Annotation of OpenXM_contrib2/asir2000/engine/mat.c, Revision 1.17
1.2 noro 1: /*
2: * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
3: * All rights reserved.
4: *
5: * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
6: * non-exclusive and royalty-free license to use, copy, modify and
7: * redistribute, solely for non-commercial and non-profit purposes, the
8: * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
9: * conditions of this Agreement. For the avoidance of doubt, you acquire
10: * only a limited right to use the SOFTWARE hereunder, and FLL or any
11: * third party developer retains all rights, including but not limited to
12: * copyrights, in and to the SOFTWARE.
13: *
14: * (1) FLL does not grant you a license in any way for commercial
15: * purposes. You may use the SOFTWARE only for non-commercial and
16: * non-profit purposes only, such as academic, research and internal
17: * business use.
18: * (2) The SOFTWARE is protected by the Copyright Law of Japan and
19: * international copyright treaties. If you make copies of the SOFTWARE,
20: * with or without modification, as permitted hereunder, you shall affix
21: * to all such copies of the SOFTWARE the above copyright notice.
22: * (3) An explicit reference to this SOFTWARE and its copyright owner
23: * shall be made on your publication or presentation in any form of the
24: * results obtained by use of the SOFTWARE.
25: * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
1.3 noro 26: * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
1.2 noro 27: * for such modification or the source code of the modified part of the
28: * SOFTWARE.
29: *
30: * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
31: * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
32: * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
33: * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
34: * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
35: * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
36: * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
37: * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
38: * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
39: * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
40: * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
41: * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
42: * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
43: * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
44: * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
45: * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
46: * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
47: *
1.17 ! noro 48: * $OpenXM: OpenXM_contrib2/asir2000/engine/mat.c,v 1.16 2009/11/24 04:34:30 ohara Exp $
1.2 noro 49: */
1.1 noro 50: #include "ca.h"
1.4 saito 51: #include "../parse/parse.h"
52:
53: extern int StrassenSize;
1.14 saito 54: /* remove miser type
1.12 saito 55: void mulmatmat_miser();
1.14 saito 56: */
1.1 noro 57:
58: void addmat(vl,a,b,c)
59: VL vl;
60: MAT a,b,*c;
61: {
1.17 ! noro 62: int row,col,i,j;
1.4 saito 63: MAT t;
64: pointer *ab,*bb,*tb;
65:
66: if ( !a )
67: *c = b;
68: else if ( !b )
69: *c = a;
70: else if ( (a->row != b->row) || (a->col != b->col) ) {
71: *c = 0; error("addmat : size mismatch add");
72: } else {
73: row = a->row; col = a->col;
74: MKMAT(t,row,col);
75: for ( i = 0; i < row; i++ )
76: for ( j = 0, ab = BDY(a)[i], bb = BDY(b)[i], tb = BDY(t)[i];
77: j < col; j++ )
1.9 noro 78: arf_add(vl,(Obj)ab[j],(Obj)bb[j],(Obj *)&tb[j]);
1.4 saito 79: *c = t;
80: }
1.1 noro 81: }
82:
83: void submat(vl,a,b,c)
84: VL vl;
85: MAT a,b,*c;
86: {
1.17 ! noro 87: int row,col,i,j;
1.4 saito 88: MAT t;
89: pointer *ab,*bb,*tb;
1.1 noro 90:
1.4 saito 91: if ( !a )
92: chsgnmat(b,c);
93: else if ( !b )
94: *c = a;
95: else if ( (a->row != b->row) || (a->col != b->col) ) {
96: *c = 0; error("submat : size mismatch sub");
97: } else {
98: row = a->row; col = a->col;
99: MKMAT(t,row,col);
100: for ( i = 0; i < row; i++ )
101: for ( j = 0, ab = BDY(a)[i], bb = BDY(b)[i], tb = BDY(t)[i];
102: j < col; j++ )
1.9 noro 103: arf_sub(vl,(Obj)ab[j],(Obj)bb[j],(Obj *)&tb[j]);
1.4 saito 104: *c = t;
105: }
1.1 noro 106: }
107:
1.14 saito 108: /* remove miser type
1.11 saito 109: void addmat_miser(vl,a,b,c,ar0,ac0,ar1,ac1,br0,bc0,br1,bc1)
110: VL vl;
111: MAT a,b,*c;
112: int ar0,ac0,ar1,ac1,br0,bc0,br1,bc1;
113: {
1.17 ! noro 114: int row,col,i,j;
1.11 saito 115: MAT t;
116: pointer *ab,*bb,*tb;
117: row = ar1 - ar0 + 1; col = ac1 - ac0 + 1;
118:
119: if ( !a )
120: *c = b;
121: else if ( !b )
122: *c = a;
123: else if ( (row != br1 - br0 + 1) || (col != bc1 - bc0 + 1) ) {
124: *c = 0; error("addmat : size mismatch add");
125: } else {
126: MKMAT(t,row,col);
127: for ( i = 0; i < row; i++ ) {
1.17 ! noro 128: if (i+ar0 > a->row-1) {
! 129: ab = NULL;
! 130: } else {
! 131: ab = BDY(a)[i+ar0];
! 132: }
! 133: if (i+br0 > b->row-1) {
! 134: bb = NULL;
! 135: } else {
! 136: bb = BDY(b)[i+br0];
! 137: }
! 138: tb = BDY(t)[i];
! 139: for ( j =0; j < col; j++ ) {
! 140: if ((ab == NULL || j+ac0 > a->col-1) && (bb == NULL || j+bc0 > b->col-1)) {
! 141: arf_add(vl,NULL,NULL,(Obj *)&tb[j]);
! 142: } else if ((ab != NULL && j+ac0 <= a->col-1) && (bb == NULL || j+bc0 > b->col-1)){
! 143: arf_add(vl,(Obj)ab[j+ac0],NULL,(Obj *)&tb[j]);
! 144: } else if ((ab == NULL || j+ac0 > a->col-1) && (bb != NULL && j+bc0 <= b->col-1)) {
! 145: arf_add(vl,NULL, (Obj)bb[j+bc0],(Obj *)&tb[j]);
! 146: } else {
! 147: arf_add(vl,(Obj)ab[j+ac0],(Obj)bb[j+bc0],(Obj *)&tb[j]);
! 148: }
1.11 saito 149:
1.17 ! noro 150: }
! 151: }
1.11 saito 152: *c = t;
153: }
154: }
155:
156: void submat_miser(vl,a,b,c,ar0,ac0,ar1,ac1,br0,bc0,br1,bc1)
157: VL vl;
158: MAT a,b,*c;
159: int ar0,ac0,ar1,ac1,br0,bc0,br1,bc1;
160: {
1.17 ! noro 161: int row,col,i,j;
1.11 saito 162: MAT t;
163: pointer *ab,*bb,*tb;
164:
165: row = ar1 - ar0 + 1; col = ac1 - ac0 + 1;
166:
167: if ( !a )
168: chsgnmat(b,c);
169: else if ( !b )
170: *c = a;
171: else if ( (row != br1 - br0 + 1) || (col != bc1 - bc0 + 1) ) {
172: *c = 0; error("submat : size mismatch sub");
173: } else {
174: MKMAT(t,row,col);
175: for ( i = 0; i < row; i++ ) {
1.17 ! noro 176: if (i+ar0 > a->row-1) {
! 177: ab = NULL;
! 178: } else {
! 179: ab = BDY(a)[i+ar0];
! 180: }
! 181: if (i+br0 > b->row-1) {
! 182: bb = NULL;
! 183: } else {
! 184: bb = BDY(b)[i+br0];
! 185: }
! 186: tb = BDY(t)[i];
! 187: for ( j =0; j < col; j++ ) {
! 188: if ((ab == NULL || j+ac0 > a->col-1) && (bb == NULL || j+bc0 > b->col-1)) {
! 189: arf_sub(vl,NULL,NULL,(Obj *)&tb[j]);
! 190: } else if ((ab != NULL && j+ac0 <= a->col-1) && (bb == NULL || j+bc0 > b->col-1)){
! 191: arf_sub(vl,(Obj)ab[j+ac0],NULL,(Obj *)&tb[j]);
! 192: } else if ((ab == NULL || j+ac0 > a->col-1) && (bb != NULL && j+bc0 <= b->col-1)) {
! 193: arf_sub(vl,NULL, (Obj)bb[j+bc0],(Obj *)&tb[j]);
! 194: } else {
! 195: arf_sub(vl,(Obj)ab[j+ac0],(Obj)bb[j+bc0],(Obj *)&tb[j]);
! 196: }
1.11 saito 197:
1.17 ! noro 198: }
! 199: }
1.11 saito 200: *c = t;
201: }
202: }
1.14 saito 203: */
1.11 saito 204:
1.1 noro 205: void mulmat(vl,a,b,c)
206: VL vl;
207: Obj a,b,*c;
208: {
1.17 ! noro 209: VECT vect;
! 210: MAT mat;
1.8 noro 211:
1.17 ! noro 212: if ( !a && !b )
! 213: *c = 0;
! 214: else if ( !a || !b ) {
! 215: if ( !a )
! 216: a = b;
! 217: switch ( OID(a) ) {
! 218: case O_VECT:
! 219: MKVECT(vect,((VECT)a)->len);
! 220: *c = (Obj)vect;
! 221: break;
! 222: case O_MAT:
! 223: MKMAT(mat,((MAT)a)->row,((MAT)a)->col);
! 224: *c = (Obj)mat;
! 225: break;
! 226: default:
! 227: *c = 0;
! 228: break;
! 229: }
! 230: } else if ( OID(a) <= O_R || OID(a) == O_DP )
! 231: mulrmat(vl,(Obj)a,(MAT)b,(MAT *)c);
! 232: else if ( OID(b) <= O_R || OID(b) == O_DP )
! 233: mulrmat(vl,(Obj)b,(MAT)a,(MAT *)c);
! 234: else
! 235: switch ( OID(a) ) {
! 236: case O_VECT:
! 237: switch ( OID(b) ) {
! 238: case O_MAT:
! 239: mulvectmat(vl,(VECT)a,(MAT)b,(VECT *)c); break;
! 240: case O_VECT: default:
! 241: notdef(vl,a,b,c); break;
! 242: }
! 243: break;
! 244: case O_MAT:
! 245: switch ( OID(b) ) {
! 246: case O_VECT:
! 247: mulmatvect(vl,(MAT)a,(VECT)b,(VECT *)c); break;
! 248: case O_MAT:
! 249: mulmatmat(vl, (MAT)a, (MAT)b, (MAT *)c); break;
1.14 saito 250: /* remove miser type
1.17 ! noro 251: mulmatmat_miser(vl,(MAT)a,(MAT)b,(MAT *)c, 0,0, ((MAT)a)->row-1, ((MAT)a)->col-1, 0,0,((MAT)b)->row-1, ((MAT)b)->col-1); break;
1.14 saito 252: */
1.17 ! noro 253: default:
! 254: notdef(vl,a,b,c); break;
! 255: }
! 256: break;
! 257: default:
! 258: notdef(vl,a,b,c); break;
! 259: }
! 260: }
1.1 noro 261:
262: void divmat(vl,a,b,c)
263: VL vl;
264: Obj a,b,*c;
265: {
1.17 ! noro 266: Obj t;
1.1 noro 267:
1.17 ! noro 268: if ( !b )
! 269: error("divmat : division by 0");
! 270: else if ( !a )
! 271: *c = 0;
! 272: else if ( OID(b) > O_R )
! 273: notdef(vl,a,b,c);
! 274: else {
! 275: arf_div(vl,(Obj)ONE,b,&t); mulrmat(vl,t,(MAT)a,(MAT *)c);
! 276: }
! 277: }
1.1 noro 278:
279: void chsgnmat(a,b)
280: MAT a,*b;
281: {
1.17 ! noro 282: MAT t;
! 283: int row,col,i,j;
! 284: pointer *ab,*tb;
! 285:
! 286: if ( !a )
! 287: *b = 0;
! 288: else {
! 289: row = a->row; col = a->col;
! 290: MKMAT(t,row,col);
! 291: for ( i = 0; i < row; i++ )
! 292: for ( j = 0, ab = BDY(a)[i], tb = BDY(t)[i];
! 293: j < col; j++ )
! 294: arf_chsgn((Obj)ab[j],(Obj *)&tb[j]);
! 295: *b = t;
! 296: }
1.1 noro 297: }
298:
299: void pwrmat(vl,a,r,c)
300: VL vl;
301: MAT a;
302: Obj r;
303: MAT *c;
304: {
1.17 ! noro 305: int n,i;
! 306: MAT t;
1.8 noro 307:
1.17 ! noro 308: if ( !a )
! 309: *c = 0;
! 310: else if ( !r ) {
! 311: if ( a->row != a->col ) {
! 312: *c = 0; error("pwrmat : non square matrix");
! 313: } else {
! 314: n = a->row;
! 315: MKMAT(t,n,n);
! 316: for ( i = 0; i < n; i++ )
! 317: t->body[i][i] = ONE;
! 318: *c = t;
! 319: }
! 320: } else if ( !NUM(r) || !RATN(r) ||
! 321: !INT(r) || (SGN((Q)r)<0) || (PL(NM((Q)r))>1) ) {
! 322: *c = 0; error("pwrmat : invalid exponent");
! 323: } else if ( a->row != a->col ) {
! 324: *c = 0; error("pwrmat : non square matrix");
! 325: } else
! 326: pwrmatmain(vl,a,QTOS((Q)r),c);
1.1 noro 327: }
328:
329: void pwrmatmain(vl,a,e,c)
330: VL vl;
331: MAT a;
332: int e;
333: MAT *c;
334: {
1.17 ! noro 335: MAT t,s;
! 336:
! 337: if ( e == 1 ) {
! 338: *c = a;
! 339: return;
! 340: }
1.1 noro 341:
1.17 ! noro 342: pwrmatmain(vl,a,e/2,&t);
! 343: mulmat(vl,(Obj)t,(Obj)t,(Obj *)&s);
! 344: if ( e % 2 )
! 345: mulmat(vl,(Obj)s,(Obj)a,(Obj *)c);
! 346: else
! 347: *c = s;
1.1 noro 348: }
349:
350: void mulrmat(vl,a,b,c)
351: VL vl;
352: Obj a;
353: MAT b,*c;
354: {
1.17 ! noro 355: int row,col,i,j;
! 356: MAT t;
! 357: pointer *bb,*tb;
! 358:
! 359: if ( !a || !b )
! 360: *c = 0;
! 361: else {
! 362: row = b->row; col = b->col;
! 363: MKMAT(t,row,col);
! 364: for ( i = 0; i < row; i++ )
! 365: for ( j = 0, bb = BDY(b)[i], tb = BDY(t)[i];
! 366: j < col; j++ )
! 367: arf_mul(vl,(Obj)a,(Obj)bb[j],(Obj *)&tb[j]);
! 368: *c = t;
! 369: }
1.1 noro 370: }
371:
372: void mulmatmat(vl,a,b,c)
373: VL vl;
374: MAT a,b,*c;
375: {
1.17 ! noro 376: int arow,bcol,i,j,k,m, h, arowh, bcolh;
! 377: MAT t, a11, a12, a21, a22;
! 378: MAT p, b11, b12, b21, b22;
! 379: MAT ans1, ans2, ans3, c11, c12, c21, c22;
! 380: MAT s1, s2, t1, t2, u1, v1, w1, aa, bb;
! 381: pointer s,u,v;
! 382: pointer *ab,*tb;
! 383: int a1row,a2row, a3row,a4row, a1col, a2col, a3col, a4col;
! 384: int b1row,b2row, b3row,b4row, b1col, b2col, b3col, b4col;
! 385: int pflag1, pflag2, pflag3;
! 386: /* mismach col and row */
! 387: if ( a->col != b->row ) {
! 388: *c = 0; error("mulmat : size mismatch");
! 389: }
! 390: else {
! 391: pflag1 = 0; pflag2 = 0; pflag3 = 0;
! 392: arow = a->row; m = a->col; bcol = b->col;
! 393: MKMAT(t,arow,bcol);
! 394: /* StrassenSize == 0 or matrix size less then StrassenSize,
! 395: then calc cannonical algorithm. */
! 396: if((StrassenSize == 0)||(a->row<=StrassenSize || a->col <= StrassenSize) || (b->row<=StrassenSize || b->col <= StrassenSize)) {
! 397: for ( i = 0; i < arow; i++ )
! 398: for ( j = 0, ab = BDY(a)[i], tb = BDY(t)[i]; j < bcol; j++ ) {
! 399: for ( k = 0, s = 0; k < m; k++ ) {
! 400: arf_mul(vl,(Obj)ab[k],(Obj)BDY(b)[k][j],(Obj *)&u);
! 401: arf_add(vl,(Obj)s,(Obj)u,(Obj *)&v);
! 402: s = v;
! 403: }
! 404: tb[j] = s;
! 405: }
! 406: *c = t;
! 407: return;
! 408: }
! 409: /* padding odd col and row to even number for zero */
! 410: i = arow/2;
! 411: j = arow - i;
! 412: if (i != j) {
! 413: arow++;
! 414: pflag1 = 1;
! 415: }
! 416: i = m/2;
! 417: j = m - i;
! 418: if (i != j) {
! 419: m++;
! 420: pflag2 = 1;
! 421: }
! 422:
! 423: i = bcol/2;
! 424: j = bcol - i;
! 425: if (i != j) {
! 426: bcol++;
! 427: pflag3 = 1;
! 428: }
! 429:
! 430: /* split matrix A and B */
! 431: a1row = arow/2; a1col = m/2;
! 432: MKMAT(a11,a1row,a1col);
! 433: MKMAT(a21,a1row,a1col);
! 434: MKMAT(a12,a1row,a1col);
! 435: MKMAT(a22,a1row,a1col);
! 436:
! 437: b1row = m/2; b1col = bcol/2;
! 438: MKMAT(b11,b1row,b1col);
! 439: MKMAT(b21,b1row,b1col);
! 440: MKMAT(b12,b1row,b1col);
! 441: MKMAT(b22,b1row,b1col);
! 442:
! 443: /* make a11 matrix */
! 444: for (i = 0; i < a1row; i++) {
! 445: for (j = 0; j < a1col; j++) {
! 446: a11->body[i][j] = a->body[i][j];
! 447: }
! 448: }
1.4 saito 449:
1.17 ! noro 450: /* make a21 matrix */
! 451: for (i = a1row; i < a->row; i++) {
! 452: for (j = 0; j < a1col; j++) {
! 453: a21->body[i-a1row][j] = a->body[i][j];
! 454: }
! 455: }
! 456:
! 457: /* create a12 matrix */
! 458: for (i = 0; i < a1row; i++) {
! 459: for (j = a1col; j < a->col; j++) {
! 460: a12->body[i][j-a1col] = a->body[i][j];
! 461: }
! 462: }
! 463:
! 464: /* create a22 matrix */
1.11 saito 465: for (i = a1row; i < a->row; i++) {
466: for (j = a1col; j < a->col; j++) {
467: a22->body[i-a1row][j-a1col] = a->body[i][j];
1.4 saito 468: }
469: }
470:
471:
1.17 ! noro 472: /* create b11 submatrix */
! 473: for (i = 0; i < b1row; i++) {
! 474: for (j = 0; j < b1col; j++) {
! 475: b11->body[i][j] = b->body[i][j];
! 476: }
! 477: }
! 478:
! 479: /* create b21 submatrix */
! 480: for (i = b1row; i < b->row; i++) {
! 481: for (j = 0; j < b1col; j++) {
! 482: b21->body[i-b1row][j] = b->body[i][j];
! 483: }
! 484: }
! 485:
! 486: /* create b12 submatrix */
! 487: for (i = 0; i < b1row; i++) {
! 488: for (j = b1col; j < b->col; j++) {
! 489: b12->body[i][j-b1col] = b->body[i][j];
! 490: }
! 491: }
! 492:
! 493: /* create b22 submatrix */
! 494: for (i = b1row; i < b->row; i++) {
! 495: for (j = b1col; j < b->col; j++) {
! 496: b22->body[i-b1row][j-b1col] = b->body[i][j];
! 497: }
! 498: }
! 499:
! 500: /* extension by zero */
! 501: if (pflag1) {
! 502: for (j = 0; j < a1col; j++) {
! 503: a21->body[a1row-1][j] = 0; /* null */
! 504: }
! 505: for (j = a1col; j < a->col; j++) {
! 506: a22->body[a1row-1][j-a1col] = 0;
! 507: }
! 508: }
! 509: if (pflag2) {
! 510: for (i = 0; i < a1row; i++) {
! 511: a12->body[i][a1col-1] = 0;
! 512: }
! 513: for (i = a1row; i < a->row; i++) {
! 514: a22->body[i-a1row][a1col-1] = 0;
! 515: }
! 516: for (j = 0; j < b1col; j++) {
! 517: b21->body[b1row-1][j] = 0;
! 518: }
! 519: for (j = b1col; j < b->col; j++) {
! 520: b22->body[b1row-1][j-b1col] = 0;
! 521: }
! 522: }
! 523: if (pflag3) {
! 524: for (i = 0; i < b1row; i++) {
! 525: b12->body[i][b1col-1] = 0;
! 526: }
! 527: for (i = b1row; i < b->row; i++) {
! 528: b22->body[i-b1row][b1col-1] = 0;
! 529: }
! 530: }
! 531:
! 532: /* expand matrix by Strassen-Winograd algorithm */
! 533: /* s1=A21+A22 */
! 534: addmat(vl,a21,a22,&s1);
! 535:
! 536: /* s2=s1-A11 */
! 537: submat(vl,s1,a11,&s2);
! 538:
! 539: /* t1=B12-B11 */
! 540: submat(vl, b12, b11, &t1);
! 541:
! 542: /* t2=B22-t1 */
! 543: submat(vl, b22, t1, &t2);
! 544:
! 545: /* u=(A11-A21)*(B22-B12) */
! 546: submat(vl, a11, a21, &ans1);
! 547: submat(vl, b22, b12, &ans2);
! 548: mulmatmat(vl, ans1, ans2, &u1);
! 549:
! 550: /* v=s1*t1 */
! 551: mulmatmat(vl, s1, t1, &v1);
! 552:
! 553: /* w=A11*B11+s2*t2 */
! 554: mulmatmat(vl, a11, b11, &ans1);
! 555: mulmatmat(vl, s2, t2, &ans2);
! 556: addmat(vl, ans1, ans2, &w1);
! 557:
! 558: /* C11 = A11*B11+A12*B21 */
! 559: mulmatmat(vl, a12, b21, &ans2);
! 560: addmat(vl, ans1, ans2, &c11);
! 561:
! 562: /* C12 = w1+v1+(A12-s2)*B22 */
! 563: submat(vl, a12, s2, &ans1);
! 564: mulmatmat(vl, ans1, b22, &ans2);
! 565: addmat(vl, w1, v1, &ans1);
! 566: addmat(vl, ans1, ans2, &c12);
! 567:
! 568: /* C21 = w1+u1+A22*(B21-t2) */
! 569: submat(vl, b21, t2, &ans1);
! 570: mulmatmat(vl, a22, ans1, &ans2);
! 571: addmat(vl, w1, u1, &ans1);
! 572: addmat(vl, ans1, ans2, &c21);
! 573:
! 574: /* C22 = w1 + u1 + v1 */
! 575: addmat(vl, ans1, v1, &c22);
! 576: }
! 577:
! 578: for(i =0; i<c11->row; i++) {
! 579: for ( j=0; j < c11->col; j++) {
! 580: t->body[i][j] = c11->body[i][j];
! 581: }
! 582: }
! 583: if (pflag1 == 0) {
! 584: k = c21->row;
! 585: } else {
! 586: k = c21->row - 1;
! 587: }
! 588: for(i =0; i<k; i++) {
! 589: for ( j=0; j < c21->col; j++) {
! 590: t->body[i+c11->row][j] = c21->body[i][j];
! 591: }
! 592: }
! 593: if (pflag2 == 0) {
! 594: h = c12->col;
! 595: } else {
! 596: h = c12->col -1;
! 597: }
! 598: for(i =0; i<c12->row; i++) {
! 599: for ( j=0; j < k; j++) {
! 600: t->body[i][j+c11->col] = c12->body[i][j];
! 601: }
! 602: }
! 603: if (pflag1 == 0) {
! 604: k = c22->row;
! 605: } else {
! 606: k = c22->row -1;
! 607: }
! 608: if (pflag2 == 0) {
! 609: h = c22->col;
! 610: } else {
! 611: h = c22->col - 1;
! 612: }
! 613: for(i =0; i<k; i++) {
! 614: for ( j=0; j < h; j++) {
! 615: t->body[i+c11->row][j+c11->col] = c22->body[i][j];
! 616: }
! 617: }
! 618: *c = t;
1.4 saito 619: }
620:
1.14 saito 621: #if 0
622: /* remove miser type */
1.11 saito 623: void mulmatmat_miser(vl,a,b,c,ar0,ac0,ar1,ac1,br0,bc0,br1,bc1)
624: VL vl;
625: MAT a,b,*c;
626: int ar0, ac0, ar1, ac1, br0, bc0, br1, bc1;
627: {
1.17 ! noro 628: int arow,bcol,i,j,k,m, h;
! 629: MAT t, a11, a12, a21, a22;
! 630: MAT p, b11, b12, b21, b22;
! 631: MAT ans1, ans2, c11, c12, c21, c22;
! 632: MAT s1, s2, t1, t2, u1, v1, w1;
! 633: pointer s,u,v;
! 634: pointer *ab,*tb, *bb;
! 635: int a1row, a1col;
! 636: int b1row, b1col;
! 637: int pflag1, pflag2;
! 638:
! 639: arow = ar1-ar0 + 1; m = ac1-ac0 + 1; bcol = bc1 - bc0 + 1;
! 640: /* mismach col and row */
! 641: if ( m != br1-br0 + 1 ) {
! 642: *c = 0; error("mulmat : size mismatch");
! 643: }
! 644: else {
! 645: pflag1 = 0; pflag2 = 0;
! 646: MKMAT(t,arow,bcol);
! 647: /* StrassenSize == 0 or matrix size less then StrassenSize,
! 648: then calc cannonical algorithm. */
! 649: if((StrassenSize == 0)||(arow<=StrassenSize || m <= StrassenSize) || (m<=StrassenSize || bcol <= StrassenSize)) {
! 650: for ( i = 0; i < arow; i++ ) {
! 651: if (i+ar0 > a->row-1) {
! 652: ab = NULL;
! 653: } else {
! 654: ab = BDY(a)[i+ar0];
! 655: }
! 656: tb = BDY(t)[i];
! 657: for ( j = 0; j < bcol; j++ ) {
! 658: for ( k = 0, s = 0; k < m; k++ ) {
! 659: if (k+br0 > b->row-1) {
! 660: bb = NULL;
! 661: } else {
! 662: bb = BDY(b)[k+br0];
! 663: }
! 664: if ((ab == NULL || k+ac0 > a->col-1) && (bb == NULL || j+bc0 > b->col-1)) {
! 665: arf_mul(vl,NULL,NULL,(Obj *)&u);
! 666: } else if ((ab != NULL && k+ac0 <= a->col-1) && (bb == NULL || j+bc0 > b->col-1)){
! 667: arf_mul(vl,(Obj)ab[k+ac0],NULL,(Obj *)&u);
! 668: } else if ((ab == NULL || k+ac0 > a->col-1) && (bb != NULL && j+bc0 <= b->col-1)) {
! 669: arf_mul(vl,NULL,(Obj)bb[j+bc0],(Obj *)&u);
! 670: } else {
! 671: arf_mul(vl,(Obj)ab[k+ac0],(Obj)bb[j+bc0],(Obj *)&u);
! 672: }
! 673: arf_add(vl,(Obj)s,(Obj)u,(Obj *)&v);
! 674: s = v;
! 675: }
! 676: tb[j] = s;
! 677: }
! 678: }
! 679: *c = t;
! 680: return;
! 681:
! 682: }
! 683: /* padding odd col and row to even number for zero */
! 684: i = arow/2;
! 685: j = arow - i;
! 686: if (i != j) {
! 687: arow++;
! 688: pflag1 = 1;
! 689: }
! 690: i = m/2;
! 691: j = m - i;
! 692: if (i != j) {
! 693: m++;
! 694: pflag2 = 1;
! 695: }
! 696:
! 697: i = bcol/2;
! 698: j = bcol - i;
! 699: if (i != j) {
! 700: bcol++;
! 701: }
! 702:
! 703: /* split matrix A and B */
! 704: a1row = arow/2; a1col = m/2;
! 705: b1row = m/2; b1col = bcol/2;
! 706:
! 707: /* expand matrix by Strassen-Winograd algorithm */
! 708: /* s1=A21+A22 */
! 709: addmat_miser(vl,a,a,&s1, ar0 + a1row, ac0, ar0 + arow -1, ac0 + a1col-1, ar0 + a1row, ac0 + a1col, ar0 + arow -1, ac0 + m-1);
! 710:
! 711: /* s2=s1-A11 */
! 712: submat_miser(vl,s1,a,&s2, 0,0, s1->row-1, s1->col-1, ar0, ac0, ar0 + a1row-1, ac0 + a1col-1);
! 713:
! 714: /* t1=B12-B11 */
! 715: submat_miser(vl, b, b, &t1, br0, bc0 + b1col, br0 + b1row-1, bc0 + bcol - 1, br0,bc0,br0 + b1row-1, bc0 + b1col-1);
! 716:
! 717: /* t2=B22-t1 */
! 718: submat_miser(vl, b, t1, &t2, br0 + b1row, bc0 + b1col, br0 + m-1, bc0 + bcol-1, 0,0,t1->row-1, t1->col-1);
! 719:
! 720: /* u=(A11-A21)*(B22-B12) */
! 721: submat_miser(vl, a, a, &ans1, ar0, ac0, ar0 + a1row-1,ac0 + a1col-1, ar0 + a1row, ac0, ar0 + arow-1, ac0 + a1col-1);
! 722: submat_miser(vl, b, b, &ans2, br0 + b1row, bc0 + b1col, br0 + m-1, bc0 + bcol-1, br0, bc0 + b1col, br0 + b1row-1, bc0 + bcol-1);
! 723: mulmatmat_miser(vl, ans1, ans2, &u1, 0, 0, ans1->row -1, ans1->col-1, 0, 0, ans2->row -1, ans2->col-1);
! 724:
! 725: /* v=s1*t1 */
! 726: mulmatmat_miser(vl, s1, t1, &v1, 0, 0, s1->row -1, s1->col-1, 0, 0, t1->row -1, t1->col-1);
! 727:
! 728: /* w=A11*B11+s2*t2 */
! 729: mulmatmat_miser(vl, a, b, &ans1, ar0, ac0, ar0 + a1row-1,ac0 + a1col-1, br0, bc0, br0 + b1row-1,bc0 + b1col-1);
! 730: mulmatmat_miser(vl, s2, t2, &ans2, 0, 0, s2->row -1, s2->col-1, 0, 0, t2->row -1, t2->col-1);
! 731: addmat_miser(vl, ans1, ans2, &w1, 0, 0, ans1->row -1, ans1->col-1, 0, 0, ans2->row -1, ans2->col-1);
! 732:
! 733: /* C11 = A11*B11+A12*B21 */
! 734: mulmatmat_miser(vl, a, b, &ans2, ar0, ac0 + a1col, ar0 + a1row-1, ac0 + m-1, br0 + b1row, bc0 + 0, br0 + m-1, bc0 + b1col-1);
! 735: addmat_miser(vl, ans1, ans2, &c11, 0, 0, ans1->row -1, ans1->col -1, 0, 0, ans2->row -1, ans2->col-1);
! 736:
! 737: /* C12 = w1+v1+(A12-s2)*B22 */
! 738: submat_miser(vl, a, s2, &ans1, ar0, ac0 + a1col, ar0 + a1row-1, ac0 + m-1, 0, 0, s2->row -1, s2->col -1);
! 739: mulmatmat_miser(vl, ans1, b, &ans2, 0, 0, ans1->row -1, ans1->col -1, br0 + b1row, bc0 + b1col, br0 + m-1, bc0 + bcol-1);
! 740: addmat_miser(vl, w1, v1, &ans1, 0, 0, w1->row -1, w1->col -1, 0,0, v1->row-1, v1->col -1);
! 741: addmat_miser(vl, ans1, ans2, &c12, 0, 0, ans1->row -1, ans1->col -1, 0, 0, ans2->row -1, ans2->col-1);
! 742:
! 743: /* C21 = w1+u1+A22*(B21-t2) */
! 744: submat_miser(vl, b, t2, &ans1, br0 + b1row, bc0 + 0, br0 + m-1, bc0 + b1col-1, 0,0, t2->row-1, t2->col-1);
! 745: mulmatmat_miser(vl, a, ans1, &ans2, ar0 + a1row, ac0 + a1col, ar0 + arow-1, ac0 + m-1, 0, 0, ans1->row -1, ans1->col -1);
! 746: addmat_miser(vl, w1, u1, &ans1, 0,0,w1->row -1, w1->col-1, 0,0,u1->row -1, u1->col-1);
! 747: addmat_miser(vl, ans1, ans2, &c21, 0, 0, ans1->row -1, ans1->col -1, 0, 0, ans2->row -1, ans2->col-1);
! 748:
! 749: /* C22 = w1 + u1 + v1 */
! 750: addmat_miser(vl, ans1, v1, &c22, 0, 0, ans1->row -1, ans1->col -1, 0, 0, v1->row-1, v1->col-1);
! 751: }
! 752:
! 753: for(i =0; i<c11->row; i++) {
! 754: for ( j=0; j < c11->col; j++) {
! 755: t->body[i][j] = c11->body[i][j];
! 756: }
! 757: }
! 758: if (pflag1 == 0) {
! 759: k = c21->row;
! 760: } else {
! 761: k = c21->row - 1;
! 762: }
! 763: for(i =0; i<k; i++) {
! 764: for ( j=0; j < c21->col; j++) {
! 765: t->body[i+c11->row][j] = c21->body[i][j];
! 766: }
! 767: }
! 768: if (pflag2 == 0) {
! 769: h = c12->col;
! 770: } else {
! 771: h = c12->col -1;
! 772: }
! 773: for(i =0; i<c12->row; i++) {
! 774: for ( j=0; j < k; j++) {
! 775: t->body[i][j+c11->col] = c12->body[i][j];
! 776: }
! 777: }
! 778: if (pflag1 == 0) {
! 779: k = c22->row;
! 780: } else {
! 781: k = c22->row -1;
! 782: }
! 783: if (pflag2 == 0) {
! 784: h = c22->col;
! 785: } else {
! 786: h = c22->col - 1;
! 787: }
! 788: for(i =0; i<k; i++) {
! 789: for ( j=0; j < h; j++) {
! 790: t->body[i+c11->row][j+c11->col] = c22->body[i][j];
! 791: }
! 792: }
! 793: *c = t;
1.11 saito 794: }
1.14 saito 795: #endif
1.1 noro 796:
797: void mulmatvect(vl,a,b,c)
798: VL vl;
799: MAT a;
800: VECT b;
801: VECT *c;
802: {
1.17 ! noro 803: int arow,i,j,m;
! 804: VECT t;
! 805: pointer s,u,v;
! 806: pointer *ab;
! 807:
! 808: if ( !a || !b )
! 809: *c = 0;
! 810: else if ( a->col != b->len ) {
! 811: *c = 0; error("mulmatvect : size mismatch");
! 812: } else {
1.15 noro 813: #if 0
1.17 ! noro 814: for ( i = 0; i < b->len; i++ )
! 815: if ( BDY(b)[i] && OID((Obj)BDY(b)[i]) > O_R )
! 816: error("mulmatvect : invalid argument");
1.15 noro 817: #endif
1.17 ! noro 818: arow = a->row; m = a->col;
! 819: MKVECT(t,arow);
! 820: for ( i = 0; i < arow; i++ ) {
! 821: for ( j = 0, s = 0, ab = BDY(a)[i]; j < m; j++ ) {
! 822: arf_mul(vl,(Obj)ab[j],(Obj)BDY(b)[j],(Obj *)&u); arf_add(vl,(Obj)s,(Obj)u,(Obj *)&v); s = v;
! 823: }
! 824: BDY(t)[i] = s;
! 825: }
! 826: *c = t;
! 827: }
1.1 noro 828: }
829:
830: void mulvectmat(vl,a,b,c)
831: VL vl;
832: VECT a;
833: MAT b;
834: VECT *c;
835: {
1.17 ! noro 836: int bcol,i,j,m;
! 837: VECT t;
! 838: pointer s,u,v;
! 839:
! 840: if ( !a || !b )
! 841: *c = 0;
! 842: else if ( a->len != b->row ) {
! 843: *c = 0; error("mulvectmat : size mismatch");
! 844: } else {
! 845: for ( i = 0; i < a->len; i++ )
! 846: if ( BDY(a)[i] && OID((Obj)BDY(a)[i]) > O_R )
! 847: error("mulvectmat : invalid argument");
! 848: bcol = b->col; m = a->len;
! 849: MKVECT(t,bcol);
! 850: for ( j = 0; j < bcol; j++ ) {
! 851: for ( i = 0, s = 0; i < m; i++ ) {
! 852: arf_mul(vl,(Obj)BDY(a)[i],(Obj)BDY(b)[i][j],(Obj *)&u); arf_add(vl,(Obj)s,(Obj)u,(Obj *)&v); s = v;
! 853: }
! 854: BDY(t)[j] = s;
! 855: }
! 856: *c = t;
! 857: }
1.1 noro 858: }
859:
860: int compmat(vl,a,b)
861: VL vl;
862: MAT a,b;
863: {
1.17 ! noro 864: int i,j,t,row,col;
1.1 noro 865:
1.17 ! noro 866: if ( !a )
! 867: return b?-1:0;
! 868: else if ( !b )
! 869: return 1;
! 870: else if ( a->row != b->row )
! 871: return a->row>b->row ? 1 : -1;
! 872: else if (a->col != b->col )
! 873: return a->col > b->col ? 1 : -1;
! 874: else {
! 875: row = a->row; col = a->col;
! 876: for ( i = 0; i < row; i++ )
! 877: for ( j = 0; j < col; j++ )
! 878: if ( t = arf_comp(vl,(Obj)BDY(a)[i][j],(Obj)BDY(b)[i][j]) )
! 879: return t;
! 880: return 0;
! 881: }
1.1 noro 882: }
883:
884: pointer **almat_pointer(n,m)
885: int n,m;
886: {
1.17 ! noro 887: pointer **mat;
! 888: int i;
1.1 noro 889:
1.17 ! noro 890: mat = (pointer **)MALLOC(n*sizeof(pointer *));
! 891: for ( i = 0; i < n; i++ )
! 892: mat[i] = (pointer *)CALLOC(m,sizeof(pointer));
! 893: return mat;
1.1 noro 894: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>