Annotation of OpenXM_contrib2/asir2000/engine/M.c, Revision 1.8
1.2 noro 1: /*
2: * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
3: * All rights reserved.
4: *
5: * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
6: * non-exclusive and royalty-free license to use, copy, modify and
7: * redistribute, solely for non-commercial and non-profit purposes, the
8: * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
9: * conditions of this Agreement. For the avoidance of doubt, you acquire
10: * only a limited right to use the SOFTWARE hereunder, and FLL or any
11: * third party developer retains all rights, including but not limited to
12: * copyrights, in and to the SOFTWARE.
13: *
14: * (1) FLL does not grant you a license in any way for commercial
15: * purposes. You may use the SOFTWARE only for non-commercial and
16: * non-profit purposes only, such as academic, research and internal
17: * business use.
18: * (2) The SOFTWARE is protected by the Copyright Law of Japan and
19: * international copyright treaties. If you make copies of the SOFTWARE,
20: * with or without modification, as permitted hereunder, you shall affix
21: * to all such copies of the SOFTWARE the above copyright notice.
22: * (3) An explicit reference to this SOFTWARE and its copyright owner
23: * shall be made on your publication or presentation in any form of the
24: * results obtained by use of the SOFTWARE.
25: * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
1.3 noro 26: * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
1.2 noro 27: * for such modification or the source code of the modified part of the
28: * SOFTWARE.
29: *
30: * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
31: * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
32: * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
33: * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
34: * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
35: * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
36: * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
37: * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
38: * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
39: * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
40: * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
41: * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
42: * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
43: * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
44: * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
45: * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
46: * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
47: *
1.8 ! noro 48: * $OpenXM: OpenXM_contrib2/asir2000/engine/M.c,v 1.7 2001/06/25 04:11:42 noro Exp $
1.2 noro 49: */
1.1 noro 50: #include "ca.h"
51: #include "base.h"
52:
53: void addum(mod,p1,p2,pr)
54: int mod;
55: UM p1,p2,pr;
56: {
57: register int *c1,*c2,*cr,i,dmax,dmin;
58:
59: if ( DEG(p1) == -1 ) {
60: cpyum(p2,pr);
61: return;
62: }
63: if ( DEG(p2) == -1 ) {
64: cpyum(p1,pr);
65: return;
66: }
67: if ( DEG(p1) >= DEG(p2) ) {
68: c1 = COEF(p1); c2 = COEF(p2); dmax = DEG(p1); dmin = DEG(p2);
69: } else {
70: c1 = COEF(p2); c2 = COEF(p1); dmax = DEG(p2); dmin = DEG(p1);
71: }
72: for ( i = 0, cr = COEF(pr); i <= dmin; i++ )
73: cr[i] = ( c1[i] + c2[i] ) % mod;
74: for ( ; i <= dmax; i++ )
75: cr[i] = c1[i];
76: if ( dmax == dmin )
77: degum(pr,dmax);
78: else
79: DEG(pr) = dmax;
80: }
81:
82: void subum(mod,p1,p2,pr)
83: int mod;
84: UM p1,p2,pr;
85: {
86: register int *c1,*c2,*cr,i;
87: int dmax,dmin;
88:
89: if ( DEG(p1) == -1 ) {
90: for ( i = DEG(pr) = DEG(p2), c2 = COEF(p2), cr = COEF(pr);
91: i >= 0; i-- )
92: cr[i] = ( mod - c2[i] ) % mod;
93: return;
94: }
95: if ( DEG(p2) == -1 ) {
96: cpyum(p1,pr);
97: return;
98: }
99: c1 = COEF(p1); c2 = COEF(p2); cr = COEF(pr);
100: if ( DEG(p1) >= DEG(p2) ) {
101: dmax = DEG(p1); dmin = DEG(p2);
102: for ( i = 0; i <= dmin; i++ )
103: cr[i] = ( c1[i] + mod - c2[i] ) % mod;
104: for ( ; i <= dmax; i++ )
105: cr[i] = c1[i];
106: } else {
107: dmax = DEG(p2); dmin = DEG(p1);
108: for ( i = 0; i <= dmin; i++ )
109: cr[i] = ( c1[i] + mod - c2[i] ) % mod;
110: for ( ; i <= dmax; i++ )
111: cr[i] = ( mod - c2[i] ) % mod;
112: }
113: if ( dmax == dmin )
114: degum(pr,dmax);
115: else
116: DEG(pr) = dmax;
117: }
118:
119: void pwrum(mod,p,e,pr)
120: int mod,e;
121: UM p,pr;
122: {
123: UM wt,ws;
124:
125: if ( e == 0 ) {
126: DEG(pr) = 0; COEF(pr)[0] = 1;
127: } else if ( DEG(p) < 0 )
128: DEG(pr) = -1;
129: else if ( e == 1 )
130: cpyum(p,pr);
131: else if ( DEG(p) == 0 ) {
132: DEG(pr) = 0; COEF(pr)[0] = pwrm(mod,COEF(p)[0],e);
133: } else {
134: wt = W_UMALLOC(DEG(p)*e); ws = W_UMALLOC(DEG(p)*e);
135: pwrum(mod,p,e/2,wt);
136: if ( !(e%2) )
137: mulum(mod,wt,wt,pr);
138: else {
139: mulum(mod,wt,wt,ws); mulum(mod,ws,p,pr);
140: }
141: }
142: }
143:
144: void gcdum(mod,p1,p2,pr)
145: register int mod;
146: UM p1,p2,pr;
147: {
148: register int inv;
149: UM t1,t2,q,tum;
150: int drem;
151:
152: if ( DEG(p1) < 0 )
153: cpyum(p2,pr);
154: else if ( DEG(p2) < 0 )
155: cpyum(p1,pr);
156: else {
157: if ( DEG(p1) >= DEG(p2) ) {
158: t1 = p1; t2 = p2;
159: } else {
160: t1 = p2; t2 = p1;
161: }
162: q = W_UMALLOC(DEG(t1));
163: while ( ( drem = divum(mod,t1,t2,q) ) >= 0 ) {
164: tum = t1; t1 = t2; t2 = tum; DEG(t2) = drem;
165: }
166: inv = invm(COEF(t2)[DEG(t2)],mod);
167: mulsum(mod,t2,inv,pr);
168: }
169: }
170:
171: void eucum(mod,f1,f2,a,b)
172: register int mod;
173: UM f1,f2,a,b;
174: {
175: UM g1,g2,a1,a2,a3,wm,q,tum;
176: int d,dr;
1.8 ! noro 177: UM t1,t2,t3;
1.1 noro 178:
179: d = DEG(f1) + DEG(f2) + 10;
180: g1 = W_UMALLOC(d); g2 = W_UMALLOC(d); a1 = W_UMALLOC(d);
181: a2 = W_UMALLOC(d); a3 = W_UMALLOC(d); wm = W_UMALLOC(d);
182: q = W_UMALLOC(d);
183: DEG(a1) = 0; COEF(a1)[0] = 1; DEG(a2) = -1;
184: cpyum(f1,g1); cpyum(f2,g2);
185: while ( 1 ) {
186: dr = divum(mod,g1,g2,q); tum = g1; g1 = g2; g2 = tum;
187: if ( ( DEG(g2) = dr ) == -1 )
188: break;
189: mulum(mod,a2,q,wm); subum(mod,a1,wm,a3); dr = divum(mod,a3,f2,q);
190: tum = a1; a1 = a2; a2 = a3; a3 = tum; DEG(a3) = dr;
191: }
192: if ( COEF(g1)[0] != 1 )
193: mulsum(mod,a2,invm(COEF(g1)[0],mod),a);
194: else
195: cpyum(a2,a);
196: mulum(mod,a,f1,wm);
197: if ( DEG(wm) >= 0 )
198: COEF(wm)[0] = ( COEF(wm)[0] + mod - 1 ) % mod;
199: else {
200: DEG(wm) = 0; COEF(wm)[0] = mod - 1;
201: }
202: divum(mod,wm,f2,q); mulsum(mod,q,mod-1,b);
1.8 ! noro 203: #if 0
! 204: t1 = W_UMALLOC(d);
! 205: t2 = W_UMALLOC(d);
! 206: t3 = W_UMALLOC(d);
! 207: mulum(mod,a,f1,t1);
! 208: mulum(mod,b,f2,t2);
! 209: addum(mod,t1,t2,t3);
! 210: #endif
! 211: }
! 212:
! 213: void eucum2(mod,f1,f2,a,b)
! 214: register int mod;
! 215: UM f1,f2,a,b;
! 216: {
! 217: UM gk,gk1,gk2,ak,ak1,ak2,bk,bk1,bk2,q,t,wm1,wm2,wz;
! 218: int d,inv;
! 219: UM t1,t2;
! 220:
! 221: d = 2*(DEG(f1) + DEG(f2));
! 222: gk = W_UMALLOC(d); gk1 = W_UMALLOC(d); gk2 = W_UMALLOC(d);
! 223: ak = W_UMALLOC(d); ak1 = W_UMALLOC(d); ak2 = W_UMALLOC(d);
! 224: bk = W_UMALLOC(d); bk1 = W_UMALLOC(d); bk2 = W_UMALLOC(d);
! 225: q = W_UMALLOC(d); wm1 = W_UMALLOC(d); wm2 = W_UMALLOC(d);
! 226: wz = W_UMALLOC(d);
! 227:
! 228: t1 = UMALLOC(1000);
! 229: t2 = UMALLOC(1000);
! 230: cpyum(f1,t1);
! 231: cpyum(f2,t2);
! 232:
! 233: DEG(ak) = 0; COEF(ak)[0] = 1;
! 234: DEG(ak1) = -1;
! 235: DEG(bk) = -1;
! 236: DEG(bk1) = 0; COEF(bk1)[0] = 1;
! 237:
! 238: cpyum(f1,gk); cpyum(f2,gk1);
! 239:
! 240: while ( 1 ) {
! 241: /* ak*f1+bk*f2 = gk, ak1*f1+bk1*f2 = gk1 */
! 242: cpyum(gk,gk2);
! 243: DEG(gk2) = divum(mod,gk2,gk1,q);
! 244: /* gk2 = gk - q*gk1 */
! 245: if ( DEG(gk2) == -1 )
! 246: break;
! 247: /* ak2 = ak - q*ak1, bk2 = bk - q*bk1 */
! 248: mulum(mod,ak1,q,wm1); subum(mod,ak,wm1,ak2);
! 249: mulum(mod,bk1,q,wm1); subum(mod,bk,wm1,bk2);
! 250:
! 251: /* shift */
! 252: t = ak; ak = ak1; ak1 = ak2; ak2 = t;
! 253: t = bk; bk = bk1; bk1 = bk2; bk2 = t;
! 254: t = gk; gk = gk1; gk1 = gk2; gk2 = t;
! 255: }
! 256: /* ak1*f1+bk1*f2 = gk1 = GCD(f1,f2) */
! 257: mulum(mod,ak1,t1,wm1);
! 258: mulum(mod,bk1,t2,wm2);
! 259: addum(mod,wm1,wm2,wz);
! 260: if ( DEG(wz) != 0 )
! 261: error("euc 1");
! 262:
! 263: DEG(ak1) = divum(mod,ak1,f2,q);
! 264: DEG(bk1) = divum(mod,bk1,f1,q);
! 265: mulum(mod,ak1,f1,wm1);
! 266: mulum(mod,bk1,f2,wm2);
! 267: addum(mod,wm1,wm2,wz);
! 268: if ( DEG(wz) != 0 )
! 269: error("euc 2");
! 270:
! 271:
! 272: if ( COEF(wz)[0] != 1 ) {
! 273: inv = invm(COEF(wz)[0],mod);
! 274: mulsum(mod,ak1,inv,a);
! 275: mulsum(mod,bk1,inv,b);
! 276: } else {
! 277: cpyum(ak1,a);
! 278: cpyum(bk1,b);
! 279: }
1.1 noro 280: }
281:
282: void sqfrum(index,count,f,nindex,dcr,pl)
283: int index,count,*nindex;
284: P f;
285: struct oDUM **dcr;
286: ML *pl;
287: {
288: int i,j,m,n,d,dt,mod;
289: UM wf,wdf,ws,wt,wgcd,mf,mgcd;
290: UM *l;
291: struct oDUM *dc;
292: ML tp;
293:
294: n = UDEG(f);
295: wf = W_UMALLOC(n);
296: wdf = W_UMALLOC(n);
297: ws = W_UMALLOC(n);
298: wt = W_UMALLOC(n);
299: wgcd = W_UMALLOC(n);
300:
301: mf = W_UMALLOC(n);
302: mgcd = W_UMALLOC(n);
303:
304: for ( j = 0, d = n; j < count && d; ) {
1.5 noro 305: m = get_lprime(index++);
1.1 noro 306: if ( rem(NM((Q)COEF(DC(f))),m) == 0 ) continue;
307:
308: ptoum(m,f,wf);
309: diffum(m,wf,wdf);
310: cpyum(wf,wt); cpyum(wdf,ws);
311: gcdum(m,wt,ws,wgcd);
312: dt = DEG(wgcd);
313:
314: if ( dt < d ) {
315: d = dt;
316: mod = m;
317: cpyum(wf,mf); cpyum(wgcd,mgcd);
318: }
319: j++;
320: }
321: *nindex = index;
322:
323: sqfrummain(mod,mf,mgcd,&dc);
324: *dcr = dc;
325:
326: for ( n = 0; dc[n].f; n++ );
327: *pl = tp = MLALLOC(n+1);
328: tp->n = n;
329: tp->mod = mod;
330:
331: for ( i = 0, l = (UM *)COEF(tp); dc[i].f; i++ ) {
332: l[i] = UMALLOC(DEG(dc[i].f)*dc[i].n);
333: pwrum(mod,dc[i].f,dc[i].n,l[i]);
334: }
335: l[i] = 0;
336: }
337:
338: void sqfrummain(mod,p,gcd,dcp)
339: int mod;
340: UM p,gcd;
341: struct oDUM **dcp;
342: {
343: int i,j,n;
344: UM wp,wdp,wc,wd,ws,wt,wq;
345: struct oDUM *dc;
346: UM *f;
347:
348: i = DEG(p);
349:
350: wp = W_UMALLOC(i);
351: wdp = W_UMALLOC(i);
352: wt = W_UMALLOC(i);
353: ws = W_UMALLOC(i);
354: wc = W_UMALLOC(i);
355: wd = W_UMALLOC(i);
356: wq = W_UMALLOC(i);
357:
358: f = (UM *) ALLOCA((i+2)*sizeof(UM));
359:
360: cpyum(p,wp);
361: diffum(mod,wp,wdp);
362:
363: cpyum(wp,wt);
364: divum(mod,wt,gcd,wc);
365:
366: cpyum(wdp,wt);
367: divum(mod,wt,gcd,ws);
368:
369: diffum(mod,wc,wt);
370: subum(mod,ws,wt,wd);
371:
372: for ( i = 1; DEG(wd) >= 0; i++ ) {
373: cpyum(wc,ws); cpyum(wd,wt);
374: gcdum(mod,ws,wt,wq);
375: if ( DEG(wq) > 0 ) {
376: f[i] = UMALLOC(DEG(wq));
377: cpyum(wq,f[i]);
378:
379: cpyum(wc,ws);
380: divum(mod,ws,f[i],wc);
381: divum(mod,wd,f[i],ws);
382: diffum(mod,wc,wt);
383: subum(mod,ws,wt,wd);
384: } else {
385: f[i] = 0;
386: cpyum(wd,ws);
387: diffum(mod,wc,wt);
388: subum(mod,ws,wt,wd);
389: }
390:
391: }
392:
393: if ( DEG(wc) > 0 ) {
394: DEG(wq) = 0;
395: COEF(wq)[0] = invm(COEF(wc)[DEG(wc)],mod);
396: f[i] = UMALLOC(DEG(wc));
397: mulum(mod,wc,wq,f[i]);
398: f[i+1] = 0;
399: n = i + 1;
400: } else {
401: f[i] = 0;
402: n = i;
403: }
404:
405: for ( i = 1, j = 0; i < n; i++ )
406: if ( f[i] ) j++;
407:
408: *dcp = dc = (struct oDUM *) CALLOC(j+1,sizeof(struct oDUM));
409:
410: for ( i = 1, j = 0; i < n; i++ )
411: if ( f[i] ) {
412: dc[j].n = i;
413: dc[j].f = f[i];
414: j++;
415: }
416: dc[j].n = 0;
417: dc[j].f = 0;
418: }
419:
420: void cpyum(p1,p2)
421: UM p1,p2;
422: {
423: register int *c1,*c2,i;
424:
425: for ( i = DEG(p2) = DEG(p1), c1 = COEF(p1), c2 = COEF(p2);
426: i >= 0; i-- )
427: c2[i] = c1[i];
428: }
429:
1.7 noro 430: void clearum(p,n)
431: UM p;
432: int n;
433: {
434: DEG(p) = -1;
435: bzero(COEF(p),(n+1)*sizeof(int));
436: }
437:
1.1 noro 438: void degum(f,n)
439: UM f;
440: int n;
441: {
442: register int i,*c;
443:
444: for ( i = n, c = COEF(f); ( i >= 0 ) && ( c[i] == 0 ); i-- );
445: DEG(f) = i;
446: }
447:
448: int deg(v,p)
449: V v;
450: P p;
451: {
452: if ( !p )
453: return ( -1 );
454: else if ( NUM(p) )
455: return ( 0 );
456: else if ( VR(p) != v )
457: return ( 0 );
458: else if ( PL(NM(DEG(DC(p)))) > 1 ) {
459: error("degree too large");
460: return ( -1 );
461: } else
462: return ( UDEG(p) );
463: }
464:
465: LUM LUMALLOC(n,bound)
466: int n,bound;
467: {
468: LUM p;
469: int **c;
470: int i;
471:
472: p = (LUM)MALLOC(TRUESIZE(oLUM,n,int *));
473: DEG(p) = n;
474: for ( i = 0, c = (int **)COEF(p); i <= n; i++ ) {
475: c[i] = (int *)MALLOC_ATOMIC((bound+1)*sizeof(int));
476: bzero((char *)c[i],(bound+1)*sizeof(int));
1.6 noro 477: }
478: return p;
479: }
480:
1.8 ! noro 481: /* dx = deg in x, dy = deg in y, c[i] <-> the coef of y^i (poly in x) */
1.7 noro 482:
1.8 ! noro 483: BM BMALLOC(dx,dy)
! 484: int dx,dy;
1.6 noro 485: {
486: BM p;
487: UM *c;
488: int i;
489:
1.8 ! noro 490: p = (BM)MALLOC(TRUESIZE(oBM,dy,UM));
! 491: DEG(p) = dy;
! 492: for ( i = 0, c = (UM *)COEF(p); i <= dy; i++ ) {
! 493: c[i] = UMALLOC(dx);
! 494: clearum(c[i],dx);
1.1 noro 495: }
496: return p;
497: }
498:
499: void mullum(mod,n,f1,f2,fr)
500: int mod,n;
501: LUM f1,f2,fr;
502: {
503: int max;
504: register int i,j,**p1,**p2,*px;
505: int *w,*w1,*w2;
506:
507: p1 = (int **)COEF(f1); p2 = (int **)COEF(f2);
508: w = W_ALLOC(2*(n+1)); w1 = W_ALLOC(DEG(f1)); w2 = W_ALLOC(DEG(f2));
509: for ( i = DEG(f1); i >= 0; i-- ) {
510: for ( j = n - 1, px = p1[i]; ( j >= 0 ) && ( px[j] == 0 ); j-- );
511: w1[i] = ( j == -1 ? 0 : 1 );
512: }
513: for ( i = DEG(f2); i >= 0; i-- ) {
514: for ( j = n - 1, px = p2[i]; ( j >= 0 ) && ( px[j] == 0 ); j-- );
515: w2[i] = ( j == -1 ? 0 : 1 );
516: }
517: for ( j = DEG(fr) = DEG(f1) + DEG(f2); j >= 0; j-- ) {
518: for ( i = n - 1, px = COEF(fr)[j]; i >= 0; i-- )
519: px[i] = 0;
520: for ( max = MIN(DEG(f1),j), i = MAX(0,j-DEG(f2)); i <= max; i++ )
521: if ( w1[i] != 0 && w2[j - i] != 0 ) {
522: mulpadic(mod,n,p1[i],p2[j - i],w); addpadic(mod,n,w,px);
523: }
524: }
525: }
526:
527: void cpylum(bound,p,r)
528: int bound;
529: LUM p,r;
530: {
531: register int i,j;
532: register int **pp,**ppr;
533:
534: DEG(r) = DEG(p);
535: for ( i = 0, pp = COEF(p), ppr = COEF(r);
536: i <= DEG(p); i++ )
537: for ( j = 0; j < bound; j++ )
538: ppr[i][j] = pp[i][j];
1.7 noro 539: }
540:
541: int isequalum(f1,f2)
542: UM f1,f2;
543: {
544: int i;
545:
546: if ( DEG(f1) < 0 )
547: if ( DEG(f2) < 0 )
548: return 1;
549: else
550: return 0;
551: else if ( DEG(f2) < 0 )
552: return 0;
553: else {
554: if ( DEG(f1) != DEG(f2) )
555: return 0;
556: for ( i = 0; i <= DEG(f1); i++ )
557: if ( COEF(f1)[i] != COEF(f2)[i] )
558: break;
559: if ( i < DEG(f1) )
560: return 0;
561: else
562: return 1;
563: }
1.1 noro 564: }
565:
566: void pwrlum(mod,bound,p,n,r)
567: int mod,bound,n;
568: LUM p,r;
569: {
570: LUM t,s;
571:
572: if ( n == 0 ) {
573: DEG(r) = 0;
574: COEF(r)[0][0] = 1;
575: } else if ( DEG(p) < 0 )
576: DEG(r) = -1;
577: else if ( n == 1 )
578: cpylum(bound,p,r);
579: else {
580: W_LUMALLOC(DEG(p)*n,bound,t);
581: pwrlum(mod,bound,p,n/2,t);
582: if ( !(n%2) )
583: mullum(mod,bound,t,t,r);
584: else {
585: W_LUMALLOC(DEG(p)*n,bound,s);
586: mullum(mod,bound,t,t,s);
587: mullum(mod,bound,s,p,r);
588: }
589: }
590: }
591:
592: int **almat(n,m)
593: int n,m;
594: {
595: int **mat,i;
596:
597: mat = (int **)MALLOC(n*sizeof(int *));
598: for ( i = 0; i < n; i++ )
599: mat[i] = (int *)CALLOC(m,sizeof(int));
600: return mat;
601: }
602:
603: void mini(mod,f,fr)
604: register int mod;
605: UM f,fr;
606: {
607: register int i,j,**c,*ptr;
608: int d,dr,dm,n;
609: UM w,q;
610:
611: n = DEG(f); c = (int **)ALLOCA(n*sizeof(int *));
612: for ( i = 0; i < n; i++ ) {
613: c[i] = (int *)ALLOCA(n*sizeof(int));
614: bzero((char *)c[i],(int)(n*sizeof(int)));
615: }
616: w = W_UMALLOC( mod + n + 10 ); q = W_UMALLOC( mod + n + 10 );
617: for ( i = 1; ( d = ( mod * i ) ) < n; i++ ) c[d][i - 1] = 1;
618: DEG(w) = d;
619: for ( j = 0; j < d; j++ )
620: COEF(w)[j] = 0;
621: COEF(w)[d] = 1;
622: for ( ; (i < n) && ((dr = divum(mod,w,f,q)) >= 0); i++ ) {
623: for ( j = dr; j >= 0; j-- )
624: COEF(w)[j + mod] = c[j][i - 1] = COEF(w)[j];
625: for ( j = mod - 1; j >= 0; j-- )
626: COEF(w)[j] = 0;
627: DEG(w) = dr + mod;
628: }
629: for ( i = 1; i < n; i++ )
630: c[i][i - 1] = ( c[i][i - 1] + mod - 1 ) % mod;
631: if ( ( dm = minimain(mod,n,n - 1,c) ) != -1 )
632: for ( i = 0, ptr = COEF(fr), ptr[0] = 0; i <= dm; i++ )
633: ptr[i + 1] = c[0][i];
634: else
635: COEF(fr)[0] = 1;
636: DEG(fr) = dm + 1;
637: }
638:
639: int minimain(mod,n,m,c)
640: register int mod;
641: int n,m;
642: register int **c;
643: {
644: register int *ptr,*ci,*p;
645: register int i,l,a,j,b,inv;
646: int *tmp;
647:
648: for ( j = 0; j < m; j++ ) {
649: for ( i = j; (n > i) && !c[i][j]; i++ );
650: if ( i == n ) {
651: for ( i = j, j = j - 1; j >= 0; j-- )
652: c[0][j] = c[j][i];
653: c[0][i] = mod - 1;
654: return( i );
655: }
656: if ( i != j ) {
657: tmp = c[i]; c[i] = c[j]; c[j] = tmp;
658: }
659: ptr = c[j]; inv = invm((ptr[j] + mod) % mod,mod);
660: for ( l = j, p = ptr+l; l < m; l++ ) {
661: a = (*p * inv) % mod;
662: *p++ = (a<0?a+mod:a);
663: }
664: for ( i = 0; i < n; i++ )
665: if ( (a = -c[i][j]) && (i != j) ) {
666: for ( l = j+1, p = ptr+l, ci = c[i]+l; l < m; l++ ) {
667: b = (*p++ * a + *ci) % mod;
668: *ci++ = (b<0?b+mod:b);
669: }
670: c[i][j] = 0;
671: }
672: }
673: return (-1);
674: }
675:
1.4 noro 676: #if defined(__GNUC__)
1.1 noro 677: const
678: #endif
679: int sprime[] = {
680: 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,
681: 53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,
682: 127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,
683: 199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,
684: 283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,
685: 383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,
686: 467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,
687: 577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,
688: 661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,
689: 769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,
690: 877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,
691: 983,991,997,1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,
692: 1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,
693: 1193,1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,
694: 1297,1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,
695: 1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,
696: 1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597,1601,1607,1609,1613,
697: 1619,1621,1627,1637,1657,1663,1667,1669,1693,1697,1699,1709,1721,1723,1733,
698: 1741,1747,1753,1759,1777,1783,1787,1789,1801,1811,1823,1831,1847,1861,1867,
699: 1871,1873,1877,1879,1889,1901,1907,1913,1931,1933,1949,1951,1973,1979,1987,
700: 1993,1997,1999,2003,2011,2017,2027,2029,2039,2053,2063,2069,2081,2083,2087,
701: 2089,2099,2111,2113,2129,2131,2137,2141,2143,2153,2161,2179,2203,2207,2213,
702: 2221,2237,2239,2243,2251,2267,2269,2273,2281,2287,2293,2297,2309,2311,2333,
703: 2339,2341,2347,2351,2357,2371,2377,2381,2383,2389,2393,2399,2411,2417,2423,
704: 2437,2441,2447,2459,2467,2473,2477,2503,2521,2531,2539,2543,2549,2551,2557,
705: 2579,2591,2593,2609,2617,2621,2633,2647,2657,2659,2663,2671,2677,2683,2687,
706: 2689,2693,2699,2707,2711,2713,2719,2729,2731,2741,2749,2753,2767,2777,2789,
707: 2791,2797,2801,2803,2819,2833,2837,2843,2851,2857,2861,2879,2887,2897,2903,
708: 2909,2917,2927,2939,2953,2957,2963,2969,2971,2999,3001,3011,3019,3023,3037,
709: 3041,3049,3061,3067,3079,3083,3089,3109,3119,3121,3137,3163,3167,3169,3181,
710: 3187,3191,3203,3209,3217,3221,3229,3251,3253,3257,3259,3271,3299,3301,3307,
711: 3313,3319,3323,3329,3331,3343,3347,3359,3361,3371,3373,3389,3391,3407,3413,
712: 3433,3449,3457,3461,3463,3467,3469,3491,3499,3511,3517,3527,3529,3533,3539,
713: 3541,3547,3557,3559,3571,3581,3583,3593,3607,3613,3617,3623,3631,3637,3643,
714: 3659,3671,3673,3677,3691,3697,3701,3709,3719,3727,3733,3739,3761,3767,3769,
715: 3779,3793,3797,3803,3821,3823,3833,3847,3851,3853,3863,3877,3881,3889,3907,
716: 3911,3917,3919,3923,3929,3931,3943,3947,3967,3989,4001,4003,4007,4013,4019,
717: 4021,4027,4049,4051,4057,4073,4079,4091,4093,4099,4111,4127,4129,4133,4139,
718: 4153,4157,4159,4177,4201,4211,4217,4219,4229,4231,4241,4243,4253,4259,4261,
719: 4271,4273,4283,4289,4297,4327,4337,4339,4349,4357,4363,4373,4391,4397,4409,
720: 4421,4423,4441,4447,4451,4457,4463,4481,4483,4493,4507,4513,4517,4519,4523,
721: 4547,4549,4561,4567,4583,4591,4597,4603,4621,4637,4639,4643,4649,4651,4657,
722: 4663,4673,4679,4691,4703,4721,4723,4729,4733,4751,4759,4783,4787,4789,4793,
723: 4799,4801,4813,4817,4831,4861,4871,4877,4889,4903,4909,4919,4931,4933,4937,
724: 4943,4951,4957,4967,4969,4973,4987,4993,4999,5003,5009,5011,5021,5023,5039,
725: 5051,5059,5077,5081,5087,5099,5101,5107,5113,5119,5147,5153,5167,5171,5179,
726: 5189,5197,5209,5227,5231,5233,5237,5261,5273,5279,5281,5297,5303,5309,5323,
727: 5333,5347,5351,5381,5387,5393,5399,5407,5413,5417,5419,5431,5437,5441,5443,
728: 5449,5471,5477,5479,5483,5501,5503,5507,5519,5521,5527,5531,5557,5563,5569,
729: 5573,5581,5591,5623,5639,5641,5647,5651,5653,5657,5659,5669,5683,5689,5693,
730: 5701,5711,5717,5737,5741,5743,5749,5779,5783,5791,5801,5807,5813,5821,5827,
731: 5839,5843,5849,5851,5857,5861,5867,5869,5879,5881,5897,5903,5923,5927,5939,
732: 5953,5981,5987,6007,6011,6029,6037,6043,6047,6053,6067,6073,6079,6089,6091,
733: 6101,6113,6121,6131,6133,6143,6151,6163,6173,6197,6199,6203,6211,6217,6221,
734: 6229,6247,6257,6263,6269,6271,6277,6287,6299,6301,6311,6317,6323,6329,6337,
735: 6343,6353,6359,6361,6367,6373,6379,6389,6397,6421,6427,6449,6451,6469,6473,
736: 6481,6491,6521,6529,6547,6551,6553,6563,6569,6571,6577,6581,6599,6607,6619,
737: 6637,6653,6659,6661,6673,6679,6689,6691,6701,6703,6709,6719,6733,6737,6761,
738: 6763,6779,6781,6791,6793,6803,6823,6827,6829,6833,6841,6857,6863,6869,6871,
739: 6883,6899,6907,6911,6917,6947,6949,6959,6961,6967,6971,6977,6983,6991,6997,
740: 7001,7013,7019,7027,7039,7043,7057,7069,7079,7103,7109,7121,7127,7129,7151,
741: 7159,7177,7187,7193,7207,7211,7213,7219,7229,7237,7243,7247,7253,7283,7297,
742: 7307,7309,7321,7331,7333,7349,7351,7369,7393,7411,7417,7433,7451,7457,7459,
743: 7477,7481,7487,7489,7499,7507,7517,7523,7529,7537,7541,7547,7549,7559,7561,
744: 7573,7577,7583,7589,7591,7603,7607,7621,7639,7643,7649,7669,7673,7681,7687,
745: 7691,7699,7703,7717,7723,7727,7741,7753,7757,7759,7789,7793,7817,7823,7829,
746: 7841,7853,7867,7873,7877,7879,7883,7901,7907,7919,7927,7933,7937,7949,7951,
747: 7963,7993,8009,8011,8017,8039,8053,8059,8069,8081,8087,8089,8093,8101,8111,
748: 8117,8123,8147,8161,8167,8171,8179,8191,8209,8219,8221,8231,8233,8237,8243,
749: 8263,8269,8273,8287,8291,8293,8297,8311,8317,8329,8353,8363,8369,8377,8387,
750: 8389,8419,8423,8429,8431,8443,8447,8461,8467,8501,8513,8521,8527,8537,8539,
751: 8543,8563,8573,8581,8597,8599,8609,8623,8627,8629,8641,8647,8663,8669,8677,
752: 8681,8689,8693,8699,8707,8713,8719,8731,8737,8741,8747,8753,8761,8779,8783,
753: 8803,8807,8819,8821,8831,8837,8839,8849,8861,8863,8867,8887,8893,8923,8929,
754: 8933,8941,8951,8963,8969,8971,8999,9001,9007,9011,9013,9029,9041,9043,9049,
755: 9059,9067,9091,9103,9109,9127,9133,9137,9151,9157,9161,9173,9181,9187,9199,
756: 9203,9209,9221,9227,9239,9241,9257,9277,9281,9283,9293,9311,9319,9323,9337,
757: 9341,9343,9349,9371,9377,9391,9397,9403,9413,9419,9421,9431,9433,9437,9439,
758: 9461,9463,9467,9473,9479,9491,9497,9511,9521,9533,9539,9547,9551,9587,9601,
759: 9613,9619,9623,9629,9631,9643,9649,9661,9677,9679,9689,9697,9719,9721,9733,
760: 9739,9743,9749,9767,9769,9781,9787,9791,9803,9811,9817,9829,9833,9839,9851,
761: 9857,9859,9871,9883,9887,9901,9907,9923,9929,9931,9941,9949,9967,9973,10007,
762: 10009,10037,10039,10061,10067,10069,10079,10091,10093,10099,
763: 10103,10111,10133,10139,10141,10151,10159,10163,10169,10177,
764: 10181,10193,10211,10223,10243,10247,10253,10259,10267,10271,
765: 10273,10289,10301,10303,10313,10321,10331,10333,10337,10343,
766: 10357,10369,10391,10399,10427,10429,10433,10453,10457,10459,
767: 10463,10477,10487,10499,10501,10513,10529,10531,10559,10567,
768: 10589,10597,10601,10607,10613,10627,10631,10639,10651,10657,
769: 10663,10667,10687,10691,10709,10711,10723,10729,10733,10739,
770: 10753,10771,10781,10789,10799,10831,10837,10847,10853,10859,
771: 10861,10867,10883,10889,10891,10903,10909,10937,10939,10949,
772: 10957,10973,10979,10987,10993,11003,11027,11047,11057,11059,
773: 11069,11071,11083,11087,11093,11113,11117,11119,11131,11149,
774: 11159,11161,11171,11173,11177,11197,11213,11239,11243,11251,
775: 11257,11261,11273,11279,11287,11299,11311,11317,11321,11329,
776: 11351,11353,11369,11383,11393,11399,11411,11423,11437,11443,
777: 11447,11467,11471,11483,11489,11491,11497,11503,11519,11527,
778: 11549,11551,11579,11587,11593,11597,11617,11621,11633,11657,
779: 11677,11681,11689,11699,11701,11717,11719,11731,11743,11777,
780: 11779,11783,11789,11801,11807,11813,11821,11827,11831,11833,
781: 11839,11863,11867,11887,11897,11903,11909,11923,11927,11933,
782: 11939,11941,11953,11959,11969,11971,11981,11987,12007,12011,
783: 12037,12041,12043,12049,12071,12073,12097,12101,12107,12109,
784: 12113,12119,12143,12149,12157,12161,12163,12197,12203,12211,
785: 12227,12239,12241,12251,12253,12263,12269,12277,12281,12289,
786: 12301,12323,12329,12343,12347,12373,12377,12379,12391,12401,
787: 12409,12413,12421,12433,12437,12451,12457,12473,12479,12487,
788: 12491,12497,12503,12511,12517,12527,12539,12541,12547,12553,
789: 12569,12577,12583,12589,12601,12611,12613,12619,12637,12641,
790: 12647,12653,12659,12671,12689,12697,12703,12713,12721,12739,
791: 12743,12757,12763,12781,12791,12799,12809,12821,12823,12829,
792: 12841,12853,12889,12893,12899,12907,12911,12917,12919,12923,
793: 12941,12953,12959,12967,12973,12979,12983,13001,13003,13007,
794: 13009,13033,13037,13043,13049,13063,13093,13099,13103,13109,
795: 13121,13127,13147,13151,13159,13163,13171,13177,13183,13187,
796: 13217,13219,13229,13241,13249,13259,13267,13291,13297,13309,
797: 13313,13327,13331,13337,13339,13367,13381,13397,13399,13411,
798: 13417,13421,13441,13451,13457,13463,13469,13477,13487,13499,
799: 13513,13523,13537,13553,13567,13577,13591,13597,13613,13619,
800: 13627,13633,13649,13669,13679,13681,13687,13691,13693,13697,
801: 13709,13711,13721,13723,13729,13751,13757,13759,13763,13781,
802: 13789,13799,13807,13829,13831,13841,13859,13873,13877,13879,
803: 13883,13901,13903,13907,13913,13921,13931,13933,13963,13967,
804: 13997,13999,14009,14011,14029,14033,14051,14057,14071,14081,
805: 14083,14087,14107,14143,14149,14153,14159,14173,14177,14197,
806: 14207,14221,14243,14249,14251,14281,14293,14303,14321,14323,
807: 14327,14341,14347,14369,14387,14389,14401,14407,14411,14419,
808: 14423,14431,14437,14447,14449,14461,14479,14489,14503,14519,
809: 14533,14537,14543,14549,14551,14557,14561,14563,14591,14593,
810: 14621,14627,14629,14633,14639,14653,14657,14669,14683,14699,
811: 14713,14717,14723,14731,14737,14741,14747,14753,14759,14767,
812: 14771,14779,14783,14797,14813,14821,14827,14831,14843,14851,
813: 14867,14869,14879,14887,14891,14897,14923,14929,14939,14947,
814: 14951,14957,14969,14983,15013,15017,15031,15053,15061,15073,
815: 15077,15083,15091,15101,15107,15121,15131,15137,15139,15149,
816: 15161,15173,15187,15193,15199,15217,15227,15233,15241,15259,
817: 15263,15269,15271,15277,15287,15289,15299,15307,15313,15319,
818: 15329,15331,15349,15359,15361,15373,15377,15383,15391,15401,
819: 15413,15427,15439,15443,15451,15461,15467,15473,15493,15497,
820: 15511,15527,15541,15551,15559,15569,15581,15583,15601,15607,
821: 15619,15629,15641,15643,15647,15649,15661,15667,15671,15679,
822: 15683,15727,15731,15733,15737,15739,15749,15761,15767,15773,
823: 15787,15791,15797,15803,15809,15817,15823,15859,15877,15881,
824: 15887,15889,15901,15907,15913,15919,15923,15937,15959,15971,
825: 15973,15991,16001,16007,16033,16057,16061,16063,16067,16069,
826: 16073,16087,16091,16097,16103,16111,16127,16139,16141,16183,
827: 16187,16189,16193,16217,16223,16229,16231,16249,16253,16267,
828: 16273,16301,16319,16333,16339,16349,16361,16363,16369,16381,
829: 0
830: };
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>