trace(NODE arg,LIST *rp)
{
	LIST f,v,tlist;
	int m;
	struct order_spec *ord;

	do_weyl = 0;
	asir_assert(ARG0(arg),O_LIST,"nd_gr_recompute_trace");
	asir_assert(ARG1(arg),O_LIST,"nd_gr_recompute_trace");
	asir_assert(ARG2(arg),O_N,"nd_gr_recompute_trace");
	f = (LIST)ARG0(arg); v = (LIST)ARG1(arg);
	m = QTOS((Q)ARG2(arg));
	create_order_spec(0,ARG3(arg),&ord);
	tlist = (LIST)ARG4(arg);
	nd_gr_recompute_trace(f,v,m,ord,tlist,rp);
}

Obj nd_btog_one(LIST f,LIST v,int m,struct order_spec *ord,LIST tlist,int pos);
Obj nd_btog(LIST f,LIST v,int m,struct order_spec *ord,LIST tlist);

void Pnd_btog(NODE arg,Obj *rp)
{
	LIST f,v,tlist;
	int m,ac,pos;
	struct order_spec *ord;

	do_weyl = 0;
	asir_assert(ARG0(arg),O_LIST,"nd_btog");
	asir_assert(ARG1(arg),O_LIST,"nd_btog");
	asir_assert(ARG2(arg),O_N,"nd_btog");
	f = (LIST)ARG0(arg); v = (LIST)ARG1(arg);
	m = QTOS((Q)ARG2(arg));
	create_order_spec(0,ARG3(arg),&ord);
	tlist = (LIST)ARG4(arg);
	if ( (ac = argc(arg)) == 6 ) {
		asir_assert(ARG5(arg),O_N,"nd_btog");
		pos = QTOS((Q)ARG5(arg));
		*rp = nd_btog_one(f,v,m,ord,tlist,pos);
	} else if ( ac == 5 )
		*rp = nd_btog(f,v,m,ord,tlist);
	else
		error("nd_btog : argument mismatch");
}

void Pnd_weyl_gr_postproc(NODE arg,LIST *rp)
{
	LIST f,v;
	int m,do_check;
	struct order_spec *ord;

	do_weyl = 1;
	asir_assert(ARG0(arg),O_LIST,"nd_gr");
	asir_assert(ARG1(arg),O_LIST,"nd_gr");
	asir_assert(ARG2(arg),O_N,"nd_gr");
	f = (LIST)ARG0(arg); v = (LIST)ARG1(arg);
	f = remove_zero_from_list(f);
	if ( !BDY(f) ) {
		*rp = f; do_weyl = 0; return;
	}
	m = QTOS((Q)ARG2(arg));
	create_order_spec(0,ARG3(arg),&ord);
	do_check = ARG4(arg) ? 1 : 0;
	nd_gr_postproc(f,v,m,ord,do_check,rp);
	do_weyl = 0;
}

void Pnd_gr_trace(NODE arg,LIST *rp)
{
	LIST f,v;
	int m,homo;
	struct order_spec *ord;

	do_weyl = 0;
	asir_assert(ARG0(arg),O_LIST,"nd_gr_trace");
	asir_assert(ARG1(arg),O_LIST,"nd_gr_trace");
	asir_assert(ARG2(arg),O_N,"nd_gr_trace");
	asir_assert(ARG3(arg),O_N,"nd_gr_trace");
	f = (LIST)ARG0(arg); v = (LIST)ARG1(arg);
	f = remove_zero_from_list(f);
	if ( !BDY(f) ) {
		*rp = f; return;
	}
	homo = QTOS((Q)ARG2(arg));
	m = QTOS((Q)ARG3(arg));
	create_order_spec(0,ARG4(arg),&ord);
	nd_gr_trace(f,v,m,homo,0,ord,rp);
}

void Pnd_f4_trace(NODE arg,LIST *rp)
{
	LIST f,v;
	int m,homo;
	struct order_spec *ord;

	do_weyl = 0;
	asir_assert(ARG0(arg),O_LIST,"nd_gr_trace");
	asir_assert(ARG1(arg),O_LIST,"nd_gr_trace");
	asir_assert(ARG2(arg),O_N,"nd_gr_trace");
	asir_assert(ARG3(arg),O_N,"nd_gr_trace");
	f = (LIST)ARG0(arg); v = (LIST)ARG1(arg);
	f = remove_zero_from_list(f);
	if ( !BDY(f) ) {
		*rp = f; return;
	}
	homo = QTOS((Q)ARG2(arg));
	m = QTOS((Q)ARG3(arg));
	create_order_spec(0,ARG4(arg),&ord);
	nd_gr_trace(f,v,m,homo,1,ord,rp);
}

void Pnd_weyl_gr(NODE arg,LIST *rp)
{
	LIST f,v;
	int m,homo,retdp;
	Obj val;
	struct order_spec *ord;

	do_weyl = 1;
	asir_assert(ARG0(arg),O_LIST,"nd_weyl_gr");
	asir_assert(ARG1(arg),O_LIST,"nd_weyl_gr");
	asir_assert(ARG2(arg),O_N,"nd_weyl_gr");
	f = (LIST)ARG0(arg); v = (LIST)ARG1(arg);
	f = remove_zero_from_list(f);
	if ( !BDY(f) ) {
		*rp = f; do_weyl = 0; return;
	}
	m = QTOS((Q)ARG2(arg));
	create_order_spec(0,ARG3(arg),&ord);
	homo = retdp = 0;
	if ( get_opt("homo",&val) && val ) homo = 1;
	if ( get_opt("dp",&val) && val ) retdp = 1;
	nd_gr(f,v,m,homo,retdp,0,ord,rp);
	do_weyl = 0;
}

void Pnd_weyl_gr_trace(NODE arg,LIST *rp)
{
	LIST f,v;
	int m,homo;
	struct order_spec *ord;

	do_weyl = 1;
	asir_assert(ARG0(arg),O_LIST,"nd_weyl_gr_trace");
	asir_assert(ARG1(arg),O_LIST,"nd_weyl_gr_trace");
	asir_assert(ARG2(arg),O_N,"nd_weyl_gr_trace");
	asir_assert(ARG3(arg),O_N,"nd_weyl_gr_trace");
	f = (LIST)ARG0(arg); v = (LIST)ARG1(arg);
	f = remove_zero_from_list(f);
	if ( !BDY(f) ) {
		*rp = f; do_weyl = 0; return;
	}
	homo = QTOS((Q)ARG2(arg));
	m = QTOS((Q)ARG3(arg));
	create_order_spec(0,ARG4(arg),&ord);
	nd_gr_trace(f,v,m,homo,0,ord,rp);
	do_weyl = 0;
}

void Pnd_nf(NODE arg,Obj *rp)
{
	Obj f;
	LIST g,v;
	struct order_spec *ord;

	do_weyl = 0;
	asir_assert(ARG1(arg),O_LIST,"nd_nf");
	asir_assert(ARG2(arg),O_LIST,"nd_nf");
	asir_assert(ARG4(arg),O_N,"nd_nf");
	f = (Obj)ARG0(arg);
	g = (LIST)ARG1(arg); g = remove_zero_from_list(g);
	if ( !BDY(g) ) {
		*rp = f; return;
	}
	v = (LIST)ARG2(arg);
	create_order_spec(0,ARG3(arg),&ord);
	nd_nf_p(f,g,v,QTOS((Q)ARG4(arg)),ord,rp);
}

void Pnd_weyl_nf(NODE arg,Obj *rp)
{
	Obj f;
	LIST g,v;
	struct order_spec *ord;

	do_weyl = 1;
	asir_assert(ARG1(arg),O_LIST,"nd_weyl_nf");
	asir_assert(ARG2(arg),O_LIST,"nd_weyl_nf");
	asir_assert(ARG4(arg),O_N,"nd_weyl_nf");
	f = (Obj)ARG0(arg);
	g = (LIST)ARG1(arg); g = remove_zero_from_list(g);
	if ( !BDY(g) ) {
		*rp = f; return;
	}
	v = (LIST)ARG2(arg);
	create_order_spec(0,ARG3(arg),&ord);
	nd_nf_p(f,g,v,QTOS((Q)ARG4(arg)),ord,rp);
}

/* for Weyl algebra */

void Pdp_weyl_gr_main(NODE arg,LIST *rp)
{
	LIST f,v;
	Num homo;
	Q m;
	int modular,ac;
	struct order_spec *ord;


	asir_assert(ARG0(arg),O_LIST,"dp_weyl_gr_main");
	f = (LIST)ARG0(arg);
	f = remove_zero_from_list(f);
	if ( !BDY(f) ) {
		*rp = f; return;
	}
	if ( (ac = argc(arg)) == 5 ) {	
		asir_assert(ARG1(arg),O_LIST,"dp_weyl_gr_main");
		asir_assert(ARG2(arg),O_N,"dp_weyl_gr_main");
		asir_assert(ARG3(arg),O_N,"dp_weyl_gr_main");
		v = (LIST)ARG1(arg);
		homo = (Num)ARG2(arg);
		m = (Q)ARG3(arg);
		if ( !m )
			modular = 0;
		else if ( PL(NM(m))>1 || (PL(NM(m)) == 1 && BD(NM(m))[0] >= 0x80000000) )
			error("dp_weyl_gr_main : too large modulus");
		else
			modular = QTOS(m);
		create_order_spec(0,ARG4(arg),&ord);
	} else if ( current_option )
		parse_gr_option(f,current_option,&v,&homo,&modular,&ord);
	else if ( ac == 1 )
		parse_gr_option(f,0,&v,&homo,&modular,&ord);
	else
		error("dp_weyl_gr_main : invalid argument");
	do_weyl = 1;
	dp_gr_main(f,v,homo,modular,0,ord,rp);
	do_weyl = 0;
}

void Pdp_weyl_gr_f_main(NODE arg,LIST *rp)
{
	LIST f,v;
	Num homo;
	struct order_spec *ord;

	asir_assert(ARG0(arg),O_LIST,"dp_weyl_gr_main");
	asir_assert(ARG1(arg),O_LIST,"dp_weyl_gr_main");
	asir_assert(ARG2(arg),O_N,"dp_weyl_gr_main");
	asir_assert(ARG3(arg),O_N,"dp_weyl_gr_main");
	f = (LIST)ARG0(arg); v = (LIST)ARG1(arg);
	f = remove_zero_from_list(f);
	if ( !BDY(f) ) {
		*rp = f; return;
	}
	homo = (Num)ARG2(arg);
	create_order_spec(0,ARG3(arg),&ord);
	do_weyl = 1;
	dp_gr_main(f,v,homo,0,1,ord,rp);
	do_weyl = 0;
}

void Pdp_weyl_f4_main(NODE arg,LIST *rp)
{
	LIST f,v;
	struct order_spec *ord;

	asir_assert(ARG0(arg),O_LIST,"dp_weyl_f4_main");
	asir_assert(ARG1(arg),O_LIST,"dp_weyl_f4_main");
	f = (LIST)ARG0(arg); v = (LIST)ARG1(arg);
	f = remove_zero_from_list(f);
	if ( !BDY(f) ) {
		*rp = f; return;
	}
	create_order_spec(0,ARG2(arg),&ord);
	do_weyl = 1;
	dp_f4_main(f,v,ord,rp);
	do_weyl = 0;
}

void Pdp_weyl_f4_mod_main(NODE arg,LIST *rp)
{
	LIST f,v;
	int m;
	struct order_spec *ord;

	asir_assert(ARG0(arg),O_LIST,"dp_weyl_f4_main");
	asir_assert(ARG1(arg),O_LIST,"dp_weyl_f4_main");
	asir_assert(ARG2(arg),O_N,"dp_f4_main");
	f = (LIST)ARG0(arg); v = (LIST)ARG1(arg); m = QTOS((Q)ARG2(arg));
	f = remove_zero_from_list(f);
	if ( !BDY(f) ) {
		*rp = f; return;
	}
	if ( !m )
		error("dp_weyl_f4_mod_main : invalid argument");
	create_order_spec(0,ARG3(arg),&ord);
	do_weyl = 1;
	dp_f4_mod_main(f,v,m,ord,rp);
	do_weyl = 0;
}

void Pdp_weyl_gr_mod_main(NODE arg,LIST *rp)
{
	LIST f,v;
	Num homo;
	int m;
	struct order_spec *ord;

	asir_assert(ARG0(arg),O_LIST,"dp_weyl_gr_mod_main");
	asir_assert(ARG1(arg),O_LIST,"dp_weyl_gr_mod_main");
	asir_assert(ARG2(arg),O_N,"dp_weyl_gr_mod_main");
	asir_assert(ARG3(arg),O_N,"dp_weyl_gr_mod_main");
	f = (LIST)ARG0(arg); v = (LIST)ARG1(arg);
	f = remove_zero_from_list(f);
	if ( !BDY(f) ) {
		*rp = f; return;
	}
	homo = (Num)ARG2(arg); m = QTOS((Q)ARG3(arg));
	if ( !m )
		error("dp_weyl_gr_mod_main : invalid argument");
	create_order_spec(0,ARG4(arg),&ord);
	do_weyl = 1;
	dp_gr_mod_main(f,v,homo,m,ord,rp);
	do_weyl = 0;
}

VECT current_dl_weight_vector_obj;
int *current_dl_weight_vector;

void Pdp_set_weight(NODE arg,VECT *rp)
{
	VECT v;
	int i,n;
	NODE node;

	if ( !arg )
		*rp = current_dl_weight_vector_obj;
	else if ( !ARG0(arg) ) {
		current_dl_weight_vector_obj = 0;
		current_dl_weight_vector = 0;
		*rp = 0;
	} else {
		if ( OID(ARG0(arg)) != O_VECT && OID(ARG0(arg)) != O_LIST )
			error("dp_set_weight : invalid argument");
		if ( OID(ARG0(arg)) == O_VECT )
			v = (VECT)ARG0(arg);
		else {
			node = (NODE)BDY((LIST)ARG0(arg));
			n = length(node);
			MKVECT(v,n);
			for ( i = 0; i < n; i++, node = NEXT(node) )
				BDY(v)[i] = BDY(node);
		}
		current_dl_weight_vector_obj = v;
		n = v->len;
		current_dl_weight_vector = (int *)CALLOC(n,sizeof(int));
		for ( i = 0; i < n; i++ )
			current_dl_weight_vector[i] = QTOS((Q)v->body[i]);
		*rp = v;
	}
}

VECT current_module_weight_vector_obj;
int *current_module_weight_vector;

void Pdp_set_module_weight(NODE arg,VECT *rp)
{
	VECT v;
	int i,n;
	NODE node;

	if ( !arg )
		*rp = current_module_weight_vector_obj;
	else if ( !ARG0(arg) ) {
		current_module_weight_vector_obj = 0;
		current_module_weight_vector = 0;
		*rp = 0;
	} else {
		if ( OID(ARG0(arg)) != O_VECT && OID(ARG0(arg)) != O_LIST )
			error("dp_module_set_weight : invalid argument");
		if ( OID(ARG0(arg)) == O_VECT )
			v = (VECT)ARG0(arg);
		else {
			node = (NODE)BDY((LIST)ARG0(arg));
			n = length(node);
			MKVECT(v,n);
			for ( i = 0; i < n; i++, node = NEXT(node) )
				BDY(v)[i] = BDY(node);
		}
		current_module_weight_vector_obj = v;
		n = v->len;
		current_module_weight_vector = (int *)CALLOC(n,sizeof(int));
		for ( i = 0; i < n; i++ )
			current_module_weight_vector[i] = QTOS((Q)v->body[i]);
		*rp = v;
	}
}

extern Obj current_top_weight;
extern Obj nd_top_weight;

void Pdp_set_top_weight(NODE arg,Obj *rp)
{
	VECT v;
	MAT m;
	Obj obj;
	int i,j,n,id,row,col;
	Q *mi;
	NODE node;

	if ( !arg )
		*rp = current_top_weight;
	else if ( !ARG0(arg) ) {
		reset_top_weight();
		*rp = 0;
	} else {
		id = OID(ARG0(arg));
		if ( id != O_VECT && id != O_MAT && id != O_LIST )
			error("dp_set_top_weight : invalid argument");
		if ( id == O_LIST ) {
			node = (NODE)BDY((LIST)ARG0(arg));
			n = length(node);
			MKVECT(v,n);
			for ( i = 0; i < n; i++, node = NEXT(node) )
				BDY(v)[i] = BDY(node);
		    obj = (Obj)v;
		} else
		    obj = ARG0(arg);
		if ( OID(obj) == O_VECT ) {
			v = (VECT)obj;
		    for ( i = 0; i < v->len; i++ )
			    if ( !INT(BDY(v)[i]) || (BDY(v)[i] && SGN((Q)BDY(v)[i]) < 0) )
				    error("dp_set_top_weight : each element must be a non-negative integer");
		} else {
			m = (MAT)obj; row = m->row; col = m->col;
		    for ( i = 0; i < row; i++ )
				for ( j = 0, mi = (Q *)BDY(m)[i]; j < col; j++ )
			        if ( !INT(mi[j]) || (mi[j] && SGN((Q)mi[j]) < 0) )
				        error("dp_set_top_weight : each element must be a non-negative integer");
		}
        current_top_weight = obj;
		nd_top_weight = obj;
		*rp = current_top_weight;
	}
}

LIST get_denomlist();

void Pdp_get_denomlist(LIST *rp)
{
	*rp = get_denomlist();
}

static VECT current_weyl_weight_vector_obj;
int *current_weyl_weight_vector;

void Pdp_weyl_set_weight(NODE arg,VECT *rp)
{
	VECT v;
	NODE node;
	int i,n;

	if ( !arg )
		*rp = current_weyl_weight_vector_obj;
	else if ( !ARG0(arg) ) {
		current_weyl_weight_vector_obj = 0;
		current_weyl_weight_vector = 0;
		*rp = 0;
	} else {
		if ( OID(ARG0(arg)) != O_VECT && OID(ARG0(arg)) != O_LIST )
			error("dp_weyl_set_weight : invalid argument");
		if ( OID(ARG0(arg)) == O_VECT )
			v = (VECT)ARG0(arg);
		else {
			node = (NODE)BDY((LIST)ARG0(arg));
			n = length(node);
			MKVECT(v,n);
			for ( i = 0; i < n; i++, node = NEXT(node) )
				BDY(v)[i] = BDY(node);
		}
		current_weyl_weight_vector_obj = v;
		n = v->len;
		current_weyl_weight_vector = (int *)CALLOC(n,sizeof(int));
		for ( i = 0; i < n; i++ )
			current_weyl_weight_vector[i] = QTOS((Q)v->body[i]);
		*rp = v;
	}
}

NODE mono_raddec(NODE ideal);

void Pdp_mono_raddec(NODE arg,LIST *rp)
{
	NODE ideal,rd,t,t1,r,r1,u;
	VL vl0,vl;
	int nv,i,bpi;
	int *s;
	DP dp;
	P *v;
	LIST l;

	ideal = BDY((LIST)ARG0(arg));
	if ( !ideal ) *rp = (LIST)ARG0(arg);
	else {
		t = BDY((LIST)ARG1(arg));
		nv = length(t);
		v = (P *)MALLOC(nv*sizeof(P));
		for ( vl0 = 0, i = 0; t; t = NEXT(t), i++ ) {
			NEXTVL(vl0,vl); VR(vl) = VR((P)BDY(t));
			MKV(VR(vl),v[i]);
		}
		if ( vl0 ) NEXT(vl) = 0;
		for ( t = 0, r = ideal; r; r = NEXT(r) ) {
			ptod(CO,vl0,BDY(r),&dp); MKNODE(t1,dp,t); t = t1;
		}
		rd = mono_raddec(t);
		r = 0;
		bpi = (sizeof(int)/sizeof(char))*8;
		for ( u = rd; u; u = NEXT(u) ) {
			s = (int *)BDY(u);
			for ( i = nv-1, t = 0; i >= 0; i-- )
				if ( s[i/bpi]&(1<<(i%bpi)) ) {
					MKNODE(t1,v[i],t); t = t1;
				}
			MKLIST(l,t); MKNODE(r1,l,r); r = r1;
		}
		MKLIST(*rp,r);
	}
}

void Pdp_mono_reduce(NODE arg,LIST *rp)
{
	NODE t,t0,t1,r0,r;
	int i,n;
	DP m;
	DP *a;

	t0 = BDY((LIST)ARG0(arg));
	t1 = BDY((LIST)ARG1(arg));
	n = length(t0);
	a = (DP *)MALLOC(n*sizeof(DP));
	for ( i = 0; i < n; i++, t0 = NEXT(t0) ) a[i] = (DP)BDY(t0);
	for ( t = t1; t; t = NEXT(t) ) {
		m = (DP)BDY(t);
		for ( i = 0; i < n; i++ )
			if ( a[i] && dp_redble(a[i],m) ) a[i] = 0;
	}
	for ( i = n-1, r0 = 0; i >= 0; i-- )
		if ( a[i] ) { NEXTNODE(r0,r); BDY(r) = a[i]; }
	if ( r0 ) NEXT(r) = 0;
	MKLIST(*rp,r0);
}

#define BLEN (8*sizeof(unsigned long))

void showmat2(unsigned long **a,int row,int col)
{
  int i,j;

  for ( i = 0; i < row; i++, putchar('\n') )
    for ( j = 0; j < col; j++ )
	    if ( a[i][j/BLEN] & (1L<<(j%BLEN)) ) putchar('1');
      else putchar('0');
}

int rref2(unsigned long **a,int row,int col)
{
  int i,j,k,l,s,wcol,wj;
  unsigned long bj;
  unsigned long *ai,*ak,*as,*t;
  int *pivot;

  wcol = (col+BLEN-1)/BLEN; 
  pivot = (int *)MALLOC_ATOMIC(row*sizeof(int));
  i = 0;
  for ( j = 0; j < col; j++ ) {
	  wj = j/BLEN; bj = 1L<<(j%BLEN);
    for ( k = i; k < row; k++ )
  	  if ( a[k][wj] & bj ) break;
    if ( k == row ) continue;
    pivot[i] = j;
    if ( k != i ) {
     t = a[i]; a[i] = a[k]; a[k] = t;
	  }
	  ai = a[i];
    for ( k = i+1; k < row; k++ ) {
	    ak = a[k];
	    if ( ak[wj] & bj ) {
	      for ( l = wj; l < wcol; l++ )
		      ak[l] ^= ai[l];
	    }
	  }
  	i++;
  }
  for ( k = i-1; k >= 0; k-- ) {
    j = pivot[k]; wj = j/BLEN; bj = 1L<<(j%BLEN);
	  ak = a[k];
    for ( s = 0; s < k; s++ ) {
	    as = a[s];
      if ( as[wj] & bj ) {
        for ( l = wj; l < wcol; l++ )
		      as[l] ^= ak[l];
	    }
	  }
  }
  return i;
}

void Pdp_rref2(NODE arg,VECT *rp)
{
  VECT f,term,ret;
  int row,col,wcol,size,nv,i,j,rank,td;
  unsigned long **mat;
  unsigned long *v;
  DL d;
  DL *t;
  DP dp;
  MP m,m0;

  f = (VECT)ARG0(arg);
  row = f->len;
  term = (VECT)ARG1(arg);
  col = term->len; 
  mat = (unsigned long **)MALLOC(row*sizeof(unsigned long *));
  size = sizeof(unsigned long)*((col+BLEN-1)/BLEN);
  nv = ((DP)term->body[0])->nv;
  t = (DL *)MALLOC(col*sizeof(DL));
  for ( i = 0; i < col; i++ ) t[i] = BDY((DP)BDY(term)[i])->dl;
  for ( i = 0; i < row; i++ ) {
    v = mat[i] = (unsigned long *)MALLOC_ATOMIC_IGNORE_OFF_PAGE(size);
	bzero(v,size);
	for ( j = 0, m = BDY((DP)BDY(f)[i]); m; m = NEXT(m) ) {
	  d = m->dl;
	  for ( ; !dl_equal(nv,d,t[j]); j++ );
	  v[j/BLEN] |= 1L <<(j%BLEN);
	}
  }
  rank = rref2(mat,row,col);
  MKVECT(ret,rank);
  *rp = ret;
  for ( i = 0; i < rank; i++ ) {
    v = mat[i];
	m0 = 0;
	td = 0;
    for ( j = 0; j < col; j++ ) {
	  if ( v[j/BLEN] & (1L<<(j%BLEN)) ) {
	    NEXTMP(m0,m);
		m->dl = t[j];
		m->c = (P)ONE;
	    td = MAX(td,m->dl->td);
	  }
	}
	NEXT(m) = 0;
	MKDP(nv,m0,dp);
	dp->sugar = td;
    BDY(ret)[i] = (pointer)dp;
  }
}

#define HDL(f) (BDY(f)->dl)

NODE sumi_criB(int nv,NODE d,DP *f,int m)
{
 LIST p;
 NODE r0,r;
 int p0,p1;
 DL p2,lcm;

 NEWDL(lcm,nv);
 r0 = 0;
 for ( ; d; d = NEXT(d) ) {
	p = (LIST)BDY(d);
	p0 = QTOS((Q)ARG0(BDY(p)));
	p1 = QTOS((Q)ARG1(BDY(p)));
	p2 = HDL((DP)ARG2(BDY(p)));
    if(!_dl_redble(HDL((DP)f[m]),p2,nv) ||
     dl_equal(nv,lcm_of_DL(nv,HDL(f[p0]),HDL(f[m]),lcm),p2) ||
     dl_equal(nv,lcm_of_DL(nv,HDL(f[p1]),HDL(f[m]),lcm),p2) ) {
	  NEXTNODE(r0,r);
	  BDY(r) = p;
	}
 }
 if ( r0 ) NEXT(r) = 0;
 return r0;
}

NODE sumi_criFMD(int nv,DP *f,int m)
{
  DL *a;
  DL l1,dl1,dl2;
  int i,j,k,k2;
  NODE r,r1,nd;
  MP mp;
  DP u;
  Q iq,mq;
  LIST list;

  /* a[i] = lcm(LT(f[i]),LT(f[m])) */
  a = (DL *)ALLOCA(m*sizeof(DL));
  for ( i = 0; i < m; i++ ) {
   a[i] = lcm_of_DL(nv,HDL(f[i]),HDL(f[m]),0);
  }
  r = 0;
  for( i = 0; i < m; i++) {
   l1 = a[i];
   if ( !l1 ) continue;
   /* Tkm = Tim (k<i) */
   for( k = 0; k < i; k++)
     if( dl_equal(nv,l1,a[k]) ) break;
   if( k == i ){
     /* Tk|Tim && Tkm != Tim (k<m) */
	 for ( k2 = 0; k2 < m; k2++ )
	   if ( _dl_redble(HDL(f[k2]),l1,nv) &&
	     !dl_equal(nv,l1,a[k2]) ) break;
	 if ( k2 == m ) {
       dl1 = HDL(f[i]); dl2 = HDL(f[m]);
       for ( k2 = 0; k2 < nv; k2++ )
         if ( dl1->d[k2] && dl2->d[k2] ) break;
       if ( k2 < nv ) {
         NEWMP(mp); mp->dl = l1; C(mp) = (P)ONE;
         NEXT(mp) = 0; MKDP(nv,mp,u); u->sugar = l1->td;
	     STOQ(i,iq); STOQ(m,mq);
	     nd = mknode(3,iq,mq,u);
	     MKLIST(list,nd);
	     MKNODE(r1,list,r);
	     r = r1;
	  }
	}
   }
 } 
 return r;
}

LIST sumi_updatepairs(LIST d,DP *f,int m)
{
  NODE old,new,t;
  LIST l;
  int nv;

  nv = f[0]->nv;
  old = sumi_criB(nv,BDY(d),f,m);
  new = sumi_criFMD(nv,f,m);
  if ( !new ) new = old;
  else {
    for ( t = new ; NEXT(t); t = NEXT(t) );
	NEXT(t) = old;
  }
  MKLIST(l,new);
  return l;
}

VECT ltov(LIST l)
{
  NODE n;
  int i,len;
  VECT v;

  n = BDY(l);
  len = length(n);
  MKVECT(v,len);
  for ( i = 0; i < len; i++, n = NEXT(n) )
    BDY(v)[i] = BDY(n);
  return v;
}

DL subdl(int nv,DL d1,DL d2)
{
  int i;
  DL d;

  NEWDL(d,nv);
  d->td = d1->td-d2->td;
  for ( i = 0; i < nv; i++ )
    d->d[i] = d1->d[i]-d2->d[i];
  return d;
}

DP dltodp(int nv,DL d)
{
  MP mp;
  DP dp;

  NEWMP(mp); mp->dl = d; C(mp) = (P)ONE;
  NEXT(mp) = 0; MKDP(nv,mp,dp); dp->sugar = d->td;
  return dp;
}

LIST sumi_simplify(int nv,DL t,DP p,NODE f2,int simp)
{
  DL d,h,hw;
  DP u,w,dp;
  int n,i,last;
  LIST *v;
  LIST list;
  NODE s,r;

  d = t; u = p;
  /* only the last history is used */
  if ( f2 && simp && t->td != 0 ) {
    adddl(nv,t,HDL(p),&h);
    n = length(f2);
    last = 1;
    if ( simp > 1 ) last = n;
    v = (LIST *)ALLOCA(n*sizeof(LIST));
    for ( r = f2, i = 0; r; r = NEXT(r), i++ ) v[n-i-1] = BDY(r);
    for ( i = 0; i < last; i++ ) {
      for ( s = BDY((LIST)v[i]); s; s = NEXT(s) ) {
	    w = (DP)BDY(s); hw = HDL(w);
        if ( _dl_redble(hw,h,nv) ) {
		  u = w;
		  d = subdl(nv,h,hw);
		  goto fin;
	    }
      }
    }
  }
fin:
  dp = dltodp(nv,d);
  r = mknode(2,dp,u);
  MKLIST(list,r);
  return list;
}

LIST sumi_symbolic(NODE l,int q,NODE f2,DP *g,int simp)
{
   int nv;
   NODE t,r;
   NODE f0,f,fd0,fd,done0,done,red0,red;
   DL h,d;
   DP mul;
   int m;
   LIST tp,l0,l1,l2,l3,list;
   VECT v0,v1,v2,v3;

   nv = ((DP)BDY(l))->nv;
   t = 0;

   f0 = 0; fd0 = 0; done0 = 0; red0 = 0;

   for ( ; l; l = NEXT(l) ) {
     t = symb_merge(t,dp_dllist((DP)BDY(l)),nv);
     NEXTNODE(fd0,fd); BDY(fd) = BDY(l);
   }

   while ( t ) {
	 h = (DL)BDY(t);
	 NEXTNODE(done0,done); BDY(done) = dltodp(nv,h);
	 t = NEXT(t);
     for(m = 0; m < q; m++)
	   if ( _dl_redble(HDL(g[m]),h,nv) ) break;
     if ( m == q ) { 
     } else {
	   d = subdl(nv,h,HDL(g[m]));
       tp = sumi_simplify(nv,d,g[m],f2,simp);

	   muldm(CO,ARG1(BDY(tp)),BDY((DP)ARG0(BDY(tp))),&mul);
       t = symb_merge(t,NEXT(dp_dllist(mul)),nv);

	   NEXTNODE(f0,f); BDY(f) = tp;
	   NEXTNODE(fd0,fd); BDY(fd) = mul;
	   NEXTNODE(red0,red); BDY(red) = mul;
     }
   }
   if ( fd0 ) NEXT(fd) = 0; MKLIST(l0,fd0);
   v0 = ltov(l0);
   if ( done0 ) NEXT(done) = 0; MKLIST(l1,done0);
   v1 = ltov(l1);
   if ( f0 ) NEXT(f) = 0; MKLIST(l2,f0);
   v2 = ltov(l2);
   if ( red0 ) NEXT(red) = 0; MKLIST(l3,red0);
   v3 = ltov(l3);
   r = mknode(4,v0,v1,v2,v3);
   MKLIST(list,r);
   return list;
}

void Psumi_symbolic(NODE arg,LIST *rp)
{
  NODE l,f2;
  DP *g;
  int q,simp;

  l = BDY((LIST)ARG0(arg));
  q = QTOS((Q)ARG1(arg));
  f2 = BDY((LIST)ARG2(arg));
  g = (DP *)BDY((VECT)ARG3(arg));
  simp = QTOS((Q)ARG4(arg));
  *rp = sumi_symbolic(l,q,f2,g,simp);
}

void Psumi_updatepairs(NODE arg,LIST *rp)
{
   LIST d,l;
   DP *f;
   int m;

   d = (LIST)ARG0(arg); 
   f = (DP *)BDY((VECT)ARG1(arg)); 
   m = QTOS((Q)ARG2(arg)); 
   *rp = sumi_updatepairs(d,f,m);
}

LIST remove_zero_from_list(LIST l)
{
	NODE n,r0,r;
	LIST rl;

	asir_assert(l,O_LIST,"remove_zero_from_list");
	n = BDY(l);
	for ( r0 = 0; n; n = NEXT(n) )
		if ( BDY(n) ) {
			NEXTNODE(r0,r);
			BDY(r) = BDY(n);
		}
	if ( r0 )
		NEXT(r) = 0;
	MKLIST(rl,r0);
	return rl;
}

int get_field_type(P p)
{
	int type,t;
	DCP dc;

	if ( !p )
		return 0;
	else if ( NUM(p) )
		return NID((Num)p);
	else {
		type = 0;
		for ( dc = DC(p); dc; dc = NEXT(dc) ) {
			t = get_field_type(COEF(dc));
			if ( !t )
				continue;
			if ( t < 0 )
				return t;
			if ( !type )
				type = t;
			else if ( t != type )
				return -1;
		}
		return type;
	}
}

void Pdpv_ord(NODE arg,Obj *rp)
{
	int ac,id;
	LIST shift;

	ac = argc(arg);
	if ( ac ) {
		id = QTOS((Q)ARG0(arg));
		if ( ac > 1 && ARG1(arg) && OID((Obj)ARG1(arg))==O_LIST )
			shift = (LIST)ARG1(arg);
		else
			shift = 0;
		create_modorder_spec(id,shift,&dp_current_modspec);
	}
	*rp = dp_current_modspec->obj;
}

void Pdpv_ht(NODE arg,LIST *rp)
{
	NODE n;
	DP ht;
	int pos;
	DPV p;
	Q q;

	asir_assert(ARG0(arg),O_DPV,"dpv_ht");
	p = (DPV)ARG0(arg);
	pos = dpv_hp(p);
	if ( pos < 0 )
		ht = 0;
	else
		dp_ht(BDY(p)[pos],&ht);
	STOQ(pos,q);
	n = mknode(2,q,ht);
	MKLIST(*rp,n);
}

void Pdpv_hm(NODE arg,LIST *rp)
{
	NODE n;
	DP ht;
	int pos;
	DPV p;
	Q q;

	asir_assert(ARG0(arg),O_DPV,"dpv_hm");
	p = (DPV)ARG0(arg);
	pos = dpv_hp(p);
	if ( pos < 0 )
		ht = 0;
	else
		dp_hm(BDY(p)[pos],&ht);
	STOQ(pos,q);
	n = mknode(2,q,ht);
	MKLIST(*rp,n);
}

void Pdpv_hc(NODE arg,LIST *rp)
{
	NODE n;
	P hc;
	int pos;
	DPV p;
	Q q;

	asir_assert(ARG0(arg),O_DPV,"dpv_hc");
	p = (DPV)ARG0(arg);
	pos = dpv_hp(p);
	if ( pos < 0 )
		hc = 0;
	else
		hc = BDY(BDY(p)[pos])->c;
	STOQ(pos,q);
	n = mknode(2,q,hc);
	MKLIST(*rp,n);
}

int dpv_hp(DPV p)
{
	int len,i,maxp,maxw,w,slen;
	int *shift;
	DP *e;

	len = p->len;
	e = p->body;
	slen = dp_current_modspec->len;
	shift = dp_current_modspec->degree_shift;
	switch ( dp_current_modspec->id ) {
		case ORD_REVGRADLEX:
			for ( maxp = -1, i = 0; i < len; i++ )
				if ( !e[i] ) continue;
				else if ( maxp < 0 ) { 
					maxw = BDY(e[i])->dl->td+(i<slen?shift[i]:0); maxp = i; 
				} else {
					w = BDY(e[i])->dl->td+(i<slen?shift[i]:0);
					if ( w >= maxw ) {
						maxw = w; maxp = i;
					}
				}
			return maxp;
		case ORD_GRADLEX:
			for ( maxp = -1, i = 0; i < len; i++ )
				if ( !e[i] ) continue;
				else if ( maxp < 0 ) { 
					maxw = BDY(e[i])->dl->td+(i<slen?shift[i]:0); maxp = i; 
				} else {
					w = BDY(e[i])->dl->td+(i<slen?shift[i]:0);
					if ( w > maxw ) {
						maxw = w; maxp = i;
					}
				}
			return maxp;
			break;
		case ORD_LEX:
			for ( i = 0; i < len; i++ )
				if ( e[i] ) return i;
			return -1;
			break;
	}
}

int get_opt(char *key0,Obj *r) {
   NODE tt,p;
   char *key;

   if ( current_option ) {
     for ( tt = current_option; tt; tt = NEXT(tt) ) {
       p = BDY((LIST)BDY(tt));
       key = BDY((STRING)BDY(p));
       /*  value = (Obj)BDY(NEXT(p)); */
       if ( !strcmp(key,key0) )  {
	     *r = (Obj)BDY(NEXT(p));
	     return 1;
	   }
     }
   }
   return 0;
}