Annotation of OpenXM_contrib2/asir2000/engine/M.c, Revision 1.1.1.1
1.1 noro 1: /* $OpenXM: OpenXM/src/asir99/engine/M.c,v 1.1.1.1 1999/11/10 08:12:26 noro Exp $ */
2: #include "ca.h"
3: #include "base.h"
4:
5: void addum(mod,p1,p2,pr)
6: int mod;
7: UM p1,p2,pr;
8: {
9: register int *c1,*c2,*cr,i,dmax,dmin;
10:
11: if ( DEG(p1) == -1 ) {
12: cpyum(p2,pr);
13: return;
14: }
15: if ( DEG(p2) == -1 ) {
16: cpyum(p1,pr);
17: return;
18: }
19: if ( DEG(p1) >= DEG(p2) ) {
20: c1 = COEF(p1); c2 = COEF(p2); dmax = DEG(p1); dmin = DEG(p2);
21: } else {
22: c1 = COEF(p2); c2 = COEF(p1); dmax = DEG(p2); dmin = DEG(p1);
23: }
24: for ( i = 0, cr = COEF(pr); i <= dmin; i++ )
25: cr[i] = ( c1[i] + c2[i] ) % mod;
26: for ( ; i <= dmax; i++ )
27: cr[i] = c1[i];
28: if ( dmax == dmin )
29: degum(pr,dmax);
30: else
31: DEG(pr) = dmax;
32: }
33:
34: void subum(mod,p1,p2,pr)
35: int mod;
36: UM p1,p2,pr;
37: {
38: register int *c1,*c2,*cr,i;
39: int dmax,dmin;
40:
41: if ( DEG(p1) == -1 ) {
42: for ( i = DEG(pr) = DEG(p2), c2 = COEF(p2), cr = COEF(pr);
43: i >= 0; i-- )
44: cr[i] = ( mod - c2[i] ) % mod;
45: return;
46: }
47: if ( DEG(p2) == -1 ) {
48: cpyum(p1,pr);
49: return;
50: }
51: c1 = COEF(p1); c2 = COEF(p2); cr = COEF(pr);
52: if ( DEG(p1) >= DEG(p2) ) {
53: dmax = DEG(p1); dmin = DEG(p2);
54: for ( i = 0; i <= dmin; i++ )
55: cr[i] = ( c1[i] + mod - c2[i] ) % mod;
56: for ( ; i <= dmax; i++ )
57: cr[i] = c1[i];
58: } else {
59: dmax = DEG(p2); dmin = DEG(p1);
60: for ( i = 0; i <= dmin; i++ )
61: cr[i] = ( c1[i] + mod - c2[i] ) % mod;
62: for ( ; i <= dmax; i++ )
63: cr[i] = ( mod - c2[i] ) % mod;
64: }
65: if ( dmax == dmin )
66: degum(pr,dmax);
67: else
68: DEG(pr) = dmax;
69: }
70:
71: void pwrum(mod,p,e,pr)
72: int mod,e;
73: UM p,pr;
74: {
75: UM wt,ws;
76:
77: if ( e == 0 ) {
78: DEG(pr) = 0; COEF(pr)[0] = 1;
79: } else if ( DEG(p) < 0 )
80: DEG(pr) = -1;
81: else if ( e == 1 )
82: cpyum(p,pr);
83: else if ( DEG(p) == 0 ) {
84: DEG(pr) = 0; COEF(pr)[0] = pwrm(mod,COEF(p)[0],e);
85: } else {
86: wt = W_UMALLOC(DEG(p)*e); ws = W_UMALLOC(DEG(p)*e);
87: pwrum(mod,p,e/2,wt);
88: if ( !(e%2) )
89: mulum(mod,wt,wt,pr);
90: else {
91: mulum(mod,wt,wt,ws); mulum(mod,ws,p,pr);
92: }
93: }
94: }
95:
96: void gcdum(mod,p1,p2,pr)
97: register int mod;
98: UM p1,p2,pr;
99: {
100: register int inv;
101: UM t1,t2,q,tum;
102: int drem;
103:
104: if ( DEG(p1) < 0 )
105: cpyum(p2,pr);
106: else if ( DEG(p2) < 0 )
107: cpyum(p1,pr);
108: else {
109: if ( DEG(p1) >= DEG(p2) ) {
110: t1 = p1; t2 = p2;
111: } else {
112: t1 = p2; t2 = p1;
113: }
114: q = W_UMALLOC(DEG(t1));
115: while ( ( drem = divum(mod,t1,t2,q) ) >= 0 ) {
116: tum = t1; t1 = t2; t2 = tum; DEG(t2) = drem;
117: }
118: inv = invm(COEF(t2)[DEG(t2)],mod);
119: mulsum(mod,t2,inv,pr);
120: }
121: }
122:
123: void eucum(mod,f1,f2,a,b)
124: register int mod;
125: UM f1,f2,a,b;
126: {
127: UM g1,g2,a1,a2,a3,wm,q,tum;
128: int d,dr;
129:
130: d = DEG(f1) + DEG(f2) + 10;
131: g1 = W_UMALLOC(d); g2 = W_UMALLOC(d); a1 = W_UMALLOC(d);
132: a2 = W_UMALLOC(d); a3 = W_UMALLOC(d); wm = W_UMALLOC(d);
133: q = W_UMALLOC(d);
134: DEG(a1) = 0; COEF(a1)[0] = 1; DEG(a2) = -1;
135: cpyum(f1,g1); cpyum(f2,g2);
136: while ( 1 ) {
137: dr = divum(mod,g1,g2,q); tum = g1; g1 = g2; g2 = tum;
138: if ( ( DEG(g2) = dr ) == -1 )
139: break;
140: mulum(mod,a2,q,wm); subum(mod,a1,wm,a3); dr = divum(mod,a3,f2,q);
141: tum = a1; a1 = a2; a2 = a3; a3 = tum; DEG(a3) = dr;
142: }
143: if ( COEF(g1)[0] != 1 )
144: mulsum(mod,a2,invm(COEF(g1)[0],mod),a);
145: else
146: cpyum(a2,a);
147: mulum(mod,a,f1,wm);
148: if ( DEG(wm) >= 0 )
149: COEF(wm)[0] = ( COEF(wm)[0] + mod - 1 ) % mod;
150: else {
151: DEG(wm) = 0; COEF(wm)[0] = mod - 1;
152: }
153: divum(mod,wm,f2,q); mulsum(mod,q,mod-1,b);
154: }
155:
156: void sqfrum(index,count,f,nindex,dcr,pl)
157: int index,count,*nindex;
158: P f;
159: struct oDUM **dcr;
160: ML *pl;
161: {
162: int i,j,m,n,d,dt,mod;
163: UM wf,wdf,ws,wt,wgcd,mf,mgcd;
164: UM *l;
165: struct oDUM *dc;
166: ML tp;
167:
168: n = UDEG(f);
169: wf = W_UMALLOC(n);
170: wdf = W_UMALLOC(n);
171: ws = W_UMALLOC(n);
172: wt = W_UMALLOC(n);
173: wgcd = W_UMALLOC(n);
174:
175: mf = W_UMALLOC(n);
176: mgcd = W_UMALLOC(n);
177:
178: for ( j = 0, d = n; j < count && d; ) {
179: m = lprime[index++];
180: if ( !m )
181: error("sqfrum : lprime[] exhausted.");
182: if ( rem(NM((Q)COEF(DC(f))),m) == 0 ) continue;
183:
184: ptoum(m,f,wf);
185: diffum(m,wf,wdf);
186: cpyum(wf,wt); cpyum(wdf,ws);
187: gcdum(m,wt,ws,wgcd);
188: dt = DEG(wgcd);
189:
190: if ( dt < d ) {
191: d = dt;
192: mod = m;
193: cpyum(wf,mf); cpyum(wgcd,mgcd);
194: }
195: j++;
196: }
197: *nindex = index;
198:
199: sqfrummain(mod,mf,mgcd,&dc);
200: *dcr = dc;
201:
202: for ( n = 0; dc[n].f; n++ );
203: *pl = tp = MLALLOC(n+1);
204: tp->n = n;
205: tp->mod = mod;
206:
207: for ( i = 0, l = (UM *)COEF(tp); dc[i].f; i++ ) {
208: l[i] = UMALLOC(DEG(dc[i].f)*dc[i].n);
209: pwrum(mod,dc[i].f,dc[i].n,l[i]);
210: }
211: l[i] = 0;
212: }
213:
214: void sqfrummain(mod,p,gcd,dcp)
215: int mod;
216: UM p,gcd;
217: struct oDUM **dcp;
218: {
219: int i,j,n;
220: UM wp,wdp,wc,wd,ws,wt,wq;
221: struct oDUM *dc;
222: UM *f;
223:
224: i = DEG(p);
225:
226: wp = W_UMALLOC(i);
227: wdp = W_UMALLOC(i);
228: wt = W_UMALLOC(i);
229: ws = W_UMALLOC(i);
230: wc = W_UMALLOC(i);
231: wd = W_UMALLOC(i);
232: wq = W_UMALLOC(i);
233:
234: f = (UM *) ALLOCA((i+2)*sizeof(UM));
235:
236: cpyum(p,wp);
237: diffum(mod,wp,wdp);
238:
239: cpyum(wp,wt);
240: divum(mod,wt,gcd,wc);
241:
242: cpyum(wdp,wt);
243: divum(mod,wt,gcd,ws);
244:
245: diffum(mod,wc,wt);
246: subum(mod,ws,wt,wd);
247:
248: for ( i = 1; DEG(wd) >= 0; i++ ) {
249: cpyum(wc,ws); cpyum(wd,wt);
250: gcdum(mod,ws,wt,wq);
251: if ( DEG(wq) > 0 ) {
252: f[i] = UMALLOC(DEG(wq));
253: cpyum(wq,f[i]);
254:
255: cpyum(wc,ws);
256: divum(mod,ws,f[i],wc);
257: divum(mod,wd,f[i],ws);
258: diffum(mod,wc,wt);
259: subum(mod,ws,wt,wd);
260: } else {
261: f[i] = 0;
262: cpyum(wd,ws);
263: diffum(mod,wc,wt);
264: subum(mod,ws,wt,wd);
265: }
266:
267: }
268:
269: if ( DEG(wc) > 0 ) {
270: DEG(wq) = 0;
271: COEF(wq)[0] = invm(COEF(wc)[DEG(wc)],mod);
272: f[i] = UMALLOC(DEG(wc));
273: mulum(mod,wc,wq,f[i]);
274: f[i+1] = 0;
275: n = i + 1;
276: } else {
277: f[i] = 0;
278: n = i;
279: }
280:
281: for ( i = 1, j = 0; i < n; i++ )
282: if ( f[i] ) j++;
283:
284: *dcp = dc = (struct oDUM *) CALLOC(j+1,sizeof(struct oDUM));
285:
286: for ( i = 1, j = 0; i < n; i++ )
287: if ( f[i] ) {
288: dc[j].n = i;
289: dc[j].f = f[i];
290: j++;
291: }
292: dc[j].n = 0;
293: dc[j].f = 0;
294: }
295:
296: void cpyum(p1,p2)
297: UM p1,p2;
298: {
299: register int *c1,*c2,i;
300:
301: for ( i = DEG(p2) = DEG(p1), c1 = COEF(p1), c2 = COEF(p2);
302: i >= 0; i-- )
303: c2[i] = c1[i];
304: }
305:
306: void degum(f,n)
307: UM f;
308: int n;
309: {
310: register int i,*c;
311:
312: for ( i = n, c = COEF(f); ( i >= 0 ) && ( c[i] == 0 ); i-- );
313: DEG(f) = i;
314: }
315:
316: int deg(v,p)
317: V v;
318: P p;
319: {
320: if ( !p )
321: return ( -1 );
322: else if ( NUM(p) )
323: return ( 0 );
324: else if ( VR(p) != v )
325: return ( 0 );
326: else if ( PL(NM(DEG(DC(p)))) > 1 ) {
327: error("degree too large");
328: return ( -1 );
329: } else
330: return ( UDEG(p) );
331: }
332:
333: LUM LUMALLOC(n,bound)
334: int n,bound;
335: {
336: LUM p;
337: int **c;
338: int i;
339:
340: p = (LUM)MALLOC(TRUESIZE(oLUM,n,int *));
341: DEG(p) = n;
342: for ( i = 0, c = (int **)COEF(p); i <= n; i++ ) {
343: c[i] = (int *)MALLOC_ATOMIC((bound+1)*sizeof(int));
344: bzero((char *)c[i],(bound+1)*sizeof(int));
345: }
346: return p;
347: }
348:
349: void mullum(mod,n,f1,f2,fr)
350: int mod,n;
351: LUM f1,f2,fr;
352: {
353: int max;
354: register int i,j,**p1,**p2,*px;
355: int *w,*w1,*w2;
356:
357: p1 = (int **)COEF(f1); p2 = (int **)COEF(f2);
358: w = W_ALLOC(2*(n+1)); w1 = W_ALLOC(DEG(f1)); w2 = W_ALLOC(DEG(f2));
359: for ( i = DEG(f1); i >= 0; i-- ) {
360: for ( j = n - 1, px = p1[i]; ( j >= 0 ) && ( px[j] == 0 ); j-- );
361: w1[i] = ( j == -1 ? 0 : 1 );
362: }
363: for ( i = DEG(f2); i >= 0; i-- ) {
364: for ( j = n - 1, px = p2[i]; ( j >= 0 ) && ( px[j] == 0 ); j-- );
365: w2[i] = ( j == -1 ? 0 : 1 );
366: }
367: for ( j = DEG(fr) = DEG(f1) + DEG(f2); j >= 0; j-- ) {
368: for ( i = n - 1, px = COEF(fr)[j]; i >= 0; i-- )
369: px[i] = 0;
370: for ( max = MIN(DEG(f1),j), i = MAX(0,j-DEG(f2)); i <= max; i++ )
371: if ( w1[i] != 0 && w2[j - i] != 0 ) {
372: mulpadic(mod,n,p1[i],p2[j - i],w); addpadic(mod,n,w,px);
373: }
374: }
375: }
376:
377: void cpylum(bound,p,r)
378: int bound;
379: LUM p,r;
380: {
381: register int i,j;
382: register int **pp,**ppr;
383:
384: DEG(r) = DEG(p);
385: for ( i = 0, pp = COEF(p), ppr = COEF(r);
386: i <= DEG(p); i++ )
387: for ( j = 0; j < bound; j++ )
388: ppr[i][j] = pp[i][j];
389: }
390:
391: void pwrlum(mod,bound,p,n,r)
392: int mod,bound,n;
393: LUM p,r;
394: {
395: LUM t,s;
396:
397: if ( n == 0 ) {
398: DEG(r) = 0;
399: COEF(r)[0][0] = 1;
400: } else if ( DEG(p) < 0 )
401: DEG(r) = -1;
402: else if ( n == 1 )
403: cpylum(bound,p,r);
404: else {
405: W_LUMALLOC(DEG(p)*n,bound,t);
406: pwrlum(mod,bound,p,n/2,t);
407: if ( !(n%2) )
408: mullum(mod,bound,t,t,r);
409: else {
410: W_LUMALLOC(DEG(p)*n,bound,s);
411: mullum(mod,bound,t,t,s);
412: mullum(mod,bound,s,p,r);
413: }
414: }
415: }
416:
417: int **almat(n,m)
418: int n,m;
419: {
420: int **mat,i;
421:
422: mat = (int **)MALLOC(n*sizeof(int *));
423: for ( i = 0; i < n; i++ )
424: mat[i] = (int *)CALLOC(m,sizeof(int));
425: return mat;
426: }
427:
428: void mini(mod,f,fr)
429: register int mod;
430: UM f,fr;
431: {
432: register int i,j,**c,*ptr;
433: int d,dr,dm,n;
434: UM w,q;
435:
436: n = DEG(f); c = (int **)ALLOCA(n*sizeof(int *));
437: for ( i = 0; i < n; i++ ) {
438: c[i] = (int *)ALLOCA(n*sizeof(int));
439: bzero((char *)c[i],(int)(n*sizeof(int)));
440: }
441: w = W_UMALLOC( mod + n + 10 ); q = W_UMALLOC( mod + n + 10 );
442: for ( i = 1; ( d = ( mod * i ) ) < n; i++ ) c[d][i - 1] = 1;
443: DEG(w) = d;
444: for ( j = 0; j < d; j++ )
445: COEF(w)[j] = 0;
446: COEF(w)[d] = 1;
447: for ( ; (i < n) && ((dr = divum(mod,w,f,q)) >= 0); i++ ) {
448: for ( j = dr; j >= 0; j-- )
449: COEF(w)[j + mod] = c[j][i - 1] = COEF(w)[j];
450: for ( j = mod - 1; j >= 0; j-- )
451: COEF(w)[j] = 0;
452: DEG(w) = dr + mod;
453: }
454: for ( i = 1; i < n; i++ )
455: c[i][i - 1] = ( c[i][i - 1] + mod - 1 ) % mod;
456: if ( ( dm = minimain(mod,n,n - 1,c) ) != -1 )
457: for ( i = 0, ptr = COEF(fr), ptr[0] = 0; i <= dm; i++ )
458: ptr[i + 1] = c[0][i];
459: else
460: COEF(fr)[0] = 1;
461: DEG(fr) = dm + 1;
462: }
463:
464: int minimain(mod,n,m,c)
465: register int mod;
466: int n,m;
467: register int **c;
468: {
469: register int *ptr,*ci,*p;
470: register int i,l,a,j,b,inv;
471: int *tmp;
472:
473: for ( j = 0; j < m; j++ ) {
474: for ( i = j; (n > i) && !c[i][j]; i++ );
475: if ( i == n ) {
476: for ( i = j, j = j - 1; j >= 0; j-- )
477: c[0][j] = c[j][i];
478: c[0][i] = mod - 1;
479: return( i );
480: }
481: if ( i != j ) {
482: tmp = c[i]; c[i] = c[j]; c[j] = tmp;
483: }
484: ptr = c[j]; inv = invm((ptr[j] + mod) % mod,mod);
485: for ( l = j, p = ptr+l; l < m; l++ ) {
486: a = (*p * inv) % mod;
487: *p++ = (a<0?a+mod:a);
488: }
489: for ( i = 0; i < n; i++ )
490: if ( (a = -c[i][j]) && (i != j) ) {
491: for ( l = j+1, p = ptr+l, ci = c[i]+l; l < m; l++ ) {
492: b = (*p++ * a + *ci) % mod;
493: *ci++ = (b<0?b+mod:b);
494: }
495: c[i][j] = 0;
496: }
497: }
498: return (-1);
499: }
500:
501: #if defined(__GNUC__) || defined(THINK_C)
502: const
503: #endif
504: int sprime[] = {
505: 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,
506: 53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,
507: 127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,
508: 199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,
509: 283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,
510: 383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,
511: 467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,
512: 577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,
513: 661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,
514: 769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,
515: 877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,
516: 983,991,997,1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,
517: 1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,
518: 1193,1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,
519: 1297,1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,
520: 1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,
521: 1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597,1601,1607,1609,1613,
522: 1619,1621,1627,1637,1657,1663,1667,1669,1693,1697,1699,1709,1721,1723,1733,
523: 1741,1747,1753,1759,1777,1783,1787,1789,1801,1811,1823,1831,1847,1861,1867,
524: 1871,1873,1877,1879,1889,1901,1907,1913,1931,1933,1949,1951,1973,1979,1987,
525: 1993,1997,1999,2003,2011,2017,2027,2029,2039,2053,2063,2069,2081,2083,2087,
526: 2089,2099,2111,2113,2129,2131,2137,2141,2143,2153,2161,2179,2203,2207,2213,
527: 2221,2237,2239,2243,2251,2267,2269,2273,2281,2287,2293,2297,2309,2311,2333,
528: 2339,2341,2347,2351,2357,2371,2377,2381,2383,2389,2393,2399,2411,2417,2423,
529: 2437,2441,2447,2459,2467,2473,2477,2503,2521,2531,2539,2543,2549,2551,2557,
530: 2579,2591,2593,2609,2617,2621,2633,2647,2657,2659,2663,2671,2677,2683,2687,
531: 2689,2693,2699,2707,2711,2713,2719,2729,2731,2741,2749,2753,2767,2777,2789,
532: 2791,2797,2801,2803,2819,2833,2837,2843,2851,2857,2861,2879,2887,2897,2903,
533: 2909,2917,2927,2939,2953,2957,2963,2969,2971,2999,3001,3011,3019,3023,3037,
534: 3041,3049,3061,3067,3079,3083,3089,3109,3119,3121,3137,3163,3167,3169,3181,
535: 3187,3191,3203,3209,3217,3221,3229,3251,3253,3257,3259,3271,3299,3301,3307,
536: 3313,3319,3323,3329,3331,3343,3347,3359,3361,3371,3373,3389,3391,3407,3413,
537: 3433,3449,3457,3461,3463,3467,3469,3491,3499,3511,3517,3527,3529,3533,3539,
538: 3541,3547,3557,3559,3571,3581,3583,3593,3607,3613,3617,3623,3631,3637,3643,
539: 3659,3671,3673,3677,3691,3697,3701,3709,3719,3727,3733,3739,3761,3767,3769,
540: 3779,3793,3797,3803,3821,3823,3833,3847,3851,3853,3863,3877,3881,3889,3907,
541: 3911,3917,3919,3923,3929,3931,3943,3947,3967,3989,4001,4003,4007,4013,4019,
542: 4021,4027,4049,4051,4057,4073,4079,4091,4093,4099,4111,4127,4129,4133,4139,
543: 4153,4157,4159,4177,4201,4211,4217,4219,4229,4231,4241,4243,4253,4259,4261,
544: 4271,4273,4283,4289,4297,4327,4337,4339,4349,4357,4363,4373,4391,4397,4409,
545: 4421,4423,4441,4447,4451,4457,4463,4481,4483,4493,4507,4513,4517,4519,4523,
546: 4547,4549,4561,4567,4583,4591,4597,4603,4621,4637,4639,4643,4649,4651,4657,
547: 4663,4673,4679,4691,4703,4721,4723,4729,4733,4751,4759,4783,4787,4789,4793,
548: 4799,4801,4813,4817,4831,4861,4871,4877,4889,4903,4909,4919,4931,4933,4937,
549: 4943,4951,4957,4967,4969,4973,4987,4993,4999,5003,5009,5011,5021,5023,5039,
550: 5051,5059,5077,5081,5087,5099,5101,5107,5113,5119,5147,5153,5167,5171,5179,
551: 5189,5197,5209,5227,5231,5233,5237,5261,5273,5279,5281,5297,5303,5309,5323,
552: 5333,5347,5351,5381,5387,5393,5399,5407,5413,5417,5419,5431,5437,5441,5443,
553: 5449,5471,5477,5479,5483,5501,5503,5507,5519,5521,5527,5531,5557,5563,5569,
554: 5573,5581,5591,5623,5639,5641,5647,5651,5653,5657,5659,5669,5683,5689,5693,
555: 5701,5711,5717,5737,5741,5743,5749,5779,5783,5791,5801,5807,5813,5821,5827,
556: 5839,5843,5849,5851,5857,5861,5867,5869,5879,5881,5897,5903,5923,5927,5939,
557: 5953,5981,5987,6007,6011,6029,6037,6043,6047,6053,6067,6073,6079,6089,6091,
558: 6101,6113,6121,6131,6133,6143,6151,6163,6173,6197,6199,6203,6211,6217,6221,
559: 6229,6247,6257,6263,6269,6271,6277,6287,6299,6301,6311,6317,6323,6329,6337,
560: 6343,6353,6359,6361,6367,6373,6379,6389,6397,6421,6427,6449,6451,6469,6473,
561: 6481,6491,6521,6529,6547,6551,6553,6563,6569,6571,6577,6581,6599,6607,6619,
562: 6637,6653,6659,6661,6673,6679,6689,6691,6701,6703,6709,6719,6733,6737,6761,
563: 6763,6779,6781,6791,6793,6803,6823,6827,6829,6833,6841,6857,6863,6869,6871,
564: 6883,6899,6907,6911,6917,6947,6949,6959,6961,6967,6971,6977,6983,6991,6997,
565: 7001,7013,7019,7027,7039,7043,7057,7069,7079,7103,7109,7121,7127,7129,7151,
566: 7159,7177,7187,7193,7207,7211,7213,7219,7229,7237,7243,7247,7253,7283,7297,
567: 7307,7309,7321,7331,7333,7349,7351,7369,7393,7411,7417,7433,7451,7457,7459,
568: 7477,7481,7487,7489,7499,7507,7517,7523,7529,7537,7541,7547,7549,7559,7561,
569: 7573,7577,7583,7589,7591,7603,7607,7621,7639,7643,7649,7669,7673,7681,7687,
570: 7691,7699,7703,7717,7723,7727,7741,7753,7757,7759,7789,7793,7817,7823,7829,
571: 7841,7853,7867,7873,7877,7879,7883,7901,7907,7919,7927,7933,7937,7949,7951,
572: 7963,7993,8009,8011,8017,8039,8053,8059,8069,8081,8087,8089,8093,8101,8111,
573: 8117,8123,8147,8161,8167,8171,8179,8191,8209,8219,8221,8231,8233,8237,8243,
574: 8263,8269,8273,8287,8291,8293,8297,8311,8317,8329,8353,8363,8369,8377,8387,
575: 8389,8419,8423,8429,8431,8443,8447,8461,8467,8501,8513,8521,8527,8537,8539,
576: 8543,8563,8573,8581,8597,8599,8609,8623,8627,8629,8641,8647,8663,8669,8677,
577: 8681,8689,8693,8699,8707,8713,8719,8731,8737,8741,8747,8753,8761,8779,8783,
578: 8803,8807,8819,8821,8831,8837,8839,8849,8861,8863,8867,8887,8893,8923,8929,
579: 8933,8941,8951,8963,8969,8971,8999,9001,9007,9011,9013,9029,9041,9043,9049,
580: 9059,9067,9091,9103,9109,9127,9133,9137,9151,9157,9161,9173,9181,9187,9199,
581: 9203,9209,9221,9227,9239,9241,9257,9277,9281,9283,9293,9311,9319,9323,9337,
582: 9341,9343,9349,9371,9377,9391,9397,9403,9413,9419,9421,9431,9433,9437,9439,
583: 9461,9463,9467,9473,9479,9491,9497,9511,9521,9533,9539,9547,9551,9587,9601,
584: 9613,9619,9623,9629,9631,9643,9649,9661,9677,9679,9689,9697,9719,9721,9733,
585: 9739,9743,9749,9767,9769,9781,9787,9791,9803,9811,9817,9829,9833,9839,9851,
586: 9857,9859,9871,9883,9887,9901,9907,9923,9929,9931,9941,9949,9967,9973,10007,
587: 10009,10037,10039,10061,10067,10069,10079,10091,10093,10099,
588: 10103,10111,10133,10139,10141,10151,10159,10163,10169,10177,
589: 10181,10193,10211,10223,10243,10247,10253,10259,10267,10271,
590: 10273,10289,10301,10303,10313,10321,10331,10333,10337,10343,
591: 10357,10369,10391,10399,10427,10429,10433,10453,10457,10459,
592: 10463,10477,10487,10499,10501,10513,10529,10531,10559,10567,
593: 10589,10597,10601,10607,10613,10627,10631,10639,10651,10657,
594: 10663,10667,10687,10691,10709,10711,10723,10729,10733,10739,
595: 10753,10771,10781,10789,10799,10831,10837,10847,10853,10859,
596: 10861,10867,10883,10889,10891,10903,10909,10937,10939,10949,
597: 10957,10973,10979,10987,10993,11003,11027,11047,11057,11059,
598: 11069,11071,11083,11087,11093,11113,11117,11119,11131,11149,
599: 11159,11161,11171,11173,11177,11197,11213,11239,11243,11251,
600: 11257,11261,11273,11279,11287,11299,11311,11317,11321,11329,
601: 11351,11353,11369,11383,11393,11399,11411,11423,11437,11443,
602: 11447,11467,11471,11483,11489,11491,11497,11503,11519,11527,
603: 11549,11551,11579,11587,11593,11597,11617,11621,11633,11657,
604: 11677,11681,11689,11699,11701,11717,11719,11731,11743,11777,
605: 11779,11783,11789,11801,11807,11813,11821,11827,11831,11833,
606: 11839,11863,11867,11887,11897,11903,11909,11923,11927,11933,
607: 11939,11941,11953,11959,11969,11971,11981,11987,12007,12011,
608: 12037,12041,12043,12049,12071,12073,12097,12101,12107,12109,
609: 12113,12119,12143,12149,12157,12161,12163,12197,12203,12211,
610: 12227,12239,12241,12251,12253,12263,12269,12277,12281,12289,
611: 12301,12323,12329,12343,12347,12373,12377,12379,12391,12401,
612: 12409,12413,12421,12433,12437,12451,12457,12473,12479,12487,
613: 12491,12497,12503,12511,12517,12527,12539,12541,12547,12553,
614: 12569,12577,12583,12589,12601,12611,12613,12619,12637,12641,
615: 12647,12653,12659,12671,12689,12697,12703,12713,12721,12739,
616: 12743,12757,12763,12781,12791,12799,12809,12821,12823,12829,
617: 12841,12853,12889,12893,12899,12907,12911,12917,12919,12923,
618: 12941,12953,12959,12967,12973,12979,12983,13001,13003,13007,
619: 13009,13033,13037,13043,13049,13063,13093,13099,13103,13109,
620: 13121,13127,13147,13151,13159,13163,13171,13177,13183,13187,
621: 13217,13219,13229,13241,13249,13259,13267,13291,13297,13309,
622: 13313,13327,13331,13337,13339,13367,13381,13397,13399,13411,
623: 13417,13421,13441,13451,13457,13463,13469,13477,13487,13499,
624: 13513,13523,13537,13553,13567,13577,13591,13597,13613,13619,
625: 13627,13633,13649,13669,13679,13681,13687,13691,13693,13697,
626: 13709,13711,13721,13723,13729,13751,13757,13759,13763,13781,
627: 13789,13799,13807,13829,13831,13841,13859,13873,13877,13879,
628: 13883,13901,13903,13907,13913,13921,13931,13933,13963,13967,
629: 13997,13999,14009,14011,14029,14033,14051,14057,14071,14081,
630: 14083,14087,14107,14143,14149,14153,14159,14173,14177,14197,
631: 14207,14221,14243,14249,14251,14281,14293,14303,14321,14323,
632: 14327,14341,14347,14369,14387,14389,14401,14407,14411,14419,
633: 14423,14431,14437,14447,14449,14461,14479,14489,14503,14519,
634: 14533,14537,14543,14549,14551,14557,14561,14563,14591,14593,
635: 14621,14627,14629,14633,14639,14653,14657,14669,14683,14699,
636: 14713,14717,14723,14731,14737,14741,14747,14753,14759,14767,
637: 14771,14779,14783,14797,14813,14821,14827,14831,14843,14851,
638: 14867,14869,14879,14887,14891,14897,14923,14929,14939,14947,
639: 14951,14957,14969,14983,15013,15017,15031,15053,15061,15073,
640: 15077,15083,15091,15101,15107,15121,15131,15137,15139,15149,
641: 15161,15173,15187,15193,15199,15217,15227,15233,15241,15259,
642: 15263,15269,15271,15277,15287,15289,15299,15307,15313,15319,
643: 15329,15331,15349,15359,15361,15373,15377,15383,15391,15401,
644: 15413,15427,15439,15443,15451,15461,15467,15473,15493,15497,
645: 15511,15527,15541,15551,15559,15569,15581,15583,15601,15607,
646: 15619,15629,15641,15643,15647,15649,15661,15667,15671,15679,
647: 15683,15727,15731,15733,15737,15739,15749,15761,15767,15773,
648: 15787,15791,15797,15803,15809,15817,15823,15859,15877,15881,
649: 15887,15889,15901,15907,15913,15919,15923,15937,15959,15971,
650: 15973,15991,16001,16007,16033,16057,16061,16063,16067,16069,
651: 16073,16087,16091,16097,16103,16111,16127,16139,16141,16183,
652: 16187,16189,16193,16217,16223,16229,16231,16249,16253,16267,
653: 16273,16301,16319,16333,16339,16349,16361,16363,16369,16381,
654: 0
655: };
656:
657: #include "prime.h"
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>