[BACK]Return to gfs.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2000 / engine

Annotation of OpenXM_contrib2/asir2000/engine/gfs.c, Revision 1.10

1.1       noro        1: /*
                      2:  * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
                      3:  * All rights reserved.
                      4:  *
                      5:  * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a ligfsted,
                      6:  * non-exclusive and royalty-free license to use, copy, modify and
                      7:  * redistribute, solely for non-commercial and non-profit purposes, the
                      8:  * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
                      9:  * conditions of this Agreement. For the avoidance of doubt, you acquire
                     10:  * only a ligfsted right to use the SOFTWARE hereunder, and FLL or any
                     11:  * third party developer retains all rights, including but not ligfsted to
                     12:  * copyrights, in and to the SOFTWARE.
                     13:  *
                     14:  * (1) FLL does not grant you a license in any way for commercial
                     15:  * purposes. You may use the SOFTWARE only for non-commercial and
                     16:  * non-profit purposes only, such as acadegfsc, research and internal
                     17:  * business use.
                     18:  * (2) The SOFTWARE is protected by the Copyright Law of Japan and
                     19:  * international copyright treaties. If you make copies of the SOFTWARE,
                     20:  * with or without modification, as pergfstted hereunder, you shall affix
                     21:  * to all such copies of the SOFTWARE the above copyright notice.
                     22:  * (3) An explicit reference to this SOFTWARE and its copyright owner
                     23:  * shall be made on your publication or presentation in any form of the
                     24:  * results obtained by use of the SOFTWARE.
                     25:  * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
                     26:  * e-mail at risa-adgfsn@sec.flab.fujitsu.co.jp of the detailed specification
                     27:  * for such modification or the source code of the modified part of the
                     28:  * SOFTWARE.
                     29:  *
                     30:  * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
                     31:  * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
                     32:  * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
                     33:  * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
                     34:  * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
                     35:  * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
                     36:  * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
                     37:  * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
                     38:  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
                     39:  * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
                     40:  * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
                     41:  * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
                     42:  * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
                     43:  * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
                     44:  * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
                     45:  * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
                     46:  * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
                     47:  *
1.10    ! noro       48:  * $OpenXM: OpenXM_contrib2/asir2000/engine/gfs.c,v 1.9 2001/10/09 01:36:12 noro Exp $
1.1       noro       49: */
                     50: #include "ca.h"
                     51:
                     52: /* q = p^n */
                     53:
1.2       noro       54: P current_gfs_ext;
                     55: int current_gfs_p;
1.1       noro       56: int current_gfs_q;
                     57: int current_gfs_q1;
                     58: int *current_gfs_plus1;
                     59: int *current_gfs_ntoi;
                     60: int *current_gfs_iton;
                     61:
1.6       noro       62: struct prim_root_info {
                     63:        int p;
                     64:        int extdeg;
                     65:        int defpoly;
                     66:        int prim_root;
                     67: };
                     68:
                     69: struct prim_root_info prim_root_info_tab[] = {
                     70: {2,1,0,0}, {2,2,7,2}, {2,3,11,2}, {2,4,19,2}, {2,5,37,2}, {2,6,67,2},
                     71: {2,7,131,2}, {2,8,283,3}, {2,9,515,7}, {2,10,1033,2}, {2,11,2053,2},
                     72: {2,12,4105,3}, {2,13,8219,2}, {2,14,16417,7}, {2,15,32771,2}, {3,1,0,2},
                     73: {3,2,10,4}, {3,3,34,3}, {3,4,86,3}, {3,5,250,3}, {3,6,734,3}, {3,7,2198,5},
                     74: {3,8,6572,38}, {3,9,19747,3}, {3,10,59068,34}, {5,1,0,2}, {5,2,27,6},
                     75: {5,3,131,9}, {5,4,627,6}, {5,5,3146,10}, {5,6,15632,5}, {7,1,0,3},
                     76: {7,2,50,9}, {7,3,345,22}, {7,4,2409,12}, {7,5,16817,9}, {11,1,0,2},
                     77: {11,2,122,15}, {11,3,1346,11}, {11,4,14654,11}, {13,1,0,2}, {13,2,171,15},
                     78: {13,3,2199,15}, {13,4,28563,17}, {17,1,0,3}, {17,2,292,19}, {17,3,4933,17},
                     79: {19,1,0,2}, {19,2,362,22}, {19,3,6861,29}, {23,1,0,5}, {23,2,530,25},
                     80: {23,3,12193,23}, {29,1,0,2}, {29,2,843,30}, {29,3,24422,30}, {31,1,0,3},
                     81: {31,2,962,35}, {31,3,29794,34}, {37,1,0,2}, {37,2,1371,41}, {37,3,50655,75},
                     82: {41,1,0,6}, {41,2,1684,43}, {43,1,0,3}, {43,2,1850,45}, {47,1,0,5},
                     83: {47,2,2210,49}, {53,1,0,2}, {53,2,2811,54}, {59,1,0,2}, {59,2,3482,62},
                     84: {61,1,0,2}, {61,2,3723,63}, {67,1,0,2}, {67,2,4490,74}, {71,1,0,7},
                     85: {71,2,5042,79}, {73,1,0,5}, {73,2,5334,76}, {79,1,0,3}, {79,2,6242,85},
                     86: {83,1,0,2}, {83,2,6890,93}, {89,1,0,3}, {89,2,7924,91}, {97,1,0,5},
                     87: {97,2,9414,101}, {101,1,0,2}, {101,2,10203,102},
                     88: {103,1,0,5}, {103,2,10610,105}, {107,1,0,2}, {107,2,11450,109},
                     89: {109,1,0,6}, {109,2,11883,111}, {113,1,0,3}, {113,2,12772,117},
                     90: {127,1,0,3}, {127,2,16130,135}, {131,1,0,2}, {131,2,17162,134},
                     91: {137,1,0,3}, {137,2,18772,145}, {139,1,0,2}, {139,2,19322,143},
                     92: {149,1,0,2}, {149,2,22203,152}, {151,1,0,6}, {151,2,22802,160},
                     93: {157,1,0,5}, {157,2,24651,159}, {163,1,0,2}, {163,2,26570,170},
                     94: {167,1,0,5}, {167,2,27890,169}, {173,1,0,2}, {173,2,29931,174},
                     95: {179,1,0,2}, {179,2,32042,182}, {181,1,0,2}, {181,2,32763,185},
                     96: {191,1,0,19}, {191,2,36482,201}, {193,1,0,5}, {193,2,37254,198},
                     97: {197,1,0,2}, {197,2,38811,200}, {199,1,0,3}, {199,2,39602,212},
                     98: {211,1,0,2}, {211,2,44522,215}, {223,1,0,3}, {223,2,49730,225},
                     99: {227,1,0,2}, {227,2,51530,229}, {229,1,0,6}, {229,2,52443,231},
                    100: {233,1,0,3}, {233,2,54292,241}, {239,1,0,7}, {239,2,57122,247},
                    101: {241,1,0,7}, {241,2,58088,248}, {251,1,0,6}, {251,2,63002,256},
                    102: {257,1,0,3}, {263,1,0,5}, {269,1,0,2}, {271,1,0,6}, {277,1,0,5}, {281,1,0,3},
                    103: {283,1,0,3}, {293,1,0,2}, {307,1,0,5}, {311,1,0,17}, {313,1,0,10},
                    104: {317,1,0,2}, {331,1,0,3}, {337,1,0,10}, {347,1,0,2}, {349,1,0,2},
                    105: {353,1,0,3}, {359,1,0,7}, {367,1,0,6}, {373,1,0,2}, {379,1,0,2},
                    106: {383,1,0,5}, {389,1,0,2}, {397,1,0,5}, {401,1,0,3}, {409,1,0,21},
                    107: {419,1,0,2}, {421,1,0,2}, {431,1,0,7}, {433,1,0,5}, {439,1,0,15},
                    108: {443,1,0,2}, {449,1,0,3}, {457,1,0,13}, {461,1,0,2}, {463,1,0,3},
                    109: {467,1,0,2}, {479,1,0,13}, {487,1,0,3}, {491,1,0,2}, {499,1,0,7},
                    110: {503,1,0,5}, {509,1,0,2}, {521,1,0,3}, {523,1,0,2}, {541,1,0,2},
                    111: {547,1,0,2}, {557,1,0,2}, {563,1,0,2}, {569,1,0,3}, {571,1,0,3},
                    112: {577,1,0,5}, {587,1,0,2}, {593,1,0,3}, {599,1,0,7}, {601,1,0,7},
                    113: {607,1,0,3}, {613,1,0,2}, {617,1,0,3}, {619,1,0,2}, {631,1,0,3},
                    114: {641,1,0,3}, {643,1,0,11}, {647,1,0,5}, {653,1,0,2}, {659,1,0,2},
                    115: {661,1,0,2}, {673,1,0,5}, {677,1,0,2}, {683,1,0,5}, {691,1,0,3},
                    116: {701,1,0,2}, {709,1,0,2}, {719,1,0,11}, {727,1,0,5}, {733,1,0,6},
                    117: {739,1,0,3}, {743,1,0,5}, {751,1,0,3}, {757,1,0,2}, {761,1,0,6},
                    118: {769,1,0,11}, {773,1,0,2}, {787,1,0,2}, {797,1,0,2}, {809,1,0,3},
                    119: {811,1,0,3}, {821,1,0,2}, {823,1,0,3}, {827,1,0,2}, {829,1,0,2},
                    120: {839,1,0,11}, {853,1,0,2}, {857,1,0,3}, {859,1,0,2}, {863,1,0,5},
                    121: {877,1,0,2}, {881,1,0,3}, {883,1,0,2}, {887,1,0,5}, {907,1,0,2},
                    122: {911,1,0,17}, {919,1,0,7}, {929,1,0,3}, {937,1,0,5}, {941,1,0,2},
                    123: {947,1,0,2}, {953,1,0,3}, {967,1,0,5}, {971,1,0,6}, {977,1,0,3},
                    124: {983,1,0,5}, {991,1,0,6}, {997,1,0,7}, {1009,1,0,11}, {1013,1,0,3},
                    125: {1019,1,0,2}, {1021,1,0,10}, {1031,1,0,14}, {1033,1,0,5}, {1039,1,0,3},
                    126: {1049,1,0,3}, {1051,1,0,7}, {1061,1,0,2}, {1063,1,0,3}, {1069,1,0,6},
                    127: {1087,1,0,3}, {1091,1,0,2}, {1093,1,0,5}, {1097,1,0,3}, {1103,1,0,5},
                    128: {1109,1,0,2}, {1117,1,0,2}, {1123,1,0,2}, {1129,1,0,11}, {1151,1,0,17},
                    129: {1153,1,0,5}, {1163,1,0,5}, {1171,1,0,2}, {1181,1,0,7}, {1187,1,0,2},
                    130: {1193,1,0,3}, {1201,1,0,11}, {1213,1,0,2}, {1217,1,0,3}, {1223,1,0,5},
                    131: {1229,1,0,2}, {1231,1,0,3}, {1237,1,0,2}, {1249,1,0,7}, {1259,1,0,2},
                    132: {1277,1,0,2}, {1279,1,0,3}, {1283,1,0,2}, {1289,1,0,6}, {1291,1,0,2},
                    133: {1297,1,0,10}, {1301,1,0,2}, {1303,1,0,6}, {1307,1,0,2}, {1319,1,0,13},
                    134: {1321,1,0,13}, {1327,1,0,3}, {1361,1,0,3}, {1367,1,0,5}, {1373,1,0,2},
                    135: {1381,1,0,2}, {1399,1,0,13}, {1409,1,0,3}, {1423,1,0,3}, {1427,1,0,2},
                    136: {1429,1,0,6}, {1433,1,0,3}, {1439,1,0,7}, {1447,1,0,3}, {1451,1,0,2},
                    137: {1453,1,0,2}, {1459,1,0,3}, {1471,1,0,6}, {1481,1,0,3}, {1483,1,0,2},
                    138: {1487,1,0,5}, {1489,1,0,14}, {1493,1,0,2}, {1499,1,0,2}, {1511,1,0,11},
                    139: {1523,1,0,2}, {1531,1,0,2}, {1543,1,0,5}, {1549,1,0,2}, {1553,1,0,3},
                    140: {1559,1,0,19}, {1567,1,0,3}, {1571,1,0,2}, {1579,1,0,3}, {1583,1,0,5},
                    141: {1597,1,0,11}, {1601,1,0,3}, {1607,1,0,5}, {1609,1,0,7}, {1613,1,0,3},
                    142: {1619,1,0,2}, {1621,1,0,2}, {1627,1,0,3}, {1637,1,0,2}, {1657,1,0,11},
                    143: {1663,1,0,3}, {1667,1,0,2}, {1669,1,0,2}, {1693,1,0,2}, {1697,1,0,3},
                    144: {1699,1,0,3}, {1709,1,0,3}, {1721,1,0,3}, {1723,1,0,3}, {1733,1,0,2},
                    145: {1741,1,0,2}, {1747,1,0,2}, {1753,1,0,7}, {1759,1,0,6}, {1777,1,0,5},
                    146: {1783,1,0,10}, {1787,1,0,2}, {1789,1,0,6}, {1801,1,0,11}, {1811,1,0,6},
                    147: {1823,1,0,5}, {1831,1,0,3}, {1847,1,0,5}, {1861,1,0,2}, {1867,1,0,2},
                    148: {1871,1,0,14}, {1873,1,0,10}, {1877,1,0,2}, {1879,1,0,6}, {1889,1,0,3},
                    149: {1901,1,0,2}, {1907,1,0,2}, {1913,1,0,3}, {1931,1,0,2}, {1933,1,0,5},
                    150: {1949,1,0,2}, {1951,1,0,3}, {1973,1,0,2}, {1979,1,0,2}, {1987,1,0,2},
                    151: {1993,1,0,5}, {1997,1,0,2}, {1999,1,0,3}, {2003,1,0,5}, {2011,1,0,3},
                    152: {2017,1,0,5}, {2027,1,0,2}, {2029,1,0,2}, {2039,1,0,7}, {2053,1,0,2},
                    153: {2063,1,0,5}, {2069,1,0,2}, {2081,1,0,3}, {2083,1,0,2}, {2087,1,0,5},
                    154: {2089,1,0,7}, {2099,1,0,2}, {2111,1,0,7}, {2113,1,0,5}, {2129,1,0,3},
                    155: {2131,1,0,2}, {2137,1,0,10}, {2141,1,0,2}, {2143,1,0,3}, {2153,1,0,3},
                    156: {2161,1,0,23}, {2179,1,0,7}, {2203,1,0,5}, {2207,1,0,5}, {2213,1,0,2},
                    157: {2221,1,0,2}, {2237,1,0,2}, {2239,1,0,3}, {2243,1,0,2}, {2251,1,0,7},
                    158: {2267,1,0,2}, {2269,1,0,2}, {2273,1,0,3}, {2281,1,0,7}, {2287,1,0,19},
                    159: {2293,1,0,2}, {2297,1,0,5}, {2309,1,0,2}, {2311,1,0,3}, {2333,1,0,2},
                    160: {2339,1,0,2}, {2341,1,0,7}, {2347,1,0,3}, {2351,1,0,13}, {2357,1,0,2},
                    161: {2371,1,0,2}, {2377,1,0,5}, {2381,1,0,3}, {2383,1,0,5}, {2389,1,0,2},
                    162: {2393,1,0,3}, {2399,1,0,11}, {2411,1,0,6}, {2417,1,0,3}, {2423,1,0,5},
                    163: {2437,1,0,2}, {2441,1,0,6}, {2447,1,0,5}, {2459,1,0,2}, {2467,1,0,2},
                    164: {2473,1,0,5}, {2477,1,0,2}, {2503,1,0,3}, {2521,1,0,17}, {2531,1,0,2},
                    165: {2539,1,0,2}, {2543,1,0,5}, {2549,1,0,2}, {2551,1,0,6}, {2557,1,0,2},
                    166: {2579,1,0,2}, {2591,1,0,7}, {2593,1,0,7}, {2609,1,0,3}, {2617,1,0,5},
                    167: {2621,1,0,2}, {2633,1,0,3}, {2647,1,0,3}, {2657,1,0,3}, {2659,1,0,2},
                    168: {2663,1,0,5}, {2671,1,0,7}, {2677,1,0,2}, {2683,1,0,2}, {2687,1,0,5},
                    169: {2689,1,0,19}, {2693,1,0,2}, {2699,1,0,2}, {2707,1,0,2}, {2711,1,0,7},
                    170: {2713,1,0,5}, {2719,1,0,3}, {2729,1,0,3}, {2731,1,0,3}, {2741,1,0,2},
                    171: {2749,1,0,6}, {2753,1,0,3}, {2767,1,0,3}, {2777,1,0,3}, {2789,1,0,2},
                    172: {2791,1,0,6}, {2797,1,0,2}, {2801,1,0,3}, {2803,1,0,2}, {2819,1,0,2},
                    173: {2833,1,0,5}, {2837,1,0,2}, {2843,1,0,2}, {2851,1,0,2}, {2857,1,0,11},
                    174: {2861,1,0,2}, {2879,1,0,7}, {2887,1,0,5}, {2897,1,0,3}, {2903,1,0,5},
                    175: {2909,1,0,2}, {2917,1,0,5}, {2927,1,0,5}, {2939,1,0,2}, {2953,1,0,13},
                    176: {2957,1,0,2}, {2963,1,0,2}, {2969,1,0,3}, {2971,1,0,10}, {2999,1,0,17},
                    177: {3001,1,0,14}, {3011,1,0,2}, {3019,1,0,2}, {3023,1,0,5}, {3037,1,0,2},
                    178: {3041,1,0,3}, {3049,1,0,11}, {3061,1,0,6}, {3067,1,0,2}, {3079,1,0,6},
                    179: {3083,1,0,2}, {3089,1,0,3}, {3109,1,0,6}, {3119,1,0,7}, {3121,1,0,7},
                    180: {3137,1,0,3}, {3163,1,0,3}, {3167,1,0,5}, {3169,1,0,7}, {3181,1,0,7},
                    181: {3187,1,0,2}, {3191,1,0,11}, {3203,1,0,2}, {3209,1,0,3}, {3217,1,0,5},
                    182: {3221,1,0,10}, {3229,1,0,6}, {3251,1,0,6}, {3253,1,0,2}, {3257,1,0,3},
                    183: {3259,1,0,3}, {3271,1,0,3}, {3299,1,0,2}, {3301,1,0,6}, {3307,1,0,2},
                    184: {3313,1,0,10}, {3319,1,0,6}, {3323,1,0,2}, {3329,1,0,3}, {3331,1,0,3},
                    185: {3343,1,0,5}, {3347,1,0,2}, {3359,1,0,11}, {3361,1,0,22}, {3371,1,0,2},
                    186: {3373,1,0,5}, {3389,1,0,3}, {3391,1,0,3}, {3407,1,0,5}, {3413,1,0,2},
                    187: {3433,1,0,5}, {3449,1,0,3}, {3457,1,0,7}, {3461,1,0,2}, {3463,1,0,3},
                    188: {3467,1,0,2}, {3469,1,0,2}, {3491,1,0,2}, {3499,1,0,2}, {3511,1,0,7},
                    189: {3517,1,0,2}, {3527,1,0,5}, {3529,1,0,17}, {3533,1,0,2}, {3539,1,0,2},
                    190: {3541,1,0,7}, {3547,1,0,2}, {3557,1,0,2}, {3559,1,0,3}, {3571,1,0,2},
                    191: {3581,1,0,2}, {3583,1,0,3}, {3593,1,0,3}, {3607,1,0,5}, {3613,1,0,2},
                    192: {3617,1,0,3}, {3623,1,0,5}, {3631,1,0,15}, {3637,1,0,2}, {3643,1,0,2},
                    193: {3659,1,0,2}, {3671,1,0,13}, {3673,1,0,5}, {3677,1,0,2}, {3691,1,0,2},
                    194: {3697,1,0,5}, {3701,1,0,2}, {3709,1,0,2}, {3719,1,0,7}, {3727,1,0,3},
                    195: {3733,1,0,2}, {3739,1,0,7}, {3761,1,0,3}, {3767,1,0,5}, {3769,1,0,7},
                    196: {3779,1,0,2}, {3793,1,0,5}, {3797,1,0,2}, {3803,1,0,2}, {3821,1,0,3},
                    197: {3823,1,0,3}, {3833,1,0,3}, {3847,1,0,5}, {3851,1,0,2}, {3853,1,0,2},
                    198: {3863,1,0,5}, {3877,1,0,2}, {3881,1,0,13}, {3889,1,0,11}, {3907,1,0,2},
                    199: {3911,1,0,13}, {3917,1,0,2}, {3919,1,0,3}, {3923,1,0,2}, {3929,1,0,3},
                    200: {3931,1,0,2}, {3943,1,0,3}, {3947,1,0,2}, {3967,1,0,6}, {3989,1,0,2},
                    201: {4001,1,0,3}, {4003,1,0,2}, {4007,1,0,5}, {4013,1,0,2}, {4019,1,0,2},
                    202: {4021,1,0,2}, {4027,1,0,3}, {4049,1,0,3}, {4051,1,0,10}, {4057,1,0,5},
                    203: {4073,1,0,3}, {4079,1,0,11}, {4091,1,0,2}, {4093,1,0,2}, {4099,1,0,2},
                    204: {4111,1,0,12}, {4127,1,0,5}, {4129,1,0,13}, {4133,1,0,2}, {4139,1,0,2},
                    205: {4153,1,0,5}, {4157,1,0,2}, {4159,1,0,3}, {4177,1,0,5}, {4201,1,0,11},
                    206: {4211,1,0,6}, {4217,1,0,3}, {4219,1,0,2}, {4229,1,0,2}, {4231,1,0,3},
                    207: {4241,1,0,3}, {4243,1,0,2}, {4253,1,0,2}, {4259,1,0,2}, {4261,1,0,2},
                    208: {4271,1,0,7}, {4273,1,0,5}, {4283,1,0,2}, {4289,1,0,3}, {4297,1,0,5},
                    209: {4327,1,0,3}, {4337,1,0,3}, {4339,1,0,10}, {4349,1,0,2}, {4357,1,0,2},
                    210: {4363,1,0,2}, {4373,1,0,2}, {4391,1,0,14}, {4397,1,0,2}, {4409,1,0,3},
                    211: {4421,1,0,3}, {4423,1,0,3}, {4441,1,0,21}, {4447,1,0,3}, {4451,1,0,2},
                    212: {4457,1,0,3}, {4463,1,0,5}, {4481,1,0,3}, {4483,1,0,2}, {4493,1,0,2},
                    213: {4507,1,0,2}, {4513,1,0,7}, {4517,1,0,2}, {4519,1,0,3}, {4523,1,0,5},
                    214: {4547,1,0,2}, {4549,1,0,6}, {4561,1,0,11}, {4567,1,0,3}, {4583,1,0,5},
                    215: {4591,1,0,11}, {4597,1,0,5}, {4603,1,0,2}, {4621,1,0,2}, {4637,1,0,2},
                    216: {4639,1,0,3}, {4643,1,0,5}, {4649,1,0,3}, {4651,1,0,3}, {4657,1,0,15},
                    217: {4663,1,0,3}, {4673,1,0,3}, {4679,1,0,11}, {4691,1,0,2}, {4703,1,0,5},
                    218: {4721,1,0,6}, {4723,1,0,2}, {4729,1,0,17}, {4733,1,0,5}, {4751,1,0,19},
                    219: {4759,1,0,3}, {4783,1,0,6}, {4787,1,0,2}, {4789,1,0,2}, {4793,1,0,3},
                    220: {4799,1,0,7}, {4801,1,0,7}, {4813,1,0,2}, {4817,1,0,3}, {4831,1,0,3},
                    221: {4861,1,0,11}, {4871,1,0,11}, {4877,1,0,2}, {4889,1,0,3}, {4903,1,0,3},
                    222: {4909,1,0,6}, {4919,1,0,13}, {4931,1,0,6}, {4933,1,0,2}, {4937,1,0,3},
                    223: {4943,1,0,7}, {4951,1,0,6}, {4957,1,0,2}, {4967,1,0,5}, {4969,1,0,11},
                    224: {4973,1,0,2}, {4987,1,0,2}, {4993,1,0,5}, {4999,1,0,3}, {5003,1,0,2},
                    225: {5009,1,0,3}, {5011,1,0,2}, {5021,1,0,3}, {5023,1,0,3}, {5039,1,0,11},
                    226: {5051,1,0,2}, {5059,1,0,2}, {5077,1,0,2}, {5081,1,0,3}, {5087,1,0,5},
                    227: {5099,1,0,2}, {5101,1,0,6}, {5107,1,0,2}, {5113,1,0,19}, {5119,1,0,3},
                    228: {5147,1,0,2}, {5153,1,0,5}, {5167,1,0,6}, {5171,1,0,2}, {5179,1,0,2},
                    229: {5189,1,0,2}, {5197,1,0,7}, {5209,1,0,17}, {5227,1,0,2}, {5231,1,0,7},
                    230: {5233,1,0,10}, {5237,1,0,3}, {5261,1,0,2}, {5273,1,0,3}, {5279,1,0,7},
                    231: {5281,1,0,7}, {5297,1,0,3}, {5303,1,0,5}, {5309,1,0,2}, {5323,1,0,5},
                    232: {5333,1,0,2}, {5347,1,0,3}, {5351,1,0,11}, {5381,1,0,3}, {5387,1,0,2},
                    233: {5393,1,0,3}, {5399,1,0,7}, {5407,1,0,3}, {5413,1,0,5}, {5417,1,0,3},
                    234: {5419,1,0,3}, {5431,1,0,3}, {5437,1,0,5}, {5441,1,0,3}, {5443,1,0,2},
                    235: {5449,1,0,7}, {5471,1,0,7}, {5477,1,0,2}, {5479,1,0,3}, {5483,1,0,2},
                    236: {5501,1,0,2}, {5503,1,0,3}, {5507,1,0,2}, {5519,1,0,13}, {5521,1,0,11},
                    237: {5527,1,0,5}, {5531,1,0,10}, {5557,1,0,2}, {5563,1,0,2}, {5569,1,0,13},
                    238: {5573,1,0,2}, {5581,1,0,6}, {5591,1,0,11}, {5623,1,0,5}, {5639,1,0,7},
                    239: {5641,1,0,14}, {5647,1,0,3}, {5651,1,0,2}, {5653,1,0,5}, {5657,1,0,3},
                    240: {5659,1,0,2}, {5669,1,0,3}, {5683,1,0,2}, {5689,1,0,11}, {5693,1,0,2},
                    241: {5701,1,0,2}, {5711,1,0,19}, {5717,1,0,2}, {5737,1,0,5}, {5741,1,0,2},
                    242: {5743,1,0,10}, {5749,1,0,2}, {5779,1,0,2}, {5783,1,0,7}, {5791,1,0,6},
                    243: {5801,1,0,3}, {5807,1,0,5}, {5813,1,0,2}, {5821,1,0,6}, {5827,1,0,2},
                    244: {5839,1,0,6}, {5843,1,0,2}, {5849,1,0,3}, {5851,1,0,2}, {5857,1,0,7},
                    245: {5861,1,0,3}, {5867,1,0,5}, {5869,1,0,2}, {5879,1,0,11}, {5881,1,0,31},
                    246: {5897,1,0,3}, {5903,1,0,5}, {5923,1,0,2}, {5927,1,0,5}, {5939,1,0,2},
                    247: {5953,1,0,7}, {5981,1,0,3}, {5987,1,0,2}, {6007,1,0,3}, {6011,1,0,2},
                    248: {6029,1,0,2}, {6037,1,0,5}, {6043,1,0,5}, {6047,1,0,5}, {6053,1,0,2},
                    249: {6067,1,0,2}, {6073,1,0,10}, {6079,1,0,17}, {6089,1,0,3}, {6091,1,0,7},
                    250: {6101,1,0,2}, {6113,1,0,3}, {6121,1,0,7}, {6131,1,0,2}, {6133,1,0,5},
                    251: {6143,1,0,5}, {6151,1,0,3}, {6163,1,0,3}, {6173,1,0,2}, {6197,1,0,2},
                    252: {6199,1,0,3}, {6203,1,0,2}, {6211,1,0,2}, {6217,1,0,5}, {6221,1,0,3},
                    253: {6229,1,0,2}, {6247,1,0,5}, {6257,1,0,3}, {6263,1,0,5}, {6269,1,0,2},
                    254: {6271,1,0,11}, {6277,1,0,2}, {6287,1,0,7}, {6299,1,0,2}, {6301,1,0,10},
                    255: {6311,1,0,7}, {6317,1,0,2}, {6323,1,0,2}, {6329,1,0,3}, {6337,1,0,10},
                    256: {6343,1,0,3}, {6353,1,0,3}, {6359,1,0,13}, {6361,1,0,19}, {6367,1,0,3},
                    257: {6373,1,0,2}, {6379,1,0,2}, {6389,1,0,2}, {6397,1,0,2}, {6421,1,0,6},
                    258: {6427,1,0,3}, {6449,1,0,3}, {6451,1,0,3}, {6469,1,0,2}, {6473,1,0,3},
                    259: {6481,1,0,7}, {6491,1,0,2}, {6521,1,0,6}, {6529,1,0,7}, {6547,1,0,2},
                    260: {6551,1,0,17}, {6553,1,0,10}, {6563,1,0,5}, {6569,1,0,3}, {6571,1,0,3},
                    261: {6577,1,0,5}, {6581,1,0,14}, {6599,1,0,13}, {6607,1,0,3}, {6619,1,0,2},
                    262: {6637,1,0,2}, {6653,1,0,2}, {6659,1,0,2}, {6661,1,0,6}, {6673,1,0,5},
                    263: {6679,1,0,7}, {6689,1,0,3}, {6691,1,0,2}, {6701,1,0,2}, {6703,1,0,5},
                    264: {6709,1,0,2}, {6719,1,0,11}, {6733,1,0,2}, {6737,1,0,3}, {6761,1,0,3},
                    265: {6763,1,0,2}, {6779,1,0,2}, {6781,1,0,2}, {6791,1,0,7}, {6793,1,0,10},
                    266: {6803,1,0,2}, {6823,1,0,3}, {6827,1,0,2}, {6829,1,0,2}, {6833,1,0,3},
                    267: {6841,1,0,22}, {6857,1,0,3}, {6863,1,0,5}, {6869,1,0,2}, {6871,1,0,3},
                    268: {6883,1,0,2}, {6899,1,0,2}, {6907,1,0,2}, {6911,1,0,7}, {6917,1,0,2},
                    269: {6947,1,0,2}, {6949,1,0,2}, {6959,1,0,7}, {6961,1,0,13}, {6967,1,0,5},
                    270: {6971,1,0,2}, {6977,1,0,3}, {6983,1,0,5}, {6991,1,0,6}, {6997,1,0,5},
                    271: {7001,1,0,3}, {7013,1,0,2}, {7019,1,0,2}, {7027,1,0,2}, {7039,1,0,3},
                    272: {7043,1,0,2}, {7057,1,0,5}, {7069,1,0,2}, {7079,1,0,7}, {7103,1,0,5},
                    273: {7109,1,0,2}, {7121,1,0,3}, {7127,1,0,5}, {7129,1,0,7}, {7151,1,0,7},
                    274: {7159,1,0,3}, {7177,1,0,10}, {7187,1,0,2}, {7193,1,0,3}, {7207,1,0,3},
                    275: {7211,1,0,2}, {7213,1,0,5}, {7219,1,0,2}, {7229,1,0,2}, {7237,1,0,2},
                    276: {7243,1,0,2}, {7247,1,0,5}, {7253,1,0,2}, {7283,1,0,2}, {7297,1,0,5},
                    277: {7307,1,0,2}, {7309,1,0,6}, {7321,1,0,7}, {7331,1,0,2}, {7333,1,0,6},
                    278: {7349,1,0,2}, {7351,1,0,6}, {7369,1,0,7}, {7393,1,0,5}, {7411,1,0,2},
                    279: {7417,1,0,5}, {7433,1,0,3}, {7451,1,0,2}, {7457,1,0,3}, {7459,1,0,2},
                    280: {7477,1,0,2}, {7481,1,0,6}, {7487,1,0,5}, {7489,1,0,7}, {7499,1,0,2},
                    281: {7507,1,0,2}, {7517,1,0,2}, {7523,1,0,2}, {7529,1,0,3}, {7537,1,0,7},
                    282: {7541,1,0,2}, {7547,1,0,2}, {7549,1,0,2}, {7559,1,0,13}, {7561,1,0,13},
                    283: {7573,1,0,2}, {7577,1,0,3}, {7583,1,0,5}, {7589,1,0,2}, {7591,1,0,6},
                    284: {7603,1,0,2}, {7607,1,0,5}, {7621,1,0,2}, {7639,1,0,7}, {7643,1,0,2},
                    285: {7649,1,0,3}, {7669,1,0,2}, {7673,1,0,3}, {7681,1,0,17}, {7687,1,0,6},
                    286: {7691,1,0,2}, {7699,1,0,3}, {7703,1,0,5}, {7717,1,0,2}, {7723,1,0,3},
                    287: {7727,1,0,5}, {7741,1,0,7}, {7753,1,0,10}, {7757,1,0,2}, {7759,1,0,3},
                    288: {7789,1,0,2}, {7793,1,0,3}, {7817,1,0,3}, {7823,1,0,5}, {7829,1,0,2},
                    289: {7841,1,0,12}, {7853,1,0,2}, {7867,1,0,3}, {7873,1,0,5}, {7877,1,0,2},
                    290: {7879,1,0,3}, {7883,1,0,2}, {7901,1,0,2}, {7907,1,0,2}, {7919,1,0,7},
                    291: {7927,1,0,3}, {7933,1,0,2}, {7937,1,0,3}, {7949,1,0,2}, {7951,1,0,6},
                    292: {7963,1,0,5}, {7993,1,0,5}, {8009,1,0,3}, {8011,1,0,14}, {8017,1,0,5},
                    293: {8039,1,0,11}, {8053,1,0,2}, {8059,1,0,3}, {8069,1,0,2}, {8081,1,0,3},
                    294: {8087,1,0,5}, {8089,1,0,17}, {8093,1,0,2}, {8101,1,0,6}, {8111,1,0,11},
                    295: {8117,1,0,2}, {8123,1,0,2}, {8147,1,0,2}, {8161,1,0,7}, {8167,1,0,3},
                    296: {8171,1,0,2}, {8179,1,0,2}, {8191,1,0,17}, {8209,1,0,7}, {8219,1,0,2},
                    297: {8221,1,0,2}, {8231,1,0,11}, {8233,1,0,10}, {8237,1,0,2}, {8243,1,0,2},
                    298: {8263,1,0,3}, {8269,1,0,2}, {8273,1,0,3}, {8287,1,0,3}, {8291,1,0,2},
                    299: {8293,1,0,2}, {8297,1,0,3}, {8311,1,0,3}, {8317,1,0,6}, {8329,1,0,7},
                    300: {8353,1,0,5}, {8363,1,0,2}, {8369,1,0,3}, {8377,1,0,5}, {8387,1,0,2},
                    301: {8389,1,0,6}, {8419,1,0,3}, {8423,1,0,5}, {8429,1,0,2}, {8431,1,0,3},
                    302: {8443,1,0,2}, {8447,1,0,5}, {8461,1,0,6}, {8467,1,0,2}, {8501,1,0,7},
                    303: {8513,1,0,5}, {8521,1,0,13}, {8527,1,0,5}, {8537,1,0,3}, {8539,1,0,2},
                    304: {8543,1,0,5}, {8563,1,0,2}, {8573,1,0,2}, {8581,1,0,6}, {8597,1,0,2},
                    305: {8599,1,0,3}, {8609,1,0,3}, {8623,1,0,3}, {8627,1,0,2}, {8629,1,0,6},
                    306: {8641,1,0,17}, {8647,1,0,3}, {8663,1,0,5}, {8669,1,0,2}, {8677,1,0,2},
                    307: {8681,1,0,15}, {8689,1,0,13}, {8693,1,0,2}, {8699,1,0,2}, {8707,1,0,5},
                    308: {8713,1,0,5}, {8719,1,0,3}, {8731,1,0,2}, {8737,1,0,5}, {8741,1,0,2},
                    309: {8747,1,0,2}, {8753,1,0,3}, {8761,1,0,23}, {8779,1,0,11}, {8783,1,0,5},
                    310: {8803,1,0,2}, {8807,1,0,5}, {8819,1,0,2}, {8821,1,0,2}, {8831,1,0,7},
                    311: {8837,1,0,2}, {8839,1,0,3}, {8849,1,0,3}, {8861,1,0,2}, {8863,1,0,3},
                    312: {8867,1,0,2}, {8887,1,0,3}, {8893,1,0,5}, {8923,1,0,2}, {8929,1,0,11},
                    313: {8933,1,0,2}, {8941,1,0,6}, {8951,1,0,13}, {8963,1,0,2}, {8969,1,0,3},
                    314: {8971,1,0,2}, {8999,1,0,7}, {9001,1,0,7}, {9007,1,0,3}, {9011,1,0,2},
                    315: {9013,1,0,5}, {9029,1,0,2}, {9041,1,0,3}, {9043,1,0,3}, {9049,1,0,7},
                    316: {9059,1,0,2}, {9067,1,0,3}, {9091,1,0,3}, {9103,1,0,6}, {9109,1,0,10},
                    317: {9127,1,0,3}, {9133,1,0,6}, {9137,1,0,3}, {9151,1,0,3}, {9157,1,0,6},
                    318: {9161,1,0,3}, {9173,1,0,2}, {9181,1,0,2}, {9187,1,0,3}, {9199,1,0,3},
                    319: {9203,1,0,2}, {9209,1,0,3}, {9221,1,0,2}, {9227,1,0,2}, {9239,1,0,19},
                    320: {9241,1,0,13}, {9257,1,0,3}, {9277,1,0,5}, {9281,1,0,3}, {9283,1,0,2},
                    321: {9293,1,0,2}, {9311,1,0,7}, {9319,1,0,3}, {9323,1,0,2}, {9337,1,0,5},
                    322: {9341,1,0,2}, {9343,1,0,5}, {9349,1,0,2}, {9371,1,0,2}, {9377,1,0,3},
                    323: {9391,1,0,3}, {9397,1,0,2}, {9403,1,0,3}, {9413,1,0,3}, {9419,1,0,2},
                    324: {9421,1,0,2}, {9431,1,0,7}, {9433,1,0,5}, {9437,1,0,2}, {9439,1,0,22},
                    325: {9461,1,0,3}, {9463,1,0,3}, {9467,1,0,2}, {9473,1,0,3}, {9479,1,0,7},
                    326: {9491,1,0,2}, {9497,1,0,3}, {9511,1,0,3}, {9521,1,0,3}, {9533,1,0,2},
                    327: {9539,1,0,2}, {9547,1,0,2}, {9551,1,0,11}, {9587,1,0,2}, {9601,1,0,13},
                    328: {9613,1,0,2}, {9619,1,0,2}, {9623,1,0,5}, {9629,1,0,2}, {9631,1,0,3},
                    329: {9643,1,0,2}, {9649,1,0,7}, {9661,1,0,2}, {9677,1,0,2}, {9679,1,0,3},
                    330: {9689,1,0,3}, {9697,1,0,10}, {9719,1,0,17}, {9721,1,0,7}, {9733,1,0,2},
                    331: {9739,1,0,3}, {9743,1,0,5}, {9749,1,0,2}, {9767,1,0,5}, {9769,1,0,13},
                    332: {9781,1,0,6}, {9787,1,0,3}, {9791,1,0,11}, {9803,1,0,2}, {9811,1,0,3},
                    333: {9817,1,0,5}, {9829,1,0,10}, {9833,1,0,3}, {9839,1,0,7}, {9851,1,0,2},
                    334: {9857,1,0,5}, {9859,1,0,2}, {9871,1,0,3}, {9883,1,0,2}, {9887,1,0,5},
                    335: {9901,1,0,2}, {9907,1,0,2}, {9923,1,0,2}, {9929,1,0,3}, {9931,1,0,10},
                    336: {9941,1,0,2}, {9949,1,0,2}, {9967,1,0,3}, {9973,1,0,11}, {10007,1,0,5},
                    337: {10009,1,0,11}, {10037,1,0,2}, {10039,1,0,3}, {10061,1,0,3}, {10067,1,0,2},
                    338: {10069,1,0,2}, {10079,1,0,11}, {10091,1,0,2}, {10093,1,0,2}, {10099,1,0,2},
                    339: {10103,1,0,5}, {10111,1,0,12}, {10133,1,0,2}, {10139,1,0,2}, {10141,1,0,2},
                    340: {10151,1,0,7}, {10159,1,0,3}, {10163,1,0,2}, {10169,1,0,3}, {10177,1,0,7},
                    341: {10181,1,0,2}, {10193,1,0,3}, {10211,1,0,6}, {10223,1,0,5}, {10243,1,0,7},
                    342: {10247,1,0,5}, {10253,1,0,2}, {10259,1,0,2}, {10267,1,0,2}, {10271,1,0,7},
                    343: {10273,1,0,10}, {10289,1,0,3}, {10301,1,0,2}, {10303,1,0,3}, {10313,1,0,3},
                    344: {10321,1,0,7}, {10331,1,0,2}, {10333,1,0,5}, {10337,1,0,3}, {10343,1,0,5},
                    345: {10357,1,0,2}, {10369,1,0,13}, {10391,1,0,19}, {10399,1,0,6}, {10427,1,0,2},
                    346: {10429,1,0,7}, {10433,1,0,3}, {10453,1,0,5}, {10457,1,0,3}, {10459,1,0,2},
                    347: {10463,1,0,5}, {10477,1,0,2}, {10487,1,0,5}, {10499,1,0,2}, {10501,1,0,2},
                    348: {10513,1,0,7}, {10529,1,0,3}, {10531,1,0,3}, {10559,1,0,23}, {10567,1,0,6},
                    349: {10589,1,0,2}, {10597,1,0,5}, {10601,1,0,3}, {10607,1,0,5}, {10613,1,0,2},
                    350: {10627,1,0,5}, {10631,1,0,11}, {10639,1,0,6}, {10651,1,0,7}, {10657,1,0,7},
                    351: {10663,1,0,3}, {10667,1,0,2}, {10687,1,0,5}, {10691,1,0,2}, {10709,1,0,2},
                    352: {10711,1,0,3}, {10723,1,0,2}, {10729,1,0,7}, {10733,1,0,2}, {10739,1,0,6},
                    353: {10753,1,0,11}, {10771,1,0,3}, {10781,1,0,10}, {10789,1,0,2}, {10799,1,0,19},
                    354: {10831,1,0,7}, {10837,1,0,2}, {10847,1,0,5}, {10853,1,0,2}, {10859,1,0,2},
                    355: {10861,1,0,2}, {10867,1,0,2}, {10883,1,0,2}, {10889,1,0,3}, {10891,1,0,2},
                    356: {10903,1,0,3}, {10909,1,0,2}, {10937,1,0,3}, {10939,1,0,3}, {10949,1,0,2},
                    357: {10957,1,0,5}, {10973,1,0,2}, {10979,1,0,2}, {10987,1,0,2}, {10993,1,0,7},
                    358: {11003,1,0,2}, {11027,1,0,2}, {11047,1,0,3}, {11057,1,0,3}, {11059,1,0,10},
                    359: {11069,1,0,2}, {11071,1,0,3}, {11083,1,0,2}, {11087,1,0,5}, {11093,1,0,2},
                    360: {11113,1,0,13}, {11117,1,0,3}, {11119,1,0,3}, {11131,1,0,2}, {11149,1,0,10},
                    361: {11159,1,0,7}, {11161,1,0,7}, {11171,1,0,2}, {11173,1,0,5}, {11177,1,0,3},
                    362: {11197,1,0,2}, {11213,1,0,2}, {11239,1,0,3}, {11243,1,0,5}, {11251,1,0,13},
                    363: {11257,1,0,10}, {11261,1,0,2}, {11273,1,0,3}, {11279,1,0,7}, {11287,1,0,3},
                    364: {11299,1,0,3}, {11311,1,0,3}, {11317,1,0,2}, {11321,1,0,3}, {11329,1,0,7},
                    365: {11351,1,0,7}, {11353,1,0,7}, {11369,1,0,3}, {11383,1,0,5}, {11393,1,0,3},
                    366: {11399,1,0,11}, {11411,1,0,7}, {11423,1,0,5}, {11437,1,0,2}, {11443,1,0,2},
                    367: {11447,1,0,5}, {11467,1,0,5}, {11471,1,0,11}, {11483,1,0,2}, {11489,1,0,3},
                    368: {11491,1,0,3}, {11497,1,0,7}, {11503,1,0,3}, {11519,1,0,7}, {11527,1,0,5},
                    369: {11549,1,0,2}, {11551,1,0,7}, {11579,1,0,2}, {11587,1,0,2}, {11593,1,0,5},
                    370: {11597,1,0,3}, {11617,1,0,10}, {11621,1,0,2}, {11633,1,0,3}, {11657,1,0,3},
                    371: {11677,1,0,2}, {11681,1,0,3}, {11689,1,0,7}, {11699,1,0,2}, {11701,1,0,6},
                    372: {11717,1,0,2}, {11719,1,0,6}, {11731,1,0,3}, {11743,1,0,3}, {11777,1,0,3},
                    373: {11779,1,0,2}, {11783,1,0,5}, {11789,1,0,2}, {11801,1,0,3}, {11807,1,0,5},
                    374: {11813,1,0,2}, {11821,1,0,2}, {11827,1,0,2}, {11831,1,0,7}, {11833,1,0,5},
                    375: {11839,1,0,3}, {11863,1,0,3}, {11867,1,0,2}, {11887,1,0,3}, {11897,1,0,3},
                    376: {11903,1,0,5}, {11909,1,0,2}, {11923,1,0,5}, {11927,1,0,5}, {11933,1,0,2},
                    377: {11939,1,0,2}, {11941,1,0,10}, {11953,1,0,5}, {11959,1,0,3}, {11969,1,0,3},
                    378: {11971,1,0,10}, {11981,1,0,2}, {11987,1,0,2}, {12007,1,0,13}, {12011,1,0,2},
                    379: {12037,1,0,5}, {12041,1,0,3}, {12043,1,0,2}, {12049,1,0,13}, {12071,1,0,11},
                    380: {12073,1,0,7}, {12097,1,0,5}, {12101,1,0,3}, {12107,1,0,2}, {12109,1,0,6},
                    381: {12113,1,0,3}, {12119,1,0,7}, {12143,1,0,10}, {12149,1,0,2}, {12157,1,0,2},
                    382: {12161,1,0,3}, {12163,1,0,5}, {12197,1,0,2}, {12203,1,0,2}, {12211,1,0,2},
                    383: {12227,1,0,2}, {12239,1,0,13}, {12241,1,0,7}, {12251,1,0,2}, {12253,1,0,2},
                    384: {12263,1,0,5}, {12269,1,0,2}, {12277,1,0,2}, {12281,1,0,3}, {12289,1,0,11},
                    385: {12301,1,0,2}, {12323,1,0,2}, {12329,1,0,3}, {12343,1,0,7}, {12347,1,0,2},
                    386: {12373,1,0,2}, {12377,1,0,6}, {12379,1,0,2}, {12391,1,0,26}, {12401,1,0,3},
                    387: {12409,1,0,7}, {12413,1,0,2}, {12421,1,0,7}, {12433,1,0,13}, {12437,1,0,2},
                    388: {12451,1,0,3}, {12457,1,0,10}, {12473,1,0,3}, {12479,1,0,23}, {12487,1,0,3},
                    389: {12491,1,0,2}, {12497,1,0,3}, {12503,1,0,5}, {12511,1,0,3}, {12517,1,0,6},
                    390: {12527,1,0,5}, {12539,1,0,2}, {12541,1,0,14}, {12547,1,0,2}, {12553,1,0,5},
                    391: {12569,1,0,3}, {12577,1,0,10}, {12583,1,0,5}, {12589,1,0,2}, {12601,1,0,11},
                    392: {12611,1,0,2}, {12613,1,0,2}, {12619,1,0,2}, {12637,1,0,2}, {12641,1,0,3},
                    393: {12647,1,0,5}, {12653,1,0,2}, {12659,1,0,2}, {12671,1,0,14}, {12689,1,0,3},
                    394: {12697,1,0,7}, {12703,1,0,3}, {12713,1,0,3}, {12721,1,0,13}, {12739,1,0,2},
                    395: {12743,1,0,5}, {12757,1,0,2}, {12763,1,0,2}, {12781,1,0,2}, {12791,1,0,7},
                    396: {12799,1,0,13}, {12809,1,0,3}, {12821,1,0,2}, {12823,1,0,3}, {12829,1,0,2},
                    397: {12841,1,0,21}, {12853,1,0,5}, {12889,1,0,13}, {12893,1,0,3}, {12899,1,0,2},
                    398: {12907,1,0,2}, {12911,1,0,23}, {12917,1,0,2}, {12919,1,0,6}, {12923,1,0,2},
                    399: {12941,1,0,2}, {12953,1,0,3}, {12959,1,0,7}, {12967,1,0,3}, {12973,1,0,14},
                    400: {12979,1,0,2}, {12983,1,0,5}, {13001,1,0,3}, {13003,1,0,5}, {13007,1,0,5},
                    401: {13009,1,0,7}, {13033,1,0,5}, {13037,1,0,2}, {13043,1,0,2}, {13049,1,0,3},
                    402: {13063,1,0,5}, {13093,1,0,6}, {13099,1,0,3}, {13103,1,0,5}, {13109,1,0,2},
                    403: {13121,1,0,7}, {13127,1,0,5}, {13147,1,0,2}, {13151,1,0,13}, {13159,1,0,3},
                    404: {13163,1,0,2}, {13171,1,0,11}, {13177,1,0,5}, {13183,1,0,3}, {13187,1,0,2},
                    405: {13217,1,0,3}, {13219,1,0,3}, {13229,1,0,2}, {13241,1,0,3}, {13249,1,0,7},
                    406: {13259,1,0,6}, {13267,1,0,3}, {13291,1,0,2}, {13297,1,0,5}, {13309,1,0,6},
                    407: {13313,1,0,3}, {13327,1,0,3}, {13331,1,0,2}, {13337,1,0,3}, {13339,1,0,2},
                    408: {13367,1,0,5}, {13381,1,0,10}, {13397,1,0,2}, {13399,1,0,3}, {13411,1,0,2},
                    409: {13417,1,0,5}, {13421,1,0,10}, {13441,1,0,11}, {13451,1,0,2}, {13457,1,0,3},
                    410: {13463,1,0,5}, {13469,1,0,2}, {13477,1,0,2}, {13487,1,0,5}, {13499,1,0,6},
                    411: {13513,1,0,5}, {13523,1,0,2}, {13537,1,0,7}, {13553,1,0,3}, {13567,1,0,3},
                    412: {13577,1,0,3}, {13591,1,0,3}, {13597,1,0,5}, {13613,1,0,2}, {13619,1,0,2},
                    413: {13627,1,0,2}, {13633,1,0,5}, {13649,1,0,3}, {13669,1,0,6}, {13679,1,0,7},
                    414: {13681,1,0,22}, {13687,1,0,3}, {13691,1,0,2}, {13693,1,0,6}, {13697,1,0,3},
                    415: {13709,1,0,2}, {13711,1,0,6}, {13721,1,0,3}, {13723,1,0,2}, {13729,1,0,23},
                    416: {13751,1,0,11}, {13757,1,0,2}, {13759,1,0,6}, {13763,1,0,2}, {13781,1,0,7},
                    417: {13789,1,0,7}, {13799,1,0,7}, {13807,1,0,5}, {13829,1,0,2}, {13831,1,0,6},
                    418: {13841,1,0,6}, {13859,1,0,2}, {13873,1,0,5}, {13877,1,0,2}, {13879,1,0,6},
                    419: {13883,1,0,2}, {13901,1,0,2}, {13903,1,0,3}, {13907,1,0,2}, {13913,1,0,3},
                    420: {13921,1,0,7}, {13931,1,0,2}, {13933,1,0,2}, {13963,1,0,3}, {13967,1,0,5},
                    421: {13997,1,0,2}, {13999,1,0,3}, {14009,1,0,3}, {14011,1,0,2}, {14029,1,0,6},
                    422: {14033,1,0,3}, {14051,1,0,2}, {14057,1,0,3}, {14071,1,0,7}, {14081,1,0,3},
                    423: {14083,1,0,3}, {14087,1,0,5}, {14107,1,0,2}, {14143,1,0,3}, {14149,1,0,6},
                    424: {14153,1,0,3}, {14159,1,0,13}, {14173,1,0,2}, {14177,1,0,3}, {14197,1,0,11},
                    425: {14207,1,0,5}, {14221,1,0,2}, {14243,1,0,2}, {14249,1,0,3}, {14251,1,0,3},
                    426: {14281,1,0,19}, {14293,1,0,6}, {14303,1,0,5}, {14321,1,0,3}, {14323,1,0,5},
                    427: {14327,1,0,5}, {14341,1,0,2}, {14347,1,0,3}, {14369,1,0,3}, {14387,1,0,2},
                    428: {14389,1,0,2}, {14401,1,0,11}, {14407,1,0,19}, {14411,1,0,2}, {14419,1,0,2},
                    429: {14423,1,0,5}, {14431,1,0,3}, {14437,1,0,5}, {14447,1,0,5}, {14449,1,0,22},
                    430: {14461,1,0,2}, {14479,1,0,3}, {14489,1,0,3}, {14503,1,0,3}, {14519,1,0,13},
                    431: {14533,1,0,2}, {14537,1,0,3}, {14543,1,0,5}, {14549,1,0,2}, {14551,1,0,3},
                    432: {14557,1,0,2}, {14561,1,0,6}, {14563,1,0,3}, {14591,1,0,11}, {14593,1,0,5},
                    433: {14621,1,0,2}, {14627,1,0,2}, {14629,1,0,2}, {14633,1,0,3}, {14639,1,0,11},
                    434: {14653,1,0,2}, {14657,1,0,3}, {14669,1,0,2}, {14683,1,0,3}, {14699,1,0,2},
                    435: {14713,1,0,5}, {14717,1,0,2}, {14723,1,0,2}, {14731,1,0,10}, {14737,1,0,10},
                    436: {14741,1,0,2}, {14747,1,0,2}, {14753,1,0,3}, {14759,1,0,17}, {14767,1,0,3},
                    437: {14771,1,0,2}, {14779,1,0,3}, {14783,1,0,5}, {14797,1,0,2}, {14813,1,0,2},
                    438: {14821,1,0,2}, {14827,1,0,2}, {14831,1,0,11}, {14843,1,0,2}, {14851,1,0,2},
                    439: {14867,1,0,2}, {14869,1,0,2}, {14879,1,0,7}, {14887,1,0,3}, {14891,1,0,2},
                    440: {14897,1,0,3}, {14923,1,0,2}, {14929,1,0,7}, {14939,1,0,2}, {14947,1,0,2},
                    441: {14951,1,0,19}, {14957,1,0,2}, {14969,1,0,3}, {14983,1,0,3}, {15013,1,0,2},
                    442: {15017,1,0,3}, {15031,1,0,3}, {15053,1,0,2}, {15061,1,0,2}, {15073,1,0,5},
                    443: {15077,1,0,2}, {15083,1,0,2}, {15091,1,0,2}, {15101,1,0,2}, {15107,1,0,2},
                    444: {15121,1,0,11}, {15131,1,0,2}, {15137,1,0,3}, {15139,1,0,2}, {15149,1,0,2},
                    445: {15161,1,0,3}, {15173,1,0,2}, {15187,1,0,2}, {15193,1,0,5}, {15199,1,0,6},
                    446: {15217,1,0,10}, {15227,1,0,2}, {15233,1,0,3}, {15241,1,0,11}, {15259,1,0,2},
                    447: {15263,1,0,5}, {15269,1,0,2}, {15271,1,0,11}, {15277,1,0,6}, {15287,1,0,5},
                    448: {15289,1,0,11}, {15299,1,0,2}, {15307,1,0,3}, {15313,1,0,5}, {15319,1,0,3},
                    449: {15329,1,0,3}, {15331,1,0,2}, {15349,1,0,2}, {15359,1,0,11}, {15361,1,0,7},
                    450: {15373,1,0,2}, {15377,1,0,3}, {15383,1,0,5}, {15391,1,0,12}, {15401,1,0,6},
                    451: {15413,1,0,2}, {15427,1,0,2}, {15439,1,0,3}, {15443,1,0,2}, {15451,1,0,3},
                    452: {15461,1,0,2}, {15467,1,0,5}, {15473,1,0,3}, {15493,1,0,5}, {15497,1,0,3},
                    453: {15511,1,0,3}, {15527,1,0,5}, {15541,1,0,6}, {15551,1,0,7}, {15559,1,0,3},
                    454: {15569,1,0,3}, {15581,1,0,2}, {15583,1,0,5}, {15601,1,0,23}, {15607,1,0,3},
                    455: {15619,1,0,7}, {15629,1,0,2}, {15641,1,0,3}, {15643,1,0,5}, {15647,1,0,5},
                    456: {15649,1,0,11}, {15661,1,0,2}, {15667,1,0,2}, {15671,1,0,13}, {15679,1,0,11},
                    457: {15683,1,0,2}, {15727,1,0,3}, {15731,1,0,2}, {15733,1,0,6}, {15737,1,0,3},
                    458: {15739,1,0,2}, {15749,1,0,2}, {15761,1,0,3}, {15767,1,0,5}, {15773,1,0,2},
                    459: {15787,1,0,2}, {15791,1,0,29}, {15797,1,0,2}, {15803,1,0,2}, {15809,1,0,3},
                    460: {15817,1,0,5}, {15823,1,0,3}, {15859,1,0,2}, {15877,1,0,5}, {15881,1,0,3},
                    461: {15887,1,0,5}, {15889,1,0,21}, {15901,1,0,10}, {15907,1,0,2}, {15913,1,0,5},
                    462: {15919,1,0,6}, {15923,1,0,2}, {15937,1,0,7}, {15959,1,0,11}, {15971,1,0,2},
                    463: {15973,1,0,7}, {15991,1,0,12}, {16001,1,0,3}, {16007,1,0,5}, {16033,1,0,5},
                    464: {16057,1,0,7}, {16061,1,0,12}, {16063,1,0,5}, {16067,1,0,2}, {16069,1,0,2},
                    465: {16073,1,0,3}, {16087,1,0,5}, {16091,1,0,6}, {16097,1,0,3}, {16103,1,0,5},
                    466: {16111,1,0,7}, {16127,1,0,5}, {16139,1,0,2}, {16141,1,0,6}, {16183,1,0,3},
                    467: {16187,1,0,2}, {16189,1,0,2}, {16193,1,0,5}, {16217,1,0,3}, {16223,1,0,5},
                    468: {16229,1,0,2}, {16231,1,0,3}, {16249,1,0,17}, {16253,1,0,2}, {16267,1,0,3},
                    469: {16273,1,0,7}, {16301,1,0,2}, {16319,1,0,7}, {16333,1,0,2}, {16339,1,0,2},
                    470: {16349,1,0,2}, {16361,1,0,3}, {16363,1,0,2}, {16369,1,0,7}, {16381,1,0,2},
                    471: };
                    472:
1.9       noro      473: void dec_um(int p,int a,UM u)
1.2       noro      474: {
                    475:        int i;
                    476:
                    477:        for ( i = 0; a; i++, a /= p )
                    478:                COEF(u)[i] = a%p;
                    479:        DEG(u) = i-1;
                    480: }
1.1       noro      481:
                    482: /*
1.2       noro      483:  * an element of GF(p^n) f(x)=a(n-1)*x^(n-1)+...+a(0)
                    484:  * is encodeded to f(p).
1.1       noro      485:  * current_gfs_iton[i] = r^i mod p (i=0,...,p-2)
                    486:  * current_gfs_iton[p-1] = 0
                    487:  */
                    488:
1.9       noro      489: void setmod_sf(int p,int n)
1.1       noro      490: {
1.2       noro      491:        int r,i,q1,q,t,t1;
                    492:        UM dp;
1.1       noro      493:
1.2       noro      494:        for ( i = 0, q = 1; i < n; i++ )
                    495:                q *= p;
                    496:        dp = UMALLOC(n);
1.6       noro      497:        r = search_defpoly_and_primitive_root(p,n,dp);
                    498:        if ( !r ) {
                    499:                generate_defpoly_um(p,n,dp);
                    500:                r = generate_primitive_root_enc(p,n,dp);
1.9       noro      501:                if ( !r )
                    502:                        error("setmod_sf : primitive root not found");
1.6       noro      503:        }
1.2       noro      504:        current_gfs_p = p;
                    505:        current_gfs_q = q;
                    506:        current_gfs_q1 = q1 = q-1;
1.1       noro      507:        if ( n > 1 )
1.2       noro      508:                umtop(CO->v,dp,&current_gfs_ext);
                    509:        else
                    510:                current_gfs_ext = 0;
                    511:        current_gfs_iton = (int *)MALLOC(q1*sizeof(int));
                    512:        current_gfs_iton[0] = 1;
                    513:        for ( i = 1; i < q1; i++ )
                    514:                current_gfs_iton[i] = mulremum_enc(p,n,dp,current_gfs_iton[i-1],r);
                    515:
                    516:        current_gfs_ntoi = (int *)MALLOC(q*sizeof(int));
                    517:        current_gfs_ntoi[0] = -1;
                    518:        for ( i = 0; i < q1; i++ )
                    519:                current_gfs_ntoi[current_gfs_iton[i]] = i;
                    520:
                    521:        current_gfs_plus1 = (int *)MALLOC(q*sizeof(int));
                    522:        for ( i = 0; i < q1; i++ ) {
                    523:                t = current_gfs_iton[i];
                    524:                /* add 1 to the constant part */
                    525:                t1 = (t/p)*p+((t+1)%p);
                    526:                current_gfs_plus1[i] = current_gfs_ntoi[t1];
1.1       noro      527:        }
                    528: }
                    529:
1.9       noro      530: int search_defpoly_and_primitive_root(int p,int n,UM dp)
1.6       noro      531: {
                    532:        int l,min,max,mid,p1,i,ind,t;
                    533:
                    534:        l = sizeof(prim_root_info_tab)/sizeof(struct prim_root_info);
                    535:        min = 0; max = l-1;
                    536:        ind = -1;
                    537:        while ( max - min > 1 ) {
                    538:                mid = (max+min)/2;
                    539:                p1 = prim_root_info_tab[mid].p;
                    540:                if ( p1 == p ) {
                    541:                        ind = mid; break;
                    542:                } else if ( p1 > p )
                    543:                        max = mid;
                    544:                else
                    545:                        min = mid;
                    546:        }
                    547:        if ( ind < 0 ) {
                    548:                if ( prim_root_info_tab[min].p == p )
                    549:                        ind = min;
                    550:                else if ( prim_root_info_tab[max].p == p )
                    551:                        ind = max;
                    552:                else
                    553:                        return 0; /* XXX */
                    554:        }
                    555:        /* now prim_root_info_tab[ind].p = p */
                    556:        t = ind - (prim_root_info_tab[ind].extdeg-1);
                    557:        /* now prim_root_info_tab[t].extdeg = 1 */
                    558:        for ( i = t; prim_root_info_tab[i].p == p; i++ )
                    559:                if ( prim_root_info_tab[i].extdeg == n )
                    560:                        break;
                    561:        if ( prim_root_info_tab[i].p != p )
                    562:                return 0;
                    563:        dec_um(p,prim_root_info_tab[i].defpoly,dp);
                    564:        return prim_root_info_tab[i].prim_root;
                    565: }
                    566:
1.9       noro      567: void generate_defpoly_um(int p,int n,UM dp)
1.1       noro      568: {
1.9       noro      569:        int i,j,a,q;
1.2       noro      570:        UM wf,wdf,wgcd;
1.1       noro      571:
1.2       noro      572:        wf = W_UMALLOC(n);
                    573:        wdf = W_UMALLOC(n);
                    574:        wgcd = W_UMALLOC(n);
                    575:        COEF(dp)[n] = 1;
                    576:        DEG(dp) = n;
                    577:        for ( i = 0, q = 1; i < n; i++ )
                    578:                q *= p;
                    579:        for ( i = 0; i < q; i++ ) {
                    580:                for ( j = 0, a = i; a; j++, a /= p )
                    581:                        COEF(dp)[j] = a%p;
                    582:                for ( ; j < n; j++ )
                    583:                        COEF(dp)[j] = 0;
                    584:                cpyum(dp,wf);
                    585:                diffum(p,dp,wdf);
                    586:                gcdum(p,wf,wdf,wgcd);
                    587:                if ( DEG(wgcd) >= 1 )
                    588:                        continue;
                    589:                mini(p,dp,wf);
                    590:                if ( DEG(wf) <= 0 )
                    591:                        return;
                    592:        }
                    593: }
                    594:
1.9       noro      595: int generate_primitive_root_enc(int p,int n,UM dp)
1.2       noro      596: {
                    597:        int i,r,rj,j,q;
                    598:
1.5       noro      599:        if ( p == 2 && n == 1 )
                    600:                return 1;
                    601:
1.2       noro      602:        for ( i = 0, q = 1; i < n; i++ )
                    603:                 q *= p;
                    604:        for ( r = n==1?2:p; r < q; r++ ) {
1.1       noro      605:                rj = r;
1.2       noro      606:                for ( j = 1; j < q-1 && rj != 1; j++ )
                    607:                        rj = mulremum_enc(p,n,dp,rj,r);
                    608:                if ( j == q-1 )
1.1       noro      609:                        return r;
                    610:        }
1.9       noro      611:        /* not found */
                    612:        return 0;
1.2       noro      613: }
                    614:
                    615: /* [a(p)]*[b(p)] in GF(p^n) -> [a(x)*b(x) mod dp(x)]_{x->p} */
                    616:
1.9       noro      617: int mulremum_enc(int p,int n,UM dp,int a,int b)
1.2       noro      618: {
                    619:        int i,dr,r;
                    620:        UM wa,wb,wc,wq;
                    621:
                    622:        if ( n == 1 )
                    623:                return (a*b)%p;
                    624:        if ( !a || !b )
                    625:                return 0;
                    626:
                    627:        wa = W_UMALLOC(n);
                    628:        dec_um(p,a,wa);
                    629:
                    630:        wb = W_UMALLOC(n);
                    631:        dec_um(p,b,wb);
                    632:
                    633:        wc = W_UMALLOC(2*n);
                    634:        wq = W_UMALLOC(2*n);
                    635:        mulum(p,wa,wb,wc);
                    636:        dr = divum(p,wc,dp,wq);
                    637:        for ( i = dr, r = 0; i >= 0; i-- )
                    638:                r = r*p+COEF(wc)[i];
                    639:        return r;
1.5       noro      640: }
                    641:
1.10    ! noro      642: /* sigma : alpha -> alpha^q */
        !           643:
1.9       noro      644: void gfs_galois_action(GFS a,Q e,GFS *c)
1.5       noro      645: {
1.10    ! noro      646:        Q q;
1.5       noro      647:        int i,k;
                    648:        GFS t,s;
                    649:
                    650:        t = a;
                    651:        k = QTOS(e);
1.10    ! noro      652:        STOQ(current_gfs_q,q);
1.5       noro      653:        for ( i = 0; i < k; i++ ) {
1.10    ! noro      654:                pwrgfs(t,q,&s); t = s;
1.5       noro      655:        }
                    656:        *c = t;
                    657: }
                    658:
1.8       noro      659: /* GF(pn)={0,1,a,a^2,...} -> GF(pm)={0,1,b,b^2,...}; a->b^k */
                    660:
1.9       noro      661: void gfs_embed(GFS z,int k,int pm,GFS *c)
1.8       noro      662: {
                    663:        int t;
                    664:
                    665:        if ( !z )
                    666:                *c = 0;
                    667:        else {
                    668:                t = dmar(k,CONT(z),0,pm-1);
                    669:                MKGFS(t,*c);
                    670:        }
                    671: }
1.9       noro      672:
                    673: void qtogfs(Q a,GFS *c)
1.5       noro      674: {
                    675:        int s;
                    676:
                    677:        s = QTOS(a)%current_gfs_q;
                    678:        if ( s < 0 )
                    679:                s += current_gfs_q;
                    680:        if ( !s )
                    681:                *c = 0;
                    682:        else
                    683:                MKGFS(current_gfs_ntoi[s],*c);
1.1       noro      684: }
                    685:
1.9       noro      686: void mqtogfs(MQ a,GFS *c)
1.1       noro      687: {
                    688:        if ( !a )
                    689:                *c = 0;
                    690:        else {
                    691:                MKGFS(current_gfs_ntoi[CONT(a)],*c);
                    692:        }
                    693: }
                    694:
1.9       noro      695: void gfstomq(GFS a,MQ *c)
1.1       noro      696: {
                    697:        if ( !a )
                    698:                *c = 0;
                    699:        else {
                    700:                UTOMQ(current_gfs_iton[CONT(a)],*c);
                    701:        }
                    702: }
                    703:
1.9       noro      704: void ntogfs(Obj a,GFS *b)
1.1       noro      705: {
                    706:        P t;
                    707:
                    708:        if ( !current_gfs_q1 )
                    709:                error("addgfs : current_gfs_q is not set");
                    710:        if ( !a || (OID(a)==O_N && NID(a) == N_GFS) )
                    711:                *b = (GFS)a;
                    712:        else if ( OID(a) == O_N && NID(a) == N_M )
1.9       noro      713:                mqtogfs((MQ)a,b);
1.1       noro      714:        else if ( OID(a) == O_N && NID(a) == N_Q ) {
1.9       noro      715:                ptomp(current_gfs_p,(P)a,&t); mqtogfs((MQ)t,b);
1.1       noro      716:        } else
                    717:                error("ntogfs : invalid argument");
                    718: }
                    719:
1.9       noro      720: void addgfs(GFS a,GFS b,GFS *c)
1.1       noro      721: {
                    722:        int ai,bi,ci;
                    723:        GFS z;
                    724:
1.9       noro      725:        ntogfs((Obj)a,&z); a = z;
                    726:        ntogfs((Obj)b,&z); b = z;
1.1       noro      727:        if ( !a )
                    728:                *c = b;
                    729:        else if ( !b )
                    730:                *c = a;
                    731:        else {
                    732:                ai = CONT(a); bi = CONT(b);
                    733:                if ( ai > bi ) {
                    734:                        /* tab[ai]+tab[bi] = tab[bi](tab[ai-bi]+1) */
                    735:                        ci = current_gfs_plus1[ai-bi];
                    736:                        if ( ci < 0 )
                    737:                                *c = 0;
                    738:                        else {
                    739:                                ci += bi;
                    740:                                if ( ci >= current_gfs_q1 )
                    741:                                        ci -= current_gfs_q1;
                    742:                                MKGFS(ci,*c);
                    743:                        }
                    744:                } else {
                    745:                        /* tab[ai]+tab[bi] = tab[ai](tab[bi-ai]+1) */
                    746:                        ci = current_gfs_plus1[bi-ai];
                    747:                        if ( ci < 0 )
                    748:                                *c = 0;
                    749:                        else {
                    750:                                ci += ai;
                    751:                                if ( ci >= current_gfs_q1 )
                    752:                                        ci -= current_gfs_q1;
                    753:                                MKGFS(ci,*c);
                    754:                        }
                    755:                }
                    756:        }
                    757: }
                    758:
1.9       noro      759: void subgfs(GFS a,GFS b,GFS *c)
1.1       noro      760: {
                    761:        GFS t,z;
                    762:
1.9       noro      763:        ntogfs((Obj)a,&z); a = z;
                    764:        ntogfs((Obj)b,&z); b = z;
1.1       noro      765:        if ( !b )
                    766:                *c = a;
                    767:        else {
                    768:                chsgngfs(b,&t);
                    769:                addgfs(a,t,c);
                    770:        }
                    771: }
                    772:
1.9       noro      773: void mulgfs(GFS a,GFS b,GFS *c)
1.1       noro      774: {
                    775:        int ai;
                    776:        GFS z;
                    777:
1.9       noro      778:        ntogfs((Obj)a,&z); a = z;
                    779:        ntogfs((Obj)b,&z); b = z;
1.1       noro      780:        if ( !a || !b )
                    781:                *c = 0;
                    782:        else {
                    783:                ai = CONT(a) + CONT(b);
                    784:                if ( ai >= current_gfs_q1 )
                    785:                        ai -= current_gfs_q1;
                    786:                MKGFS(ai,*c);
                    787:        }
                    788: }
                    789:
1.9       noro      790: void divgfs(GFS a,GFS b,GFS *c)
1.1       noro      791: {
                    792:        int ai;
                    793:        GFS z;
                    794:
1.9       noro      795:        ntogfs((Obj)a,&z); a = z;
                    796:        ntogfs((Obj)b,&z); b = z;
1.1       noro      797:        if ( !b )
                    798:                error("divgfs : division by 0");
                    799:        else if ( !a )
                    800:                *c = 0;
                    801:        else {
                    802:                ai = CONT(a) - CONT(b);
                    803:                if ( ai < 0 )
                    804:                        ai += current_gfs_q1;
                    805:                MKGFS(ai,*c);
                    806:        }
                    807: }
                    808:
1.9       noro      809: void chsgngfs(GFS a,GFS *c)
1.1       noro      810: {
                    811:        int ai;
                    812:        GFS z;
                    813:
1.9       noro      814:        ntogfs((Obj)a,&z); a = z;
1.1       noro      815:        if ( !a )
                    816:                *c = 0;
                    817:        else if ( current_gfs_q1&1 )
                    818:                *c = a;
                    819:        else {
                    820:                /* r^((q-1)/2) = -1 */
                    821:                ai = CONT(a)+(current_gfs_q1>>1);
                    822:                if ( ai >= current_gfs_q1 )
                    823:                        ai -= current_gfs_q1;
                    824:                MKGFS(ai,*c);
                    825:        }
                    826: }
                    827:
1.9       noro      828: void pwrgfs(GFS a,Q b,GFS *c)
1.1       noro      829: {
                    830:        N an,tn,rn;
                    831:        GFS t,s,z;
                    832:
1.9       noro      833:        ntogfs((Obj)a,&z); a = z;
1.1       noro      834:        if ( !b )
                    835:                MKGFS(0,*c);
                    836:        else if ( !a )
                    837:                *c = 0;
                    838:        else {
                    839:                STON(CONT(a),an); muln(an,NM(b),&tn);
                    840:                STON(current_gfs_q1,an); remn(tn,an,&rn);
                    841:                if ( !rn )
                    842:                        MKGFS(0,*c);
                    843:                else if ( SGN(b) > 0 )
                    844:                        MKGFS(BD(rn)[0],*c);
                    845:                else {
                    846:                        MKGFS(0,t);
                    847:                        MKGFS(BD(rn)[0],s);
                    848:                        divgfs(t,s,c);
                    849:                }
                    850:        }
                    851: }
                    852:
1.9       noro      853: int cmpgfs(GFS a,GFS b)
1.1       noro      854: {
                    855:        GFS z;
                    856:
1.9       noro      857:        ntogfs((Obj)a,&z); a = z;
1.1       noro      858:        if ( !a )
                    859:                return !b ? 0 : -1;
                    860:        else
                    861:                if ( !b )
                    862:                        return 1;
                    863:                else {
                    864:                        if ( CONT(a) > CONT(b) )
                    865:                                return 1;
                    866:                        else if ( CONT(a) < CONT(b) )
                    867:                                return -1;
                    868:                        else
                    869:                                return 0;
                    870:                }
1.3       noro      871: }
                    872:
1.9       noro      873: void randomgfs(GFS *r)
1.3       noro      874: {
                    875:        unsigned int t;
                    876:
                    877:        if ( !current_gfs_q1 )
                    878:                error("addgfs : current_gfs_q is not set");
                    879:        t = mt_genrand()%current_gfs_q;
                    880:        if ( !t )
                    881:                *r = 0;
                    882:        else {
1.9       noro      883:                if ( t == (unsigned int)current_gfs_q1 )
1.3       noro      884:                        t = 0;
                    885:                MKGFS(t,*r);
                    886:        }
1.1       noro      887: }
1.6       noro      888:
                    889: /* arithmetic operations for 'immediate values of GFS */
                    890:
1.9       noro      891: int _addsf(int a,int b)
1.6       noro      892: {
                    893:        if ( !a )
                    894:                return b;
                    895:        else if ( !b )
                    896:                return a;
                    897:
                    898:        a = IFTOF(a); b = IFTOF(b);
                    899:        if ( a > b ) {
                    900:                /* tab[a]+tab[b] = tab[b](tab[a-b]+1) */
                    901:                a = current_gfs_plus1[a-b];
                    902:                if ( a < 0 )
                    903:                        return 0;
                    904:                else {
                    905:                        a += b;
                    906:                        if ( a >= current_gfs_q1 )
                    907:                                a -= current_gfs_q1;
                    908:                        return FTOIF(a);
                    909:                }
                    910:        } else {
                    911:                /* tab[a]+tab[b] = tab[a](tab[b-a]+1) */
                    912:                b = current_gfs_plus1[b-a];
                    913:                if ( b < 0 )
                    914:                        return 0;
                    915:                else {
                    916:                        b += a;
                    917:                        if ( b >= current_gfs_q1 )
                    918:                                b -= current_gfs_q1;
                    919:                        return FTOIF(b);
                    920:                }
                    921:        }
                    922: }
                    923:
1.9       noro      924: int _chsgnsf(int a)
1.6       noro      925: {
                    926:        if ( !a )
                    927:                return 0;
                    928:        else if ( current_gfs_q1&1 )
                    929:                return a;
                    930:        else {
                    931:                /* r^((q-1)/2) = -1 */
                    932:                a = IFTOF(a);
                    933:                a += (current_gfs_q1>>1);
                    934:                if ( a >= current_gfs_q1 )
                    935:                        a -= current_gfs_q1;
                    936:                return FTOIF(a);
                    937:        }
                    938: }
                    939:
1.9       noro      940: int _subsf(int a,int b)
1.6       noro      941: {
                    942:        if ( !a )
                    943:                return _chsgnsf(b);
                    944:        else if ( !b )
                    945:                return a;
                    946:        else
                    947:                return _addsf(a,_chsgnsf(b));
                    948: }
                    949:
1.9       noro      950: int _mulsf(int a,int b)
1.6       noro      951: {
                    952:        if ( !a || !b )
                    953:                return 0;
                    954:        else {
                    955:                a = IFTOF(a) + IFTOF(b);
                    956:                if ( a >= current_gfs_q1 )
                    957:                        a -= current_gfs_q1;
                    958:                return FTOIF(a);
                    959:        }
                    960: }
                    961:
1.9       noro      962: int _invsf(int a)
1.6       noro      963: {
1.9       noro      964:        if ( !a ) {
1.6       noro      965:                error("_invsf : division by 0");
1.9       noro      966:                /* NOTREACHED */
                    967:                return -1;
                    968:        } else {
1.6       noro      969:                a = current_gfs_q1 - IFTOF(a);
                    970:                return FTOIF(a);
                    971:        }
                    972: }
                    973:
1.9       noro      974: int _divsf(int a,int b)
1.6       noro      975: {
1.9       noro      976:        if ( !b ) {
1.6       noro      977:                error("_divsf : division by 0");
1.9       noro      978:                /* NOTREACHED */
                    979:                return -1;
                    980:        } else if ( !a )
1.6       noro      981:                return 0;
                    982:        else {
                    983:                a = IFTOF(a) - IFTOF(b);
                    984:                if ( a < 0 )
                    985:                        a += current_gfs_q1;
                    986:                return FTOIF(a);
                    987:        }
                    988: }
                    989:
1.9       noro      990: int _pwrsf(int a,int b)
1.6       noro      991: {
                    992:        GFS at,ct;
                    993:        Q bt;
                    994:        int c;
                    995:
                    996:        if ( !b )
                    997:                return _onesf();
                    998:        else if ( !a )
                    999:                return 0;
                   1000:        else {
                   1001:                a = IFTOF(a);
                   1002:                MKGFS(a,at);
                   1003:                STOQ(b,bt);
                   1004:                pwrgfs(at,bt,&ct);
                   1005:                c = CONT(ct);
                   1006:                return FTOIF(c);
                   1007:        }
                   1008: }
                   1009:
                   1010: int _onesf()
                   1011: {
                   1012:        return FTOIF(0);
                   1013: }
                   1014:
1.9       noro     1015: int _itosf(int n)
1.6       noro     1016: {
                   1017:        int i;
                   1018:
                   1019:        n %= current_gfs_p;
                   1020:        if ( !n )
                   1021:                return 0;
                   1022:        i = current_gfs_ntoi[n];
                   1023:        i = FTOIF(i);
                   1024:        if ( n < 0 )
                   1025:                i = _chsgnsf(i);
                   1026:        return i;
                   1027: }
                   1028:
1.9       noro     1029: int _isonesf(int a)
1.6       noro     1030: {
                   1031:        return a == FTOIF(0);
                   1032: }
                   1033:
                   1034: int _randomsf()
                   1035: {
                   1036:        int t;
                   1037:
                   1038:        t = (int) (mt_genrand() % current_gfs_q1);
                   1039:        if ( !t )
                   1040:                return 0;
                   1041:        else
                   1042:                return FTOIF(t);
                   1043: }
                   1044:
                   1045: int field_order_sf()
                   1046: {
                   1047:        return current_gfs_q;
                   1048: }
                   1049:
                   1050: int characteristic_sf()
                   1051: {
                   1052:        return current_gfs_p;
                   1053: }
                   1054:
1.7       noro     1055: int extdeg_sf()
                   1056: {
                   1057:        return UDEG(current_gfs_ext);
                   1058: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>