[BACK]Return to strobj.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2000 / builtin

Diff for /OpenXM_contrib2/asir2000/builtin/strobj.c between version 1.72 and 1.87

version 1.72, 2005/10/14 06:00:03 version 1.87, 2005/10/31 10:03:48
Line 45 
Line 45 
  * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,   * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
  * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.   * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
  *   *
  * $OpenXM: OpenXM_contrib2/asir2000/builtin/strobj.c,v 1.71 2005/10/12 14:43:36 noro Exp $   * $OpenXM: OpenXM_contrib2/asir2000/builtin/strobj.c,v 1.86 2005/10/26 23:43:23 noro Exp $
 */  */
 #include "ca.h"  #include "ca.h"
 #include "parse.h"  #include "parse.h"
Line 64  struct TeXSymbol {
Line 64  struct TeXSymbol {
 };  };
   
 #define OPNAME(f) (((ARF)FA0(f))->name[0])  #define OPNAME(f) (((ARF)FA0(f))->name[0])
   #define IS_ZERO(f) (((f)->id==I_FORMULA) && FA0(f)==0 )
   #define IS_BINARYPWR(f) (((f)->id==I_BOP) &&(OPNAME(f)=='^'))
   #define IS_NARYADD(f) (((f)->id==I_NARYOP) &&(OPNAME(f)=='+'))
   #define IS_NARYMUL(f) (((f)->id==I_NARYOP) &&(OPNAME(f)=='*'))
   
 extern char *parse_strp;  extern char *parse_strp;
   
Line 83  void Pflatten_quote();
Line 87  void Pflatten_quote();
 void Pquote_is_integer(),Pquote_is_rational(),Pquote_is_number();  void Pquote_is_integer(),Pquote_is_rational(),Pquote_is_number();
 void Pquote_is_dependent(),Pquote_is_function();  void Pquote_is_dependent(),Pquote_is_function();
 void Pquote_normalize();  void Pquote_normalize();
   void Pquote_normalize_comp();
   
 void Pquote_to_funargs(),Pfunargs_to_quote(),Pget_function_name();  void Pquote_to_funargs(),Pfunargs_to_quote(),Pget_function_name();
 void Pquote_unify(),Pget_quote_id(),Pquote_match_rewrite();  void Pquote_unify(),Pget_quote_id(),Pquote_match_rewrite();
Line 121  struct ftab str_tab[] = {
Line 126  struct ftab str_tab[] = {
         {"quote_is_function",Pquote_is_function,1},          {"quote_is_function",Pquote_is_function,1},
         {"quote_is_dependent",Pquote_is_dependent,2},          {"quote_is_dependent",Pquote_is_dependent,2},
   
         {"quote_normalize",Pquote_normalize,1},          {"quote_normalize",Pquote_normalize,-2},
           {"quote_normalize_comp",Pquote_normalize_comp,2},
   
         {"quote_to_nary",Pquote_to_nary,1},          {"quote_to_nary",Pquote_to_nary,1},
         {"quote_to_bin",Pquote_to_bin,2},          {"quote_to_bin",Pquote_to_bin,2},
Line 530  void Pwrite_to_tb(NODE arg,Q *rp)
Line 536  void Pwrite_to_tb(NODE arg,Q *rp)
 }  }
   
 FNODE partial_eval(FNODE), fnode_to_nary(FNODE), fnode_to_bin(FNODE,int);  FNODE partial_eval(FNODE), fnode_to_nary(FNODE), fnode_to_bin(FNODE,int);
 FNODE fnode_normalize(FNODE);  
   
 void Pquote_to_nary(NODE arg,QUOTE *rp)  void Pquote_to_nary(NODE arg,QUOTE *rp)
 {  {
Line 660  void Pquote_match_rewrite(NODE arg,Obj *rp)
Line 665  void Pquote_match_rewrite(NODE arg,Obj *rp)
                         NEXTNODE(s0,s);                          NEXTNODE(s0,s);
                         pair = BDY((LIST)BDY(t));                          pair = BDY((LIST)BDY(t));
                         ind = (int)FA0((FNODE)BDY((QUOTE)BDY(pair)));                          ind = (int)FA0((FNODE)BDY((QUOTE)BDY(pair)));
                         value = mkfnode(1,I_FORMULA,BDY(NEXT(pair)));                          value = BDY((QUOTE)(BDY(NEXT(pair))));
                         BDY(s) = mknode(2,ind,value);                          BDY(s) = mknode(2,ind,value);
                 }                  }
                 if ( s0 ) NEXT(s) = 0;                  if ( s0 ) NEXT(s) = 0;
                 switch ( ac = argc(arg) ) {                  switch ( ac = argc(arg) ) {
                         case 3:                          case 3:
                                 h = rewrite_fnode(BDY((QUOTE)ARG2(arg)),s0);                                  h = rewrite_fnode(BDY((QUOTE)ARG2(arg)),s0);
                                 *rp = eval(h);                                  MKQUOTE(q,h); *rp = (Obj)q;
                                 break;                                  break;
                         case 4:                          case 4:
                                 c = rewrite_fnode(BDY((QUOTE)ARG2(arg)),s0);                                  c = rewrite_fnode(BDY((QUOTE)ARG2(arg)),s0);
                                 if ( eval(c) ) {                                  if ( eval(c) ) {
                                         h = rewrite_fnode(BDY((QUOTE)ARG3(arg)),s0);                                          h = rewrite_fnode(BDY((QUOTE)ARG3(arg)),s0);
                                         *rp = eval(h);                                          MKQUOTE(q,h); *rp = (Obj)q;
                                 } else                                  } else
                                         *rp = VOIDobj;                                          *rp = VOIDobj;
                                 break;                                  break;
Line 1921  void Pfunargs_to_quote(NODE arg,QUOTE *rp)
Line 1926  void Pfunargs_to_quote(NODE arg,QUOTE *rp)
         MKQUOTE(*rp,f);          MKQUOTE(*rp,f);
 }  }
   
 FNODE fnode_apply(FNODE f,FNODE (*func)());  FNODE fnode_apply(FNODE f,FNODE (*func)(),int expand);
 FNODE fnode_normalize(FNODE f);  FNODE fnode_normalize(FNODE f,int expand);
 FNODE fnode_normalize_nary(FNODE f);  
   
 void Pquote_normalize(NODE arg,QUOTE *rp)  void Pquote_normalize(NODE arg,QUOTE *rp)
 {  {
         QUOTE q,r;          QUOTE q,r;
         FNODE f;          FNODE f;
           int expand,ac;
   
           ac = argc(arg);
           if ( !ac ) error("quote_normalize : invalid argument");
         q = (QUOTE)ARG0(arg);          q = (QUOTE)ARG0(arg);
           expand = ac==2 && ARG1(arg);
         if ( !q || OID(q) != O_QUOTE ) {          if ( !q || OID(q) != O_QUOTE ) {
                 *rp = q;                  *rp = q;
                 return;                  return;
         } else {          } else if ( q->normalized && (q->expanded || !expand) )
                 f = fnode_normalize(BDY(q));                  *rp = q;
           else {
                   f = fnode_normalize(BDY(q),expand);
                 MKQUOTE(r,f);                  MKQUOTE(r,f);
                   r->normalized = 1;
                   if ( expand ) r->expanded = 1;
                 *rp = r;                  *rp = r;
         }          }
 }  }
   
   void Pquote_normalize_comp(NODE arg,Q *rp)
   {
           QUOTE q1,q2;
           FNODE f1,f2;
           int r;
   
           q1 = (QUOTE)ARG0(arg); f1 = (FNODE)BDY(q1);
           q2 = (QUOTE)ARG1(arg); f2 = (FNODE)BDY(q2);
           if ( !q1->normalized ) f1 = fnode_normalize(f1,0);
           if ( !q2->normalized ) f2 = fnode_normalize(f2,0);
           r = fnode_normalize_comp(f1,f2);
           STOQ(r,*rp);
   }
   
 int fnode_is_number(FNODE f)  int fnode_is_number(FNODE f)
 {  {
         Obj obj;          Obj obj;
Line 2026  int fnode_is_integer(FNODE f)
Line 2052  int fnode_is_integer(FNODE f)
         }          }
 }  }
   
 int fnode_is_zero(FNODE f)  
 {  
         Q n;  
   
         n = eval(f);  
         if ( !n ) return 1;  
         else return 0;  
 }  
   
 int fnode_is_nonnegative_integer(FNODE f)  int fnode_is_nonnegative_integer(FNODE f)
 {  {
         Q n;          Q n;
Line 2094  int fnode_is_dependent(FNODE f,V v)
Line 2111  int fnode_is_dependent(FNODE f,V v)
         }          }
 }  }
   
 FNODE fnode_normalize_add(FNODE a1,FNODE a2);  FNODE fnode_normalize_add(FNODE a1,FNODE a2,int expand);
 FNODE fnode_normalize_mul(FNODE a1,FNODE a2);  FNODE fnode_normalize_mul(FNODE a1,FNODE a2,int expand);
   FNODE fnode_normalize_pwr(FNODE a1,FNODE a2,int expand);
   FNODE fnode_normalize_mul_coef(Num c,FNODE f,int expand);
   FNODE fnode_expand_pwr(FNODE f,int n);
 FNODE to_narymul(FNODE f);  FNODE to_narymul(FNODE f);
 FNODE to_naryadd(FNODE f);  FNODE to_naryadd(FNODE f);
 FNODE fnode_normalize_mul_coef(Num c,FNODE f);  FNODE fnode_node_to_naryadd(NODE n);
   FNODE fnode_node_to_narymul(NODE n);
 void fnode_base_exp(FNODE f,FNODE *bp,FNODE *ep);  void fnode_base_exp(FNODE f,FNODE *bp,FNODE *ep);
 void fnode_coef_body(FNODE f,Num *cp,FNODE *bp);  void fnode_coef_body(FNODE f,Num *cp,FNODE *bp);
   
   
 FNODE fnode_normalize(FNODE f)  FNODE fnode_normalize(FNODE f,int expand)
 {  {
         FNODE a1,a2,mone,r;          FNODE a1,a2,mone,r,b2;
         NODE n;          NODE n;
         Q q;          Q q;
   
Line 2113  FNODE fnode_normalize(FNODE f)
Line 2134  FNODE fnode_normalize(FNODE f)
         mone = mkfnode(1,I_FORMULA,q);          mone = mkfnode(1,I_FORMULA,q);
         switch ( f->id ) {          switch ( f->id ) {
                 case I_PAREN:                  case I_PAREN:
                         return fnode_normalize(FA0(f));                          return fnode_normalize(FA0(f),expand);
   
                 case I_MINUS:                  case I_MINUS:
                         return fnode_normalize_mul_coef((Num)q,fnode_normalize(FA0(f)));                          return fnode_normalize_mul_coef((Num)q,
                                   fnode_normalize(FA0(f),expand),expand);
   
                 case I_BOP:                  case I_BOP:
                         /* arf fnode fnode */                          /* arf fnode fnode */
                         a1 = fnode_normalize(FA1(f));                          a1 = fnode_normalize(FA1(f),expand);
                         a2 = fnode_normalize(FA2(f));                          a2 = fnode_normalize(FA2(f),expand);
                         switch ( OPNAME(f) ) {                          switch ( OPNAME(f) ) {
                                 case '+':                                  case '+':
                                         return fnode_normalize_add(a1,a2);                                          return fnode_normalize_add(a1,a2,expand);
                                 case '-':                                  case '-':
                                         a2 = fnode_normalize_mul_coef((Num)q,a2);                                          a2 = fnode_normalize_mul_coef((Num)q,a2,expand);
                                         return fnode_normalize_add(a1,a2);                                          return fnode_normalize_add(a1,a2,expand);
                                 case '*':                                  case '*':
                                         return fnode_normalize_mul(a1,a2);                                          return fnode_normalize_mul(a1,a2,expand);
                                 case '/':                                  case '/':
                                         a2 = mkfnode(3,I_BOP,pwrfs,a2,mone);                                          a2 = fnode_normalize_pwr(a2,mone,expand);
                                         return fnode_normalize_mul(FA1(f),a2);                                          return fnode_normalize_mul(a1,a2,expand);
                                   case '^':
                                           return fnode_normalize_pwr(a1,a2,expand);
                                 default:                                  default:
                                         return mkfnode(3,I_BOP,FA0(f),a1,a2);                                          return mkfnode(3,I_BOP,FA0(f),a1,a2);
                         }                          }
Line 2141  FNODE fnode_normalize(FNODE f)
Line 2165  FNODE fnode_normalize(FNODE f)
                 case I_NARYOP:                  case I_NARYOP:
                         switch ( OPNAME(f) ) {                          switch ( OPNAME(f) ) {
                                 case '+':                                  case '+':
                                         n = BDY((NODE)FA1(f));                                          n = (NODE)FA1(f);
                                         r = fnode_normalize(BDY(n)); n = NEXT(n);                                          r = fnode_normalize(BDY(n),expand); n = NEXT(n);
                                         for ( ; n; n = NEXT(n) ) {                                          for ( ; n; n = NEXT(n) ) {
                                                 a1 = fnode_normalize(BDY(n));                                                  a1 = fnode_normalize(BDY(n),expand);
                                                 r = fnode_normalize_add(r,a1);                                                  r = fnode_normalize_add(r,a1,expand);
                                         }                                          }
                                         return r;                                          return r;
                                 case '*':                                  case '*':
                                         n = BDY((NODE)FA1(f));                                          n = (NODE)FA1(f);
                                         r = fnode_normalize(BDY(n)); n = NEXT(n);                                          r = fnode_normalize(BDY(n),expand); n = NEXT(n);
                                         for ( ; n; n = NEXT(n) ) {                                          for ( ; n; n = NEXT(n) ) {
                                                 a1 = fnode_normalize(BDY(n));                                                  a1 = fnode_normalize(BDY(n),expand);
                                                 r = fnode_normalize_mul(r,a1);                                                  r = fnode_normalize_mul(r,a1,expand);
                                         }                                          }
                                         return r;                                          return r;
                                 default:                                  default:
Line 2161  FNODE fnode_normalize(FNODE f)
Line 2185  FNODE fnode_normalize(FNODE f)
                         }                          }
   
                 default:                  default:
                         return fnode_apply(f,fnode_normalize);                          return fnode_apply(f,fnode_normalize,expand);
         }          }
 }  }
   
 FNODE fnode_apply(FNODE f,FNODE (*func)())  FNODE fnode_apply(FNODE f,FNODE (*func)(),int expand)
 {  {
         fid_spec_p spec;          fid_spec_p spec;
         FNODE r;          FNODE r;
Line 2178  FNODE fnode_apply(FNODE f,FNODE (*func)())
Line 2202  FNODE fnode_apply(FNODE f,FNODE (*func)())
         for ( i = 0; i < n; i++ ) {          for ( i = 0; i < n; i++ ) {
                 switch ( spec->type[i] ) {                  switch ( spec->type[i] ) {
                         case A_fnode:                          case A_fnode:
                                 r->arg[i] = func(f->arg[i]);                                  r->arg[i] = func(f->arg[i],expand);
                                 break;                                  break;
                         case A_node:                          case A_node:
                                 s = (NODE)f->arg[i];                                  s = (NODE)f->arg[i];
                                 for ( t0 = 0; s; s = NEXT(s) ) {                                  for ( t0 = 0; s; s = NEXT(s) ) {
                                         NEXTNODE(t0,t);                                          NEXTNODE(t0,t);
                                         BDY(t) = (pointer)func((FNODE)BDY(s));                                          BDY(t) = (pointer)func((FNODE)BDY(s),expand);
                                 }                                  }
                                 if ( t0 ) NEXT(t) = 0;                                  if ( t0 ) NEXT(t) = 0;
                                 r->arg[i] = t0;                                  r->arg[i] = t0;
Line 2197  FNODE fnode_apply(FNODE f,FNODE (*func)())
Line 2221  FNODE fnode_apply(FNODE f,FNODE (*func)())
         return r;          return r;
 }  }
   
 FNODE fnode_normalize_add(FNODE f1,FNODE f2)  FNODE fnode_normalize_add(FNODE f1,FNODE f2,int expand)
 {  {
         NODE n1,n2,r0,r;          NODE n1,n2,r0,r;
         FNODE b1,b2;          FNODE b1,b2;
         int s;          int s;
         Num c1,c2,c;          Num c1,c2,c;
   
         if ( fnode_is_zero(f1) ) return f2;          if ( IS_ZERO(f1) ) return f2;
         else if ( fnode_is_zero(f2) ) return f1;          else if ( IS_ZERO(f2) ) return f1;
         if ( f1->id != I_NARYOP || OPNAME(f1) != '+' ) f1 = to_naryadd(f1);          f1 = to_naryadd(f1); f2 = to_naryadd(f2);
         if ( f2->id != I_NARYOP || OPNAME(f2) != '+' ) f2 = to_naryadd(f2);          n1 = (NODE)FA1(f1); n2 = (NODE)FA1(f2);
         n1 = (NODE)FA1(f1);  
         n2 = (NODE)FA1(f2);  
         r0 = 0;          r0 = 0;
         while ( n1 && n2 ) {          while ( n1 && n2 ) {
                 fnode_coef_body(BDY(n1),&c1,&b1);                  fnode_coef_body(BDY(n1),&c1,&b1); fnode_coef_body(BDY(n2),&c2,&b2);
                 fnode_coef_body(BDY(n2),&c2,&b2);                  if ( (s = fnode_normalize_comp(b1,b2)) > 0 ) {
                 s = compfnode(b1,b2);                          NEXTNODE(r0,r); BDY(r) = BDY(n1); n1 = NEXT(n1);
                 if ( s > 0 ) {  
                         NEXTNODE(r0,r); BDY(r) = b1; n1 = NEXT(n1);  
                 } else if ( s < 0 ) {                  } else if ( s < 0 ) {
                         NEXTNODE(r0,r); BDY(r) = b2; n2 = NEXT(n2);                          NEXTNODE(r0,r); BDY(r) = BDY(n2); n2 = NEXT(n2);
                 } else {                  } else {
                         addnum(0,c1,c2,&c);                          addnum(0,c1,c2,&c);
                         if ( c ) {                          if ( c ) {
                                 NEXTNODE(r0,r); BDY(r) = fnode_normalize_mul_coef(c,b1);                                  NEXTNODE(r0,r); BDY(r) = fnode_normalize_mul_coef(c,b1,expand);
                         }                          }
                         n1 = NEXT(n1); n2 = NEXT(n2);                          n1 = NEXT(n1); n2 = NEXT(n2);
                 }                  }
Line 2236  FNODE fnode_normalize_add(FNODE f1,FNODE f2)
Line 2256  FNODE fnode_normalize_add(FNODE f1,FNODE f2)
         else if ( r0 )          else if ( r0 )
                 NEXT(r) = 0;                  NEXT(r) = 0;
   
         if ( !r0 )          return fnode_node_to_naryadd(r0);
                 return mkfnode(1,I_FORMULA,0);  
         else if ( !NEXT(r0) )  
                 return BDY(r0);  
         else  
                 return mkfnode(2,I_NARYOP,addfs,r0);  
 }  }
   
 FNODE fnode_normalize_mul(FNODE f1,FNODE f2)  FNODE fnode_node_to_naryadd(NODE n)
 {  {
           if ( !n ) return mkfnode(1,I_FORMULA,0);
           else if ( !NEXT(n) ) return BDY(n);
           else return mkfnode(2,I_NARYOP,addfs,n);
   }
   
   FNODE fnode_node_to_narymul(NODE n)
   {
           if ( !n ) return mkfnode(1,I_FORMULA,ONE);
           else if ( !NEXT(n) ) return BDY(n);
           else return mkfnode(2,I_NARYOP,mulfs,n);
   }
   
   FNODE fnode_normalize_mul(FNODE f1,FNODE f2,int expand)
   {
         NODE n1,n2,r0,r,r1;          NODE n1,n2,r0,r,r1;
         FNODE b1,b2,e1,e2,cc;          FNODE b1,b2,e1,e2,cc,t,t1;
         FNODE *m;          FNODE *m;
         int s;          int s;
         Num c1,c2,c,e;          Num c1,c2,c,e;
         int l1,l2,l,i,j;          int l1,l,i,j;
   
         if ( fnode_is_zero(f1) || fnode_is_zero(f2) ) return 0;          if ( IS_ZERO(f1) || IS_ZERO(f2) ) return mkfnode(1,I_FORMULA,0);
           else if ( fnode_is_number(f1) )
                   return fnode_normalize_mul_coef((Num)eval(f1),f2,expand);
           else if ( fnode_is_number(f2) )
                   return fnode_normalize_mul_coef((Num)eval(f2),f1,expand);
   
         if ( f1->id != I_NARYOP || OPNAME(f1) != '*' ) f1 = to_narymul(f1);          if ( expand && IS_NARYADD(f1) ) {
         if ( f2->id != I_NARYOP || OPNAME(f2) != '*' ) f2 = to_narymul(f2);                  t = mkfnode(1,I_FORMULA,0);
         n1 = (NODE)FA1(f1);                  for ( n1 = (NODE)FA1(f1); n1; n1 = NEXT(n1) ) {
         n2 = (NODE)FA1(f2);                          t1 = fnode_normalize_mul(BDY(n1),f2,expand);
         if ( fnode_is_number(BDY(n1)) )                          t = fnode_normalize_add(t,t1,expand);
                 if ( fnode_is_number(BDY(n2)) ) {  
                         mulnum(0,eval(BDY(n1)),eval(BDY(n2)),&c);  
                         n1 = NEXT(n1); n2 = NEXT(n2);  
                 } else {  
                         c = eval(BDY(n1)); n1 = NEXT(n1);  
                 }                  }
         else if ( fnode_is_number(BDY(n2)) ) {                  return t;
                 c = eval(BDY(n2)); n2 = NEXT(n2);          }
         } else          if ( expand && IS_NARYADD(f2) ) {
                 c = (Num)ONE;                  t = mkfnode(1,I_FORMULA,0);
                   for ( n2 = (NODE)FA1(f2); n2; n2 = NEXT(n2) ) {
                           t1 = fnode_normalize_mul(f1,BDY(n2),expand);
                           t = fnode_normalize_add(t,t1,expand);
                   }
                   return t;
           }
   
           fnode_coef_body(f1,&c1,&b1); fnode_coef_body(f2,&c2,&b2);
           mulnum(0,c1,c2,&c);
         if ( !c ) return mkfnode(1,I_FORMULA,0);          if ( !c ) return mkfnode(1,I_FORMULA,0);
   
         l1 = length(n1);  
         l2 = length(n2);          n1 = (NODE)FA1(to_narymul(b1)); n2 = (NODE)FA1(to_narymul(b2));
         l = l1+l2;          l1 = length(n1); l = l1+length(n2);
         m = (FNODE *)ALLOCA(l*sizeof(FNODE));          m = (FNODE *)ALLOCA(l*sizeof(FNODE));
         for ( r = n1, i = 0; i < l1; r = NEXT(r), i++ ) m[i] = BDY(r);          for ( r = n1, i = 0; i < l1; r = NEXT(r), i++ ) m[i] = BDY(r);
         for ( r = n2; r; r = NEXT(r) ) {          for ( r = n2; r; r = NEXT(r) ) {
                 if ( i == 0 )                  if ( i == 0 )
                         m[i++] = BDY(r);                          m[i++] = BDY(r);
                 else {                  else {
                         fnode_base_exp(m[i-1],&b1,&e1);                          fnode_base_exp(m[i-1],&b1,&e1); fnode_base_exp(BDY(r),&b2,&e2);
                         fnode_base_exp(BDY(r),&b2,&e2);                          if ( compfnode(b1,b2) ) break;
                         if ( compfnode(b1,b2) ) {                          addnum(0,eval(e1),eval(e2),&e);
                                 for ( j = i-1; j >= 0; j-- ) {                          if ( !e ) i--;
                                         MKNODE(r1,m[j],r); r = r1;                          else if ( UNIQ(e) )
                                 }                                  m[i-1] = b1;
                                 cc = mkfnode(1,I_FORMULA,c);                          else
                                 MKNODE(r1,cc,r); r = r1;                                  m[i-1] = mkfnode(3,I_BOP,pwrfs,b1,mkfnode(1,I_FORMULA,e));
                                 return mkfnode(2,I_NARYOP,mulfs,r);  
                         } else {  
                                 addnum(0,eval(e1),eval(e2),&e);  
                                 if ( !e ) i--;  
                                 else if ( UNIQ(e) )  
                                         m[i-1] = b1;  
                                 else  
                                         m[i-1] = mkfnode(3,I_BOP,pwrfs,b1,mkfnode(1,I_FORMULA,e));  
                         }  
                 }                  }
         }          }
         if ( !i ) return mkfnode(1,I_FORMULA,c);          for ( j = i-1; j >= 0; j-- ) {
         else {                  MKNODE(r1,m[j],r); r = r1;
                 r = 0;          }
                 for ( j = i-1; j >= 0; j-- ) {          if ( !UNIQ(c) ) {
                         MKNODE(r1,m[j],r); r = r1;                  cc = mkfnode(1,I_FORMULA,c); MKNODE(r1,cc,r); r = r1;
                 }          }
           return fnode_node_to_narymul(r);
   }
   
   FNODE fnode_normalize_pwr(FNODE f1,FNODE f2,int expand)
   {
           FNODE b,b1,e1,e,cc,r;
           Num c,c1;
           NODE arg,n;
           Q q;
   
           if ( IS_ZERO(f2) ) return mkfnode(1,I_FORMULA,ONE);
           else if ( IS_ZERO(f1) ) return mkfnode(1,I_FORMULA,0);
           else if ( fnode_is_one(f2) ) return f1;
           else if ( fnode_is_number(f1) )
                   if ( fnode_is_integer(f2) ) {
                           pwrnum(0,(Num)eval(f1),(Num)eval(f2),&c);
                           return mkfnode(1,I_FORMULA,c);
                   } else
                           return mkfnode(3,I_BOP,pwrfs,f1,f2);
           else if ( IS_BINARYPWR(f1) ) {
                   b1 = FA1(f1); e1 = FA2(f1);
                   e = fnode_normalize_mul(e1,f2,expand);
                   if ( fnode_is_one(e) )
                           return b1;
                   else
                           return mkfnode(3,I_BOP,FA0(f1),b1,e);
           } else if ( IS_NARYMUL(f1) && fnode_is_integer(f2) ) {
                   fnode_coef_body(f1,&c1,&b1);
                   pwrnum(0,(Num)c1,(Num)eval(f2),&c);
                 cc = mkfnode(1,I_FORMULA,c);                  cc = mkfnode(1,I_FORMULA,c);
                 MKNODE(r1,cc,r);                  b = fnode_normalize_pwr(b1,f2,expand);
                 r = r1;                  if ( fnode_is_one(cc) )
                 return mkfnode(2,I_NARYOP,mulfs,r);                          return b;
                   else
                           return fnode_node_to_narymul(mknode(2,cc,b));
           } else if ( expand && fnode_is_integer(f2)
                           && fnode_is_nonnegative_integer(f2) ) {
                   q = (Q)eval(f2);
                   if ( PL(NM(q)) > 1 ) error("fnode_normalize_pwr : exponent too large");
                   return fnode_expand_pwr(f1,QTOS(q));
           } else
                   return mkfnode(3,I_BOP,pwrfs,f1,f2);
   }
   
   FNODE fnode_expand_pwr(FNODE f,int n)
   {
           int n1;
           FNODE f1,f2;
   
           if ( !n ) return mkfnode(1,I_FORMULA,ONE);
           else if ( IS_ZERO(f) ) return mkfnode(1,I_FORMULA,0);
           else if ( n == 1 ) return f;
           else {
                   n1 = n/2;
                   f1 = fnode_expand_pwr(f,n1);
                   f2 = fnode_normalize_mul(f1,f1,1);
                   if ( n%2 ) f2 = fnode_normalize_mul(f2,f,1);
                   return f2;
         }          }
 }  }
   
 /* f = b^e */  /* f = b^e */
 void fnode_base_exp(FNODE f,FNODE *bp,FNODE *ep)  void fnode_base_exp(FNODE f,FNODE *bp,FNODE *ep)
 {  {
         if ( f->id == I_BOP && OPNAME(f) == '^' ) {          if ( IS_BINARYPWR(f) ) {
                 *bp = FA1(f); *ep = FA2(f);                  *bp = FA1(f); *ep = FA2(f);
         } else {          } else {
                 *bp = f; *ep = mkfnode(1,I_FORMULA,ONE);                  *bp = f; *ep = mkfnode(1,I_FORMULA,ONE);
Line 2328  FNODE to_naryadd(FNODE f)
Line 2410  FNODE to_naryadd(FNODE f)
         FNODE r;          FNODE r;
         NODE n;          NODE n;
   
         NEWFNODE(r,2);          if ( IS_NARYADD(f) ) return f;
         r->id = I_NARYOP;  
         FA0(r) = addfs;          NEWFNODE(r,2); r->id = I_NARYOP;
         MKNODE(n,f,0);          FA0(r) = addfs; MKNODE(n,f,0); FA1(r) = n;
         FA1(r) = n;  
         return r;          return r;
 }  }
   
Line 2341  FNODE to_narymul(FNODE f)
Line 2422  FNODE to_narymul(FNODE f)
         FNODE r;          FNODE r;
         NODE n;          NODE n;
   
         NEWFNODE(r,2);          if ( IS_NARYMUL(f) ) return f;
         r->id = I_NARYOP;  
         FA0(r) = mulfs;          NEWFNODE(r,2); r->id = I_NARYOP;
         MKNODE(n,f,0);          FA0(r) = mulfs; MKNODE(n,f,0); FA1(r) = n;
         FA1(r) = n;  
         return r;          return r;
 }  }
   
 FNODE fnode_normalize_mul_coef(Num c,FNODE f)  FNODE fnode_normalize_mul_coef(Num c,FNODE f,int expand)
 {  {
         FNODE cc;          FNODE b1,cc;
         Num c1,c2;          Num c1,c2;
         NODE n,r0,r;          NODE n,r,r0;
   
         if ( !c )          if ( !c )
                 return mkfnode(I_FORMULA,0);                  return mkfnode(I_FORMULA,0);
         else if ( fnode_is_number(f) ) {          else {
                 mulnum(0,c,eval(f),&c1); return mkfnode(1,I_FORMULA,c1);                  fnode_coef_body(f,&c1,&b1);
         } else if ( f->id == I_NARYOP && OPNAME(f) == '*' ) {                  mulnum(0,c,c1,&c2);
                 cc = (FNODE)BDY((NODE)FA1(f));                  if ( UNIQ(c2) ) return b1;
                 if ( fnode_is_number(cc) ) {                  else {
                         mulnum(0,c,eval(cc),&c2); cc = mkfnode(1,I_FORMULA,c2);                          cc = mkfnode(1,I_FORMULA,c2);
                         MKNODE(n,cc,NEXT((NODE)FA1(f)));                          if ( fnode_is_number(b1) ) {
                 } else {                                  if ( !fnode_is_one(b1) )
                         cc = mkfnode(1,I_FORMULA,c);                                          error("fnode_normalize_mul_coef : cannot happen");
                         MKNODE(n,cc,(NODE)FA1(f));                                  else
                                           return cc;
                           } else if ( IS_NARYMUL(b1) ) {
                                   MKNODE(n,cc,FA1(b1));
                                   return fnode_node_to_narymul(n);
                           } else if ( expand && IS_NARYADD(b1) ) {
                                   for ( r0 = 0, n = (NODE)FA1(b1); n; n = NEXT(n) ) {
                                           NEXTNODE(r0,r);
                                           BDY(r) = fnode_normalize_mul_coef(c2,BDY(n),expand);
                                   }
                                   if ( r0 ) NEXT(r) = 0;
                                   return fnode_node_to_naryadd(r0);
                           } else
                                   return fnode_node_to_narymul(mknode(2,cc,b1));
                 }                  }
                 return mkfnode(2,I_NARYOP,FA0(f),n);  
         } else if ( f->id == I_NARYOP && OPNAME(f) == '+' ) {  
                 for ( r0 = 0, n = (NODE)FA1(f); n; n = NEXT(n) ) {  
                         NEXTNODE(r0,r);  
                         BDY(r) = fnode_normalize_mul_coef(c,BDY(n));  
                 }  
                 if ( r0 ) NEXT(r) = 0;  
                 return mkfnode(2,I_NARYOP,FA0(f),r0);  
         } else {  
                 cc = mkfnode(1,I_FORMULA,c);  
                 n = mknode(2,cc,f);  
                 return mkfnode(2,I_NARYOP,mulfs,n);  
         }          }
 }  }
   
 void fnode_coef_body(FNODE f,Num *cp,FNODE *bp)  void fnode_coef_body(FNODE f,Num *cp,FNODE *bp)
 {  {
         FNODE c;          FNODE c;
         NODE n;  
   
         if ( fnode_is_number(f) ) {          if ( fnode_is_number(f) ) {
                 *cp = eval(f); *bp = mkfnode(1,I_FORMULA,ONE);                  *cp = eval(f); *bp = mkfnode(1,I_FORMULA,ONE);
         } else if ( f->id == I_NARYOP && OPNAME(f) == '*' ) {          } else if ( IS_NARYMUL(f) ) {
                 c = (FNODE)BDY((NODE)FA1(f));                  c=(FNODE)BDY((NODE)FA1(f));
                 if ( fnode_is_number(c) ) {                  if ( fnode_is_number(c) ) {
                         *cp = eval(c);                          *cp = eval(c);
                         n = NEXT((NODE)FA1(f));                          *bp = fnode_node_to_narymul(NEXT((NODE)FA1(f)));
                         if ( !n )  
                                 *bp = mkfnode(1,I_FORMULA,ONE);  
                         else if ( !NEXT(n) )  
                                 *bp = BDY(n);  
                         else  
                                 *bp = mkfnode(2,I_NARYOP,FA0(f),n);  
                 } else {                  } else {
                         *cp = (Num)ONE; *bp = f;                          *cp = (Num)ONE; *bp = f;
                 }                  }
Line 2408  void fnode_coef_body(FNODE f,Num *cp,FNODE *bp)
Line 2482  void fnode_coef_body(FNODE f,Num *cp,FNODE *bp)
                 *cp = (Num)ONE; *bp = f;                  *cp = (Num)ONE; *bp = f;
         }          }
 }  }
   
   int fnode_normalize_comp_pwr(FNODE f1,FNODE f2);
   
   int fnode_normalize_comp(FNODE f1,FNODE f2)
   {
           NODE n1,n2;
           int r,i1,i2;
           char *nm1,*nm2;
           FNODE b1,b2,e1,e2,g;
           Num ee,ee1,c1,c2;
   
           if ( IS_NARYADD(f1) || IS_NARYADD(f2) ) {
                   f1 = to_naryadd(f1); f2 = to_naryadd(f2);
                   n1 = (NODE)FA1(f1); n2 = (NODE)FA1(f2);
                   while ( n1 && n2 )
                           if ( r = fnode_normalize_comp(BDY(n1),BDY(n2)) ) return r;
                           else {
                                   n1 = NEXT(n1); n2 = NEXT(n2);
                           }
                   return n1?1:(n2?-1:0);
           }
           if ( IS_NARYMUL(f1) || IS_NARYMUL(f2) ) {
                   fnode_coef_body(f1,&c1,&b1);
                   fnode_coef_body(f2,&c2,&b2);
                   if ( !compfnode(b1,b2) ) return compnum(0,c1,c2);
                   b1 = to_narymul(b1); b2 = to_narymul(b2);
                   n1 = (NODE)FA1(b1); n2 = (NODE)FA1(b2);
                   while ( 1 ) {
                           while ( n1 && n2 && !compfnode(BDY(n1),BDY(n2)) ) {
                                   n1 = NEXT(n1); n2 = NEXT(n2);
                           }
                           if ( !n1 || !n2 ) {
                                   return n1?1:(n2?-1:0);
                           }
                           fnode_base_exp(BDY(n1),&b1,&e1);
                           fnode_base_exp(BDY(n2),&b2,&e2);
   
                           if ( r = fnode_normalize_comp(b1,b2) ) {
                                   if ( r > 0 )
                                           return fnode_normalize_comp(e1,mkfnode(1,I_FORMULA,0));
                                   else if ( r < 0 )
                                           return fnode_normalize_comp(mkfnode(1,I_FORMULA,0),e2);
                           } else {
                                   n1 = NEXT(n1); n2 = NEXT(n2);
                                   if ( fnode_is_number(e1) && fnode_is_number(e2) ) {
                                           /* f1 = t b^e1 ... , f2 = t b^e2 ... */
                                           subnum(0,eval(e1),eval(e2),&ee);
                                           r = compnum(0,ee,0);
                                           if ( r > 0 ) {
                                                   g = mkfnode(3,I_BOP,pwrfs,b1,mkfnode(1,I_FORMULA,ee));
                                                   MKNODE(n1,g,n1);
                                           } else if ( r < 0 ) {
                                                   chsgnnum(ee,&ee1);
                                                   g = mkfnode(3,I_BOP,pwrfs,b1,mkfnode(1,I_FORMULA,ee1));
                                                   MKNODE(n2,g,n2);
                                           }
                                   } else {
                                           r = fnode_normalize_comp(e1,e2);
                                           if ( r > 0 ) return 1;
                                           else if ( r < 0 ) return -1;
                                   }
                           }
                   }
           }
           if ( IS_BINARYPWR(f1) || IS_BINARYPWR(f2) )
                   return fnode_normalize_comp_pwr(f1,f2);
   
           /* now, IDs of f1 and f2 must be I_FORMULA, I_FUNC, or I_PVAR */
           switch ( f1->id ) {
                   case I_FORMULA:
                           switch ( f2->id ) {
                                   case I_FORMULA:
                                           return arf_comp(CO,FA0(f1),FA0(f2));
                                   case I_FUNC: case I_PVAR:
                                           return -1;
                                   default:
                                           error("fnode_normalize_comp : undefined");
                           }
                           break;
                   case I_FUNC:
                           switch ( f2->id ) {
                                   case I_FORMULA:
                                           return 1;
                                   case I_FUNC:
                                           nm1 = ((FUNC)FA0(f1))->name; nm2 = ((FUNC)FA0(f2))->name;
                                           r = strcmp(nm1,nm2);
                                           if ( r > 0 ) return 1;
                                           else if ( r < 0 ) return -1;
                                           else {
                                                   /* compare args */
                                                   n1 = FA0((FNODE)FA1(f1)); n2 = FA0((FNODE)FA1(f2));
                                                   while ( n1 && n2 )
                                                           if ( r = fnode_normalize_comp(BDY(n1),BDY(n2)) ) return r;
                                                           else {
                                                                   n1 = NEXT(n1); n2 = NEXT(n2);
                                                           }
                                                   return n1?1:(n2?-1:0);
                                           }
                                           break;
                                   case I_PVAR:
                                           return -1;
                                   default:
                                           error("fnode_normalize_comp : undefined");
                           }
                   case I_PVAR:
                           switch ( f2->id ) {
                                   case I_FORMULA: case I_FUNC:
                                           return 1;
                                   case I_PVAR:
                                           i1 = (int)FA0(f1); i2 = (int)FA0(f2);
                                           if ( i1 > i2 ) return 1;
                                           else if ( i1 < i2 ) return -1;
                                           else return 0;
                                   default:
                                           error("fnode_normalize_comp : undefined");
                           }
                           break;
                   default:
                           error("fnode_normalize_comp : undefined");
           }
   }
   
   int fnode_normalize_comp_pwr(FNODE f1,FNODE f2)
   {
           FNODE b1,b2,e1,e2;
           int r;
   
           fnode_base_exp(f1,&b1,&e1);
           fnode_base_exp(f2,&b2,&e2);
           if ( r = fnode_normalize_comp(b1,b2) ) {
                   if ( r > 0 )
                           return fnode_normalize_comp(e1,mkfnode(1,I_FORMULA,0));
                   else if ( r < 0 )
                           return fnode_normalize_comp(mkfnode(1,I_FORMULA,0),e2);
           } else return fnode_normalize_comp(e1,e2);
   }
   
   int fnode_normalize_unify(FNODE f,FNODE pat,NODE *rp)
   {
           NODE m,m1,m2,base,exp,fa,pa,n;
           LIST l;
           QUOTE qp,qf;
           FNODE fbase,fexp;
           FUNC ff,pf;
           int r;
   
           switch ( pat->id ) {
                   case I_PVAR:
                           /* [[pat,f]] */
                           MKQUOTE(qf,f);
                           MKQUOTE(qp,pat);
                           n = mknode(2,qp,qf); MKLIST(l,n);
                           *rp =  mknode(1,l);
                           return 1;
   
                   case I_FORMULA:
                           if ( !arf_comp(CO,(Obj)FA0(f),(Obj)FA0(pat)) ) {
                                   *rp = 0; return 1;
                           } else
                                   return 0;
   
                   case I_BOP:
                           /* OPNAME should be "^" */
                           if ( !IS_BINARYPWR(pat) )
                                   error("fnode_normalize_unify : invalid BOP");
                           if ( IS_BINARYPWR(f) ) {
                                   fbase = FA1(f); fexp = FA2(f);
                           } else {
                                   fbase = f; fexp = mkfnode(1,I_FORMULA,ONE);
                           }
                           r = fnode_normalize_unify(fbase,FA1(pat),&base);
                           if ( !r ) return 0;
                           r = fnode_normalize_unify(fexp,FA2(pat),&exp);
                           if ( !r ) return 0;
                           else return merge_matching_node(base,exp,rp);
                           break;
   
                   case I_FUNC:
                           if ( f->id != I_FUNC ) return 0;
                           ff = (FUNC)FA0(f); pf = (FUNC)FA0(pat);
                           if ( strcmp(ff->fullname,pf->fullname) ) return 0;
                           /* FA1(f) and FA1(pat) are I_LIST */
                           fa = (NODE)FA0((FNODE)FA1(f));
                           pa = (NODE)FA0((FNODE)FA1(pat));
                           m = 0;
                           while ( fa && pa ) {
                                   r = fnode_normalize_unify(BDY(fa),BDY(pa),&m1);
                                   if ( !r ) return 0;
                                   r = merge_matching_node(m,m1,&m2);
                                   if ( !r ) return 0;
                                   else m = m2;
                           }
                           if ( fa || pa ) return 0;
                           else {
                                   *rp = m;
                                   return 1;
                           }
   
                   case I_NARYOP:
                           if ( IS_NARYADD(pat) )
                                   return fnode_normalize_unify_naryadd(f,pat,rp);
                           else if ( IS_NARYMUL(pat) )
                                   return fnode_normalize_unify_narymul(f,pat,rp);
                           else
                                   error("fnode_normalize_unify : invalid NARYOP");
                           break;
   
                   default:
                           error("fnode_normalize_unify : invalid pattern");
           }
   }
   
   int fnode_normalize_unify_naryadd(FNODE f,FNODE pat,NODE *rp){}
   
   int fnode_normalize_unify_narymul(FNODE f,FNODE pat,NODE *rp){}
   
   /*
   int fnode_normalize_unify_naryadd(FNODE f,FNODE pat,NODE *rp)
   {
           int lf,lp;
   
           f = to_naryadd(f);
           lf = length((NODE)FA1(f));
           lp = length((NODE)FA1(pat));
           if ( lf < lp ) return 0;
           else if ( lp == 1 ) {
                   if ( lf == 1 )
                           return fnode_normalize_unify(
                                   BDY((NODE)FA1(f)),BDY((NODE)FA1(pat)),rp);
                   else
                           return 0;
           } else {
                   sel = (int *)ALLOCA(lf);
           }
   }
   */
   

Legend:
Removed from v.1.72  
changed lines
  Added in v.1.87

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>