Annotation of OpenXM_contrib2/asir2000/engine/M.c, Revision 1.9
1.2 noro 1: /*
2: * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
3: * All rights reserved.
4: *
5: * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
6: * non-exclusive and royalty-free license to use, copy, modify and
7: * redistribute, solely for non-commercial and non-profit purposes, the
8: * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
9: * conditions of this Agreement. For the avoidance of doubt, you acquire
10: * only a limited right to use the SOFTWARE hereunder, and FLL or any
11: * third party developer retains all rights, including but not limited to
12: * copyrights, in and to the SOFTWARE.
13: *
14: * (1) FLL does not grant you a license in any way for commercial
15: * purposes. You may use the SOFTWARE only for non-commercial and
16: * non-profit purposes only, such as academic, research and internal
17: * business use.
18: * (2) The SOFTWARE is protected by the Copyright Law of Japan and
19: * international copyright treaties. If you make copies of the SOFTWARE,
20: * with or without modification, as permitted hereunder, you shall affix
21: * to all such copies of the SOFTWARE the above copyright notice.
22: * (3) An explicit reference to this SOFTWARE and its copyright owner
23: * shall be made on your publication or presentation in any form of the
24: * results obtained by use of the SOFTWARE.
25: * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
1.3 noro 26: * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
1.2 noro 27: * for such modification or the source code of the modified part of the
28: * SOFTWARE.
29: *
30: * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
31: * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
32: * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
33: * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
34: * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
35: * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
36: * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
37: * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
38: * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
39: * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
40: * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
41: * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
42: * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
43: * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
44: * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
45: * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
46: * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
47: *
1.9 ! noro 48: * $OpenXM: OpenXM_contrib2/asir2000/engine/M.c,v 1.8 2001/07/03 01:41:26 noro Exp $
1.2 noro 49: */
1.1 noro 50: #include "ca.h"
51: #include "base.h"
52:
1.9 ! noro 53: void addum(int mod,UM p1,UM p2,UM pr)
1.1 noro 54: {
55: register int *c1,*c2,*cr,i,dmax,dmin;
56:
57: if ( DEG(p1) == -1 ) {
58: cpyum(p2,pr);
59: return;
60: }
61: if ( DEG(p2) == -1 ) {
62: cpyum(p1,pr);
63: return;
64: }
65: if ( DEG(p1) >= DEG(p2) ) {
66: c1 = COEF(p1); c2 = COEF(p2); dmax = DEG(p1); dmin = DEG(p2);
67: } else {
68: c1 = COEF(p2); c2 = COEF(p1); dmax = DEG(p2); dmin = DEG(p1);
69: }
70: for ( i = 0, cr = COEF(pr); i <= dmin; i++ )
71: cr[i] = ( c1[i] + c2[i] ) % mod;
72: for ( ; i <= dmax; i++ )
73: cr[i] = c1[i];
74: if ( dmax == dmin )
75: degum(pr,dmax);
76: else
77: DEG(pr) = dmax;
78: }
79:
1.9 ! noro 80: void subum(int mod,UM p1,UM p2,UM pr)
1.1 noro 81: {
82: register int *c1,*c2,*cr,i;
83: int dmax,dmin;
84:
85: if ( DEG(p1) == -1 ) {
86: for ( i = DEG(pr) = DEG(p2), c2 = COEF(p2), cr = COEF(pr);
87: i >= 0; i-- )
88: cr[i] = ( mod - c2[i] ) % mod;
89: return;
90: }
91: if ( DEG(p2) == -1 ) {
92: cpyum(p1,pr);
93: return;
94: }
95: c1 = COEF(p1); c2 = COEF(p2); cr = COEF(pr);
96: if ( DEG(p1) >= DEG(p2) ) {
97: dmax = DEG(p1); dmin = DEG(p2);
98: for ( i = 0; i <= dmin; i++ )
99: cr[i] = ( c1[i] + mod - c2[i] ) % mod;
100: for ( ; i <= dmax; i++ )
101: cr[i] = c1[i];
102: } else {
103: dmax = DEG(p2); dmin = DEG(p1);
104: for ( i = 0; i <= dmin; i++ )
105: cr[i] = ( c1[i] + mod - c2[i] ) % mod;
106: for ( ; i <= dmax; i++ )
107: cr[i] = ( mod - c2[i] ) % mod;
108: }
109: if ( dmax == dmin )
110: degum(pr,dmax);
111: else
112: DEG(pr) = dmax;
113: }
114:
1.9 ! noro 115: void pwrum(int mod,UM p,int e,UM pr)
1.1 noro 116: {
117: UM wt,ws;
118:
119: if ( e == 0 ) {
120: DEG(pr) = 0; COEF(pr)[0] = 1;
121: } else if ( DEG(p) < 0 )
122: DEG(pr) = -1;
123: else if ( e == 1 )
124: cpyum(p,pr);
125: else if ( DEG(p) == 0 ) {
126: DEG(pr) = 0; COEF(pr)[0] = pwrm(mod,COEF(p)[0],e);
127: } else {
128: wt = W_UMALLOC(DEG(p)*e); ws = W_UMALLOC(DEG(p)*e);
129: pwrum(mod,p,e/2,wt);
130: if ( !(e%2) )
131: mulum(mod,wt,wt,pr);
132: else {
133: mulum(mod,wt,wt,ws); mulum(mod,ws,p,pr);
134: }
135: }
136: }
137:
1.9 ! noro 138: void gcdum(int mod,UM p1,UM p2,UM pr)
1.1 noro 139: {
140: register int inv;
141: UM t1,t2,q,tum;
142: int drem;
143:
144: if ( DEG(p1) < 0 )
145: cpyum(p2,pr);
146: else if ( DEG(p2) < 0 )
147: cpyum(p1,pr);
148: else {
149: if ( DEG(p1) >= DEG(p2) ) {
150: t1 = p1; t2 = p2;
151: } else {
152: t1 = p2; t2 = p1;
153: }
154: q = W_UMALLOC(DEG(t1));
155: while ( ( drem = divum(mod,t1,t2,q) ) >= 0 ) {
156: tum = t1; t1 = t2; t2 = tum; DEG(t2) = drem;
157: }
158: inv = invm(COEF(t2)[DEG(t2)],mod);
159: mulsum(mod,t2,inv,pr);
160: }
161: }
162:
1.9 ! noro 163: void eucum(int mod,UM f1,UM f2,UM a,UM b)
1.1 noro 164: {
165: UM g1,g2,a1,a2,a3,wm,q,tum;
166: int d,dr;
167:
168: d = DEG(f1) + DEG(f2) + 10;
169: g1 = W_UMALLOC(d); g2 = W_UMALLOC(d); a1 = W_UMALLOC(d);
170: a2 = W_UMALLOC(d); a3 = W_UMALLOC(d); wm = W_UMALLOC(d);
171: q = W_UMALLOC(d);
172: DEG(a1) = 0; COEF(a1)[0] = 1; DEG(a2) = -1;
173: cpyum(f1,g1); cpyum(f2,g2);
174: while ( 1 ) {
175: dr = divum(mod,g1,g2,q); tum = g1; g1 = g2; g2 = tum;
176: if ( ( DEG(g2) = dr ) == -1 )
177: break;
178: mulum(mod,a2,q,wm); subum(mod,a1,wm,a3); dr = divum(mod,a3,f2,q);
179: tum = a1; a1 = a2; a2 = a3; a3 = tum; DEG(a3) = dr;
180: }
181: if ( COEF(g1)[0] != 1 )
182: mulsum(mod,a2,invm(COEF(g1)[0],mod),a);
183: else
184: cpyum(a2,a);
185: mulum(mod,a,f1,wm);
186: if ( DEG(wm) >= 0 )
187: COEF(wm)[0] = ( COEF(wm)[0] + mod - 1 ) % mod;
188: else {
189: DEG(wm) = 0; COEF(wm)[0] = mod - 1;
190: }
191: divum(mod,wm,f2,q); mulsum(mod,q,mod-1,b);
1.8 noro 192: #if 0
193: t1 = W_UMALLOC(d);
194: t2 = W_UMALLOC(d);
195: t3 = W_UMALLOC(d);
196: mulum(mod,a,f1,t1);
197: mulum(mod,b,f2,t2);
198: addum(mod,t1,t2,t3);
199: #endif
200: }
201:
1.9 ! noro 202: void eucum2(int mod,UM f1,UM f2,UM a,UM b)
1.8 noro 203: {
204: UM gk,gk1,gk2,ak,ak1,ak2,bk,bk1,bk2,q,t,wm1,wm2,wz;
205: int d,inv;
206: UM t1,t2;
207:
208: d = 2*(DEG(f1) + DEG(f2));
209: gk = W_UMALLOC(d); gk1 = W_UMALLOC(d); gk2 = W_UMALLOC(d);
210: ak = W_UMALLOC(d); ak1 = W_UMALLOC(d); ak2 = W_UMALLOC(d);
211: bk = W_UMALLOC(d); bk1 = W_UMALLOC(d); bk2 = W_UMALLOC(d);
212: q = W_UMALLOC(d); wm1 = W_UMALLOC(d); wm2 = W_UMALLOC(d);
213: wz = W_UMALLOC(d);
214:
215: t1 = UMALLOC(1000);
216: t2 = UMALLOC(1000);
217: cpyum(f1,t1);
218: cpyum(f2,t2);
219:
220: DEG(ak) = 0; COEF(ak)[0] = 1;
221: DEG(ak1) = -1;
222: DEG(bk) = -1;
223: DEG(bk1) = 0; COEF(bk1)[0] = 1;
224:
225: cpyum(f1,gk); cpyum(f2,gk1);
226:
227: while ( 1 ) {
228: /* ak*f1+bk*f2 = gk, ak1*f1+bk1*f2 = gk1 */
229: cpyum(gk,gk2);
230: DEG(gk2) = divum(mod,gk2,gk1,q);
231: /* gk2 = gk - q*gk1 */
232: if ( DEG(gk2) == -1 )
233: break;
234: /* ak2 = ak - q*ak1, bk2 = bk - q*bk1 */
235: mulum(mod,ak1,q,wm1); subum(mod,ak,wm1,ak2);
236: mulum(mod,bk1,q,wm1); subum(mod,bk,wm1,bk2);
237:
238: /* shift */
239: t = ak; ak = ak1; ak1 = ak2; ak2 = t;
240: t = bk; bk = bk1; bk1 = bk2; bk2 = t;
241: t = gk; gk = gk1; gk1 = gk2; gk2 = t;
242: }
243: /* ak1*f1+bk1*f2 = gk1 = GCD(f1,f2) */
244: mulum(mod,ak1,t1,wm1);
245: mulum(mod,bk1,t2,wm2);
246: addum(mod,wm1,wm2,wz);
247: if ( DEG(wz) != 0 )
248: error("euc 1");
249:
250: DEG(ak1) = divum(mod,ak1,f2,q);
251: DEG(bk1) = divum(mod,bk1,f1,q);
252: mulum(mod,ak1,f1,wm1);
253: mulum(mod,bk1,f2,wm2);
254: addum(mod,wm1,wm2,wz);
255: if ( DEG(wz) != 0 )
256: error("euc 2");
257:
258:
259: if ( COEF(wz)[0] != 1 ) {
260: inv = invm(COEF(wz)[0],mod);
261: mulsum(mod,ak1,inv,a);
262: mulsum(mod,bk1,inv,b);
263: } else {
264: cpyum(ak1,a);
265: cpyum(bk1,b);
266: }
1.1 noro 267: }
268:
1.9 ! noro 269: void sqfrum(int index,int count,P f,int *nindex,struct oDUM **dcr,ML *pl)
1.1 noro 270: {
271: int i,j,m,n,d,dt,mod;
272: UM wf,wdf,ws,wt,wgcd,mf,mgcd;
273: UM *l;
274: struct oDUM *dc;
275: ML tp;
276:
277: n = UDEG(f);
278: wf = W_UMALLOC(n);
279: wdf = W_UMALLOC(n);
280: ws = W_UMALLOC(n);
281: wt = W_UMALLOC(n);
282: wgcd = W_UMALLOC(n);
283:
284: mf = W_UMALLOC(n);
285: mgcd = W_UMALLOC(n);
286:
287: for ( j = 0, d = n; j < count && d; ) {
1.5 noro 288: m = get_lprime(index++);
1.1 noro 289: if ( rem(NM((Q)COEF(DC(f))),m) == 0 ) continue;
290:
291: ptoum(m,f,wf);
292: diffum(m,wf,wdf);
293: cpyum(wf,wt); cpyum(wdf,ws);
294: gcdum(m,wt,ws,wgcd);
295: dt = DEG(wgcd);
296:
297: if ( dt < d ) {
298: d = dt;
299: mod = m;
300: cpyum(wf,mf); cpyum(wgcd,mgcd);
301: }
302: j++;
303: }
304: *nindex = index;
305:
306: sqfrummain(mod,mf,mgcd,&dc);
307: *dcr = dc;
308:
309: for ( n = 0; dc[n].f; n++ );
310: *pl = tp = MLALLOC(n+1);
311: tp->n = n;
312: tp->mod = mod;
313:
314: for ( i = 0, l = (UM *)COEF(tp); dc[i].f; i++ ) {
315: l[i] = UMALLOC(DEG(dc[i].f)*dc[i].n);
316: pwrum(mod,dc[i].f,dc[i].n,l[i]);
317: }
318: l[i] = 0;
319: }
320:
1.9 ! noro 321: void sqfrummain(int mod,UM p,UM gcd,struct oDUM **dcp)
1.1 noro 322: {
323: int i,j,n;
324: UM wp,wdp,wc,wd,ws,wt,wq;
325: struct oDUM *dc;
326: UM *f;
327:
328: i = DEG(p);
329:
330: wp = W_UMALLOC(i);
331: wdp = W_UMALLOC(i);
332: wt = W_UMALLOC(i);
333: ws = W_UMALLOC(i);
334: wc = W_UMALLOC(i);
335: wd = W_UMALLOC(i);
336: wq = W_UMALLOC(i);
337:
338: f = (UM *) ALLOCA((i+2)*sizeof(UM));
339:
340: cpyum(p,wp);
341: diffum(mod,wp,wdp);
342:
343: cpyum(wp,wt);
344: divum(mod,wt,gcd,wc);
345:
346: cpyum(wdp,wt);
347: divum(mod,wt,gcd,ws);
348:
349: diffum(mod,wc,wt);
350: subum(mod,ws,wt,wd);
351:
352: for ( i = 1; DEG(wd) >= 0; i++ ) {
353: cpyum(wc,ws); cpyum(wd,wt);
354: gcdum(mod,ws,wt,wq);
355: if ( DEG(wq) > 0 ) {
356: f[i] = UMALLOC(DEG(wq));
357: cpyum(wq,f[i]);
358:
359: cpyum(wc,ws);
360: divum(mod,ws,f[i],wc);
361: divum(mod,wd,f[i],ws);
362: diffum(mod,wc,wt);
363: subum(mod,ws,wt,wd);
364: } else {
365: f[i] = 0;
366: cpyum(wd,ws);
367: diffum(mod,wc,wt);
368: subum(mod,ws,wt,wd);
369: }
370:
371: }
372:
373: if ( DEG(wc) > 0 ) {
374: DEG(wq) = 0;
375: COEF(wq)[0] = invm(COEF(wc)[DEG(wc)],mod);
376: f[i] = UMALLOC(DEG(wc));
377: mulum(mod,wc,wq,f[i]);
378: f[i+1] = 0;
379: n = i + 1;
380: } else {
381: f[i] = 0;
382: n = i;
383: }
384:
385: for ( i = 1, j = 0; i < n; i++ )
386: if ( f[i] ) j++;
387:
388: *dcp = dc = (struct oDUM *) CALLOC(j+1,sizeof(struct oDUM));
389:
390: for ( i = 1, j = 0; i < n; i++ )
391: if ( f[i] ) {
392: dc[j].n = i;
393: dc[j].f = f[i];
394: j++;
395: }
396: dc[j].n = 0;
397: dc[j].f = 0;
398: }
399:
1.9 ! noro 400: void cpyum(UM p1,UM p2)
1.1 noro 401: {
402: register int *c1,*c2,i;
403:
404: for ( i = DEG(p2) = DEG(p1), c1 = COEF(p1), c2 = COEF(p2);
405: i >= 0; i-- )
406: c2[i] = c1[i];
407: }
408:
1.9 ! noro 409: void clearum(UM p,int n)
1.7 noro 410: {
411: DEG(p) = -1;
412: bzero(COEF(p),(n+1)*sizeof(int));
413: }
414:
1.9 ! noro 415: void degum(UM f,int n)
1.1 noro 416: {
417: register int i,*c;
418:
419: for ( i = n, c = COEF(f); ( i >= 0 ) && ( c[i] == 0 ); i-- );
420: DEG(f) = i;
421: }
422:
1.9 ! noro 423: int deg(V v,P p)
1.1 noro 424: {
425: if ( !p )
426: return ( -1 );
427: else if ( NUM(p) )
428: return ( 0 );
429: else if ( VR(p) != v )
430: return ( 0 );
431: else if ( PL(NM(DEG(DC(p)))) > 1 ) {
432: error("degree too large");
433: return ( -1 );
434: } else
435: return ( UDEG(p) );
436: }
437:
1.9 ! noro 438: LUM LUMALLOC(int n,int bound)
1.1 noro 439: {
440: LUM p;
441: int **c;
442: int i;
443:
444: p = (LUM)MALLOC(TRUESIZE(oLUM,n,int *));
445: DEG(p) = n;
446: for ( i = 0, c = (int **)COEF(p); i <= n; i++ ) {
447: c[i] = (int *)MALLOC_ATOMIC((bound+1)*sizeof(int));
448: bzero((char *)c[i],(bound+1)*sizeof(int));
1.6 noro 449: }
450: return p;
451: }
452:
1.8 noro 453: /* dx = deg in x, dy = deg in y, c[i] <-> the coef of y^i (poly in x) */
1.7 noro 454:
1.9 ! noro 455: BM BMALLOC(int dx,int dy)
1.6 noro 456: {
457: BM p;
458: UM *c;
459: int i;
460:
1.8 noro 461: p = (BM)MALLOC(TRUESIZE(oBM,dy,UM));
462: DEG(p) = dy;
463: for ( i = 0, c = (UM *)COEF(p); i <= dy; i++ ) {
464: c[i] = UMALLOC(dx);
465: clearum(c[i],dx);
1.1 noro 466: }
467: return p;
468: }
469:
1.9 ! noro 470: void mullum(int mod,int n,LUM f1,LUM f2,LUM fr)
1.1 noro 471: {
472: int max;
473: register int i,j,**p1,**p2,*px;
474: int *w,*w1,*w2;
475:
476: p1 = (int **)COEF(f1); p2 = (int **)COEF(f2);
477: w = W_ALLOC(2*(n+1)); w1 = W_ALLOC(DEG(f1)); w2 = W_ALLOC(DEG(f2));
478: for ( i = DEG(f1); i >= 0; i-- ) {
479: for ( j = n - 1, px = p1[i]; ( j >= 0 ) && ( px[j] == 0 ); j-- );
480: w1[i] = ( j == -1 ? 0 : 1 );
481: }
482: for ( i = DEG(f2); i >= 0; i-- ) {
483: for ( j = n - 1, px = p2[i]; ( j >= 0 ) && ( px[j] == 0 ); j-- );
484: w2[i] = ( j == -1 ? 0 : 1 );
485: }
486: for ( j = DEG(fr) = DEG(f1) + DEG(f2); j >= 0; j-- ) {
487: for ( i = n - 1, px = COEF(fr)[j]; i >= 0; i-- )
488: px[i] = 0;
489: for ( max = MIN(DEG(f1),j), i = MAX(0,j-DEG(f2)); i <= max; i++ )
490: if ( w1[i] != 0 && w2[j - i] != 0 ) {
491: mulpadic(mod,n,p1[i],p2[j - i],w); addpadic(mod,n,w,px);
492: }
493: }
494: }
495:
1.9 ! noro 496: void cpylum(int bound,LUM p,LUM r)
1.1 noro 497: {
498: register int i,j;
499: register int **pp,**ppr;
500:
501: DEG(r) = DEG(p);
502: for ( i = 0, pp = COEF(p), ppr = COEF(r);
503: i <= DEG(p); i++ )
504: for ( j = 0; j < bound; j++ )
505: ppr[i][j] = pp[i][j];
1.7 noro 506: }
507:
1.9 ! noro 508: int isequalum(UM f1,UM f2)
1.7 noro 509: {
510: int i;
511:
512: if ( DEG(f1) < 0 )
513: if ( DEG(f2) < 0 )
514: return 1;
515: else
516: return 0;
517: else if ( DEG(f2) < 0 )
518: return 0;
519: else {
520: if ( DEG(f1) != DEG(f2) )
521: return 0;
522: for ( i = 0; i <= DEG(f1); i++ )
523: if ( COEF(f1)[i] != COEF(f2)[i] )
524: break;
525: if ( i < DEG(f1) )
526: return 0;
527: else
528: return 1;
529: }
1.1 noro 530: }
531:
1.9 ! noro 532: void pwrlum(int mod,int bound,LUM p,int n,LUM r)
1.1 noro 533: {
534: LUM t,s;
535:
536: if ( n == 0 ) {
537: DEG(r) = 0;
538: COEF(r)[0][0] = 1;
539: } else if ( DEG(p) < 0 )
540: DEG(r) = -1;
541: else if ( n == 1 )
542: cpylum(bound,p,r);
543: else {
544: W_LUMALLOC(DEG(p)*n,bound,t);
545: pwrlum(mod,bound,p,n/2,t);
546: if ( !(n%2) )
547: mullum(mod,bound,t,t,r);
548: else {
549: W_LUMALLOC(DEG(p)*n,bound,s);
550: mullum(mod,bound,t,t,s);
551: mullum(mod,bound,s,p,r);
552: }
553: }
554: }
555:
1.9 ! noro 556: int **almat(int n,int m)
1.1 noro 557: {
558: int **mat,i;
559:
560: mat = (int **)MALLOC(n*sizeof(int *));
561: for ( i = 0; i < n; i++ )
562: mat[i] = (int *)CALLOC(m,sizeof(int));
563: return mat;
564: }
565:
1.9 ! noro 566: void mini(int mod,UM f,UM fr)
1.1 noro 567: {
568: register int i,j,**c,*ptr;
569: int d,dr,dm,n;
570: UM w,q;
571:
572: n = DEG(f); c = (int **)ALLOCA(n*sizeof(int *));
573: for ( i = 0; i < n; i++ ) {
574: c[i] = (int *)ALLOCA(n*sizeof(int));
575: bzero((char *)c[i],(int)(n*sizeof(int)));
576: }
577: w = W_UMALLOC( mod + n + 10 ); q = W_UMALLOC( mod + n + 10 );
578: for ( i = 1; ( d = ( mod * i ) ) < n; i++ ) c[d][i - 1] = 1;
579: DEG(w) = d;
580: for ( j = 0; j < d; j++ )
581: COEF(w)[j] = 0;
582: COEF(w)[d] = 1;
583: for ( ; (i < n) && ((dr = divum(mod,w,f,q)) >= 0); i++ ) {
584: for ( j = dr; j >= 0; j-- )
585: COEF(w)[j + mod] = c[j][i - 1] = COEF(w)[j];
586: for ( j = mod - 1; j >= 0; j-- )
587: COEF(w)[j] = 0;
588: DEG(w) = dr + mod;
589: }
590: for ( i = 1; i < n; i++ )
591: c[i][i - 1] = ( c[i][i - 1] + mod - 1 ) % mod;
592: if ( ( dm = minimain(mod,n,n - 1,c) ) != -1 )
593: for ( i = 0, ptr = COEF(fr), ptr[0] = 0; i <= dm; i++ )
594: ptr[i + 1] = c[0][i];
595: else
596: COEF(fr)[0] = 1;
597: DEG(fr) = dm + 1;
598: }
599:
1.9 ! noro 600: int minimain(int mod,int n,int m,int **c)
1.1 noro 601: {
602: register int *ptr,*ci,*p;
603: register int i,l,a,j,b,inv;
604: int *tmp;
605:
606: for ( j = 0; j < m; j++ ) {
607: for ( i = j; (n > i) && !c[i][j]; i++ );
608: if ( i == n ) {
609: for ( i = j, j = j - 1; j >= 0; j-- )
610: c[0][j] = c[j][i];
611: c[0][i] = mod - 1;
612: return( i );
613: }
614: if ( i != j ) {
615: tmp = c[i]; c[i] = c[j]; c[j] = tmp;
616: }
617: ptr = c[j]; inv = invm((ptr[j] + mod) % mod,mod);
618: for ( l = j, p = ptr+l; l < m; l++ ) {
619: a = (*p * inv) % mod;
620: *p++ = (a<0?a+mod:a);
621: }
622: for ( i = 0; i < n; i++ )
623: if ( (a = -c[i][j]) && (i != j) ) {
624: for ( l = j+1, p = ptr+l, ci = c[i]+l; l < m; l++ ) {
625: b = (*p++ * a + *ci) % mod;
626: *ci++ = (b<0?b+mod:b);
627: }
628: c[i][j] = 0;
629: }
630: }
631: return (-1);
632: }
633:
1.4 noro 634: #if defined(__GNUC__)
1.1 noro 635: const
636: #endif
637: int sprime[] = {
638: 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,
639: 53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,
640: 127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,
641: 199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,
642: 283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,
643: 383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,
644: 467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,
645: 577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,
646: 661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,
647: 769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,
648: 877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,
649: 983,991,997,1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,
650: 1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,
651: 1193,1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,
652: 1297,1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,
653: 1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,
654: 1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597,1601,1607,1609,1613,
655: 1619,1621,1627,1637,1657,1663,1667,1669,1693,1697,1699,1709,1721,1723,1733,
656: 1741,1747,1753,1759,1777,1783,1787,1789,1801,1811,1823,1831,1847,1861,1867,
657: 1871,1873,1877,1879,1889,1901,1907,1913,1931,1933,1949,1951,1973,1979,1987,
658: 1993,1997,1999,2003,2011,2017,2027,2029,2039,2053,2063,2069,2081,2083,2087,
659: 2089,2099,2111,2113,2129,2131,2137,2141,2143,2153,2161,2179,2203,2207,2213,
660: 2221,2237,2239,2243,2251,2267,2269,2273,2281,2287,2293,2297,2309,2311,2333,
661: 2339,2341,2347,2351,2357,2371,2377,2381,2383,2389,2393,2399,2411,2417,2423,
662: 2437,2441,2447,2459,2467,2473,2477,2503,2521,2531,2539,2543,2549,2551,2557,
663: 2579,2591,2593,2609,2617,2621,2633,2647,2657,2659,2663,2671,2677,2683,2687,
664: 2689,2693,2699,2707,2711,2713,2719,2729,2731,2741,2749,2753,2767,2777,2789,
665: 2791,2797,2801,2803,2819,2833,2837,2843,2851,2857,2861,2879,2887,2897,2903,
666: 2909,2917,2927,2939,2953,2957,2963,2969,2971,2999,3001,3011,3019,3023,3037,
667: 3041,3049,3061,3067,3079,3083,3089,3109,3119,3121,3137,3163,3167,3169,3181,
668: 3187,3191,3203,3209,3217,3221,3229,3251,3253,3257,3259,3271,3299,3301,3307,
669: 3313,3319,3323,3329,3331,3343,3347,3359,3361,3371,3373,3389,3391,3407,3413,
670: 3433,3449,3457,3461,3463,3467,3469,3491,3499,3511,3517,3527,3529,3533,3539,
671: 3541,3547,3557,3559,3571,3581,3583,3593,3607,3613,3617,3623,3631,3637,3643,
672: 3659,3671,3673,3677,3691,3697,3701,3709,3719,3727,3733,3739,3761,3767,3769,
673: 3779,3793,3797,3803,3821,3823,3833,3847,3851,3853,3863,3877,3881,3889,3907,
674: 3911,3917,3919,3923,3929,3931,3943,3947,3967,3989,4001,4003,4007,4013,4019,
675: 4021,4027,4049,4051,4057,4073,4079,4091,4093,4099,4111,4127,4129,4133,4139,
676: 4153,4157,4159,4177,4201,4211,4217,4219,4229,4231,4241,4243,4253,4259,4261,
677: 4271,4273,4283,4289,4297,4327,4337,4339,4349,4357,4363,4373,4391,4397,4409,
678: 4421,4423,4441,4447,4451,4457,4463,4481,4483,4493,4507,4513,4517,4519,4523,
679: 4547,4549,4561,4567,4583,4591,4597,4603,4621,4637,4639,4643,4649,4651,4657,
680: 4663,4673,4679,4691,4703,4721,4723,4729,4733,4751,4759,4783,4787,4789,4793,
681: 4799,4801,4813,4817,4831,4861,4871,4877,4889,4903,4909,4919,4931,4933,4937,
682: 4943,4951,4957,4967,4969,4973,4987,4993,4999,5003,5009,5011,5021,5023,5039,
683: 5051,5059,5077,5081,5087,5099,5101,5107,5113,5119,5147,5153,5167,5171,5179,
684: 5189,5197,5209,5227,5231,5233,5237,5261,5273,5279,5281,5297,5303,5309,5323,
685: 5333,5347,5351,5381,5387,5393,5399,5407,5413,5417,5419,5431,5437,5441,5443,
686: 5449,5471,5477,5479,5483,5501,5503,5507,5519,5521,5527,5531,5557,5563,5569,
687: 5573,5581,5591,5623,5639,5641,5647,5651,5653,5657,5659,5669,5683,5689,5693,
688: 5701,5711,5717,5737,5741,5743,5749,5779,5783,5791,5801,5807,5813,5821,5827,
689: 5839,5843,5849,5851,5857,5861,5867,5869,5879,5881,5897,5903,5923,5927,5939,
690: 5953,5981,5987,6007,6011,6029,6037,6043,6047,6053,6067,6073,6079,6089,6091,
691: 6101,6113,6121,6131,6133,6143,6151,6163,6173,6197,6199,6203,6211,6217,6221,
692: 6229,6247,6257,6263,6269,6271,6277,6287,6299,6301,6311,6317,6323,6329,6337,
693: 6343,6353,6359,6361,6367,6373,6379,6389,6397,6421,6427,6449,6451,6469,6473,
694: 6481,6491,6521,6529,6547,6551,6553,6563,6569,6571,6577,6581,6599,6607,6619,
695: 6637,6653,6659,6661,6673,6679,6689,6691,6701,6703,6709,6719,6733,6737,6761,
696: 6763,6779,6781,6791,6793,6803,6823,6827,6829,6833,6841,6857,6863,6869,6871,
697: 6883,6899,6907,6911,6917,6947,6949,6959,6961,6967,6971,6977,6983,6991,6997,
698: 7001,7013,7019,7027,7039,7043,7057,7069,7079,7103,7109,7121,7127,7129,7151,
699: 7159,7177,7187,7193,7207,7211,7213,7219,7229,7237,7243,7247,7253,7283,7297,
700: 7307,7309,7321,7331,7333,7349,7351,7369,7393,7411,7417,7433,7451,7457,7459,
701: 7477,7481,7487,7489,7499,7507,7517,7523,7529,7537,7541,7547,7549,7559,7561,
702: 7573,7577,7583,7589,7591,7603,7607,7621,7639,7643,7649,7669,7673,7681,7687,
703: 7691,7699,7703,7717,7723,7727,7741,7753,7757,7759,7789,7793,7817,7823,7829,
704: 7841,7853,7867,7873,7877,7879,7883,7901,7907,7919,7927,7933,7937,7949,7951,
705: 7963,7993,8009,8011,8017,8039,8053,8059,8069,8081,8087,8089,8093,8101,8111,
706: 8117,8123,8147,8161,8167,8171,8179,8191,8209,8219,8221,8231,8233,8237,8243,
707: 8263,8269,8273,8287,8291,8293,8297,8311,8317,8329,8353,8363,8369,8377,8387,
708: 8389,8419,8423,8429,8431,8443,8447,8461,8467,8501,8513,8521,8527,8537,8539,
709: 8543,8563,8573,8581,8597,8599,8609,8623,8627,8629,8641,8647,8663,8669,8677,
710: 8681,8689,8693,8699,8707,8713,8719,8731,8737,8741,8747,8753,8761,8779,8783,
711: 8803,8807,8819,8821,8831,8837,8839,8849,8861,8863,8867,8887,8893,8923,8929,
712: 8933,8941,8951,8963,8969,8971,8999,9001,9007,9011,9013,9029,9041,9043,9049,
713: 9059,9067,9091,9103,9109,9127,9133,9137,9151,9157,9161,9173,9181,9187,9199,
714: 9203,9209,9221,9227,9239,9241,9257,9277,9281,9283,9293,9311,9319,9323,9337,
715: 9341,9343,9349,9371,9377,9391,9397,9403,9413,9419,9421,9431,9433,9437,9439,
716: 9461,9463,9467,9473,9479,9491,9497,9511,9521,9533,9539,9547,9551,9587,9601,
717: 9613,9619,9623,9629,9631,9643,9649,9661,9677,9679,9689,9697,9719,9721,9733,
718: 9739,9743,9749,9767,9769,9781,9787,9791,9803,9811,9817,9829,9833,9839,9851,
719: 9857,9859,9871,9883,9887,9901,9907,9923,9929,9931,9941,9949,9967,9973,10007,
720: 10009,10037,10039,10061,10067,10069,10079,10091,10093,10099,
721: 10103,10111,10133,10139,10141,10151,10159,10163,10169,10177,
722: 10181,10193,10211,10223,10243,10247,10253,10259,10267,10271,
723: 10273,10289,10301,10303,10313,10321,10331,10333,10337,10343,
724: 10357,10369,10391,10399,10427,10429,10433,10453,10457,10459,
725: 10463,10477,10487,10499,10501,10513,10529,10531,10559,10567,
726: 10589,10597,10601,10607,10613,10627,10631,10639,10651,10657,
727: 10663,10667,10687,10691,10709,10711,10723,10729,10733,10739,
728: 10753,10771,10781,10789,10799,10831,10837,10847,10853,10859,
729: 10861,10867,10883,10889,10891,10903,10909,10937,10939,10949,
730: 10957,10973,10979,10987,10993,11003,11027,11047,11057,11059,
731: 11069,11071,11083,11087,11093,11113,11117,11119,11131,11149,
732: 11159,11161,11171,11173,11177,11197,11213,11239,11243,11251,
733: 11257,11261,11273,11279,11287,11299,11311,11317,11321,11329,
734: 11351,11353,11369,11383,11393,11399,11411,11423,11437,11443,
735: 11447,11467,11471,11483,11489,11491,11497,11503,11519,11527,
736: 11549,11551,11579,11587,11593,11597,11617,11621,11633,11657,
737: 11677,11681,11689,11699,11701,11717,11719,11731,11743,11777,
738: 11779,11783,11789,11801,11807,11813,11821,11827,11831,11833,
739: 11839,11863,11867,11887,11897,11903,11909,11923,11927,11933,
740: 11939,11941,11953,11959,11969,11971,11981,11987,12007,12011,
741: 12037,12041,12043,12049,12071,12073,12097,12101,12107,12109,
742: 12113,12119,12143,12149,12157,12161,12163,12197,12203,12211,
743: 12227,12239,12241,12251,12253,12263,12269,12277,12281,12289,
744: 12301,12323,12329,12343,12347,12373,12377,12379,12391,12401,
745: 12409,12413,12421,12433,12437,12451,12457,12473,12479,12487,
746: 12491,12497,12503,12511,12517,12527,12539,12541,12547,12553,
747: 12569,12577,12583,12589,12601,12611,12613,12619,12637,12641,
748: 12647,12653,12659,12671,12689,12697,12703,12713,12721,12739,
749: 12743,12757,12763,12781,12791,12799,12809,12821,12823,12829,
750: 12841,12853,12889,12893,12899,12907,12911,12917,12919,12923,
751: 12941,12953,12959,12967,12973,12979,12983,13001,13003,13007,
752: 13009,13033,13037,13043,13049,13063,13093,13099,13103,13109,
753: 13121,13127,13147,13151,13159,13163,13171,13177,13183,13187,
754: 13217,13219,13229,13241,13249,13259,13267,13291,13297,13309,
755: 13313,13327,13331,13337,13339,13367,13381,13397,13399,13411,
756: 13417,13421,13441,13451,13457,13463,13469,13477,13487,13499,
757: 13513,13523,13537,13553,13567,13577,13591,13597,13613,13619,
758: 13627,13633,13649,13669,13679,13681,13687,13691,13693,13697,
759: 13709,13711,13721,13723,13729,13751,13757,13759,13763,13781,
760: 13789,13799,13807,13829,13831,13841,13859,13873,13877,13879,
761: 13883,13901,13903,13907,13913,13921,13931,13933,13963,13967,
762: 13997,13999,14009,14011,14029,14033,14051,14057,14071,14081,
763: 14083,14087,14107,14143,14149,14153,14159,14173,14177,14197,
764: 14207,14221,14243,14249,14251,14281,14293,14303,14321,14323,
765: 14327,14341,14347,14369,14387,14389,14401,14407,14411,14419,
766: 14423,14431,14437,14447,14449,14461,14479,14489,14503,14519,
767: 14533,14537,14543,14549,14551,14557,14561,14563,14591,14593,
768: 14621,14627,14629,14633,14639,14653,14657,14669,14683,14699,
769: 14713,14717,14723,14731,14737,14741,14747,14753,14759,14767,
770: 14771,14779,14783,14797,14813,14821,14827,14831,14843,14851,
771: 14867,14869,14879,14887,14891,14897,14923,14929,14939,14947,
772: 14951,14957,14969,14983,15013,15017,15031,15053,15061,15073,
773: 15077,15083,15091,15101,15107,15121,15131,15137,15139,15149,
774: 15161,15173,15187,15193,15199,15217,15227,15233,15241,15259,
775: 15263,15269,15271,15277,15287,15289,15299,15307,15313,15319,
776: 15329,15331,15349,15359,15361,15373,15377,15383,15391,15401,
777: 15413,15427,15439,15443,15451,15461,15467,15473,15493,15497,
778: 15511,15527,15541,15551,15559,15569,15581,15583,15601,15607,
779: 15619,15629,15641,15643,15647,15649,15661,15667,15671,15679,
780: 15683,15727,15731,15733,15737,15739,15749,15761,15767,15773,
781: 15787,15791,15797,15803,15809,15817,15823,15859,15877,15881,
782: 15887,15889,15901,15907,15913,15919,15923,15937,15959,15971,
783: 15973,15991,16001,16007,16033,16057,16061,16063,16067,16069,
784: 16073,16087,16091,16097,16103,16111,16127,16139,16141,16183,
785: 16187,16189,16193,16217,16223,16229,16231,16249,16253,16267,
786: 16273,16301,16319,16333,16339,16349,16361,16363,16369,16381,
787: 0
788: };
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>