[BACK]Return to user.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2000 / builtin

Annotation of OpenXM_contrib2/asir2000/builtin/user.c, Revision 1.4

1.4     ! noro        1: /* $OpenXM: OpenXM_contrib2/asir2000/builtin/user.c,v 1.3 2004/10/06 11:58:51 noro Exp $ */
1.1       noro        2:
                      3: /* a sample file for adding builtin functions */
                      4:
                      5: #include "ca.h"
                      6: #include "parse.h"
                      7:
                      8: void Ppartial_derivative();
                      9: void partial_derivative(VL vl,P p,V v,P *r);
1.2       noro       10: void Pzadd(),Pzsub(),Pzmul();
1.4     ! noro       11: void Pcomp_f();
1.1       noro       12:
                     13: struct ftab user_tab[] = {
                     14: /*
                     15:   {"partial_derivative",Ppartial_derivative,2},
                     16: */
1.2       noro       17:   {"zadd",Pzadd,2},
                     18:   {"zsub",Pzsub,2},
                     19:   {"zmul",Pzmul,2},
1.4     ! noro       20:   {"comp_f",Pcomp_f,2},
1.1       noro       21:   {0,0,0},
                     22: };
1.2       noro       23:
1.4     ! noro       24: /* compare two [[F,M],...] */
        !            25:
        !            26: void Pcomp_f(NODE arg,Q *rp)
        !            27: {
        !            28:   NODE l1,l2,e1,e2;
        !            29:   int m1,m2,r;
        !            30:
        !            31:   l1 = BDY((LIST)ARG0(arg));
        !            32:   l2 = BDY((LIST)ARG1(arg));
        !            33:   for ( ; l1 && l2; l1 = NEXT(l1), l2 = NEXT(l2) ) {
        !            34:     e1 = BDY((LIST)BDY(l1));
        !            35:     e2 = BDY((LIST)BDY(l2));
        !            36:     r = compp(CO,(P)ARG0(e1),(P)ARG0(e2));
        !            37:     if ( r ) { STOQ(r,*rp); return; }
        !            38:     m1 = QTOS((Q)ARG1(e1));
        !            39:     m2 = QTOS((Q)ARG1(e2));
        !            40:        r = m1>m2?1:(m1<m2?-1:0);
        !            41:        if ( r ) { STOQ(r,*rp); return; }
        !            42:   }
        !            43:   r = l1?1:(l2?-1:0);
        !            44:   STOQ(r,*rp);
        !            45: }
        !            46:
1.2       noro       47: void Pzadd(NODE arg,Q *rp)
                     48: {
1.3       noro       49:        Z z0,z1,z2;
1.2       noro       50:
                     51:        z0 = qtoz((Q)ARG0(arg));
                     52:        z1 = qtoz((Q)ARG1(arg));
                     53:        z2 = addz(z0,z1);
                     54:        printz(z2); printf(" ");
                     55:        *rp = ztoq(z2);
                     56: }
                     57:
                     58: void Pzsub(NODE arg,Q *rp)
                     59: {
1.3       noro       60:        Z z0,z1,z2;
1.2       noro       61:
                     62:        z0 = qtoz((Q)ARG0(arg));
                     63:        z1 = qtoz((Q)ARG1(arg));
                     64:        z2 = subz(z0,z1);
                     65:        printz(z2); printf(" ");
                     66:        *rp = ztoq(z2);
                     67: }
                     68:
                     69: void Pzmul(NODE arg,Q *rp)
                     70: {
1.3       noro       71:        Z z0,z1,z2;
1.2       noro       72:
                     73:        z0 = qtoz((Q)ARG0(arg));
                     74:        z1 = qtoz((Q)ARG1(arg));
                     75:        z2 = mulz(z0,z1);
                     76:        printz(z2); printf(" ");
                     77:        *rp = ztoq(z2);
                     78: }
1.1       noro       79:
                     80: /*
                     81: void Ppartial_derivative(NODE arg,P *rp)
                     82: {
                     83:   asir_assert(ARG0(arg),O_P,"partial_derivative");
                     84:   asir_assert(ARG1(arg),O_P,"partial_derivative");
                     85:   partial_derivative(CO,(P)ARG0(arg),((P)ARG1(arg))->v,rp);
                     86: }
                     87:
                     88: void partial_derivative(VL vl,P p,V v,P *r)
                     89: {
                     90:   P t;
                     91:   DCP dc,dcr,dcr0;
                     92:
                     93:   if ( !p || NUM(p) ) *r = 0;
                     94:   else if ( v == p->v ) {
                     95:     for ( dc = p->dc, dcr0 = 0; dc && dc->d; dc = dc->next ) {
                     96:       mulp(vl,dc->c,(P)dc->d,&t);
                     97:       if ( t ) {
                     98:         NEXTDC(dcr0,dcr); subq(dc->d,ONE,&dcr->d); dcr->c = t;
                     99:       }
                    100:     }
                    101:     if ( !dcr0 ) *r = 0;
                    102:     else { dcr->next = 0; MKP(v,dcr0,*r); }
                    103:   } else {
                    104:     for ( dc = p->dc, dcr0 = 0; dc; dc = dc->next ) {
                    105:       partial_derivative(vl,dc->c,v,&t);
                    106:       if ( t ) { NEXTDC(dcr0,dcr); dcr->d = dc->d; dcr->c = t; }
                    107:     }
                    108:     if ( !dcr0 ) *r = 0;
                    109:     else { dcr->next = 0; MKP(p->v,dcr0,*r); }
                    110:   }
                    111: }
                    112: */

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>