Annotation of OpenXM_contrib2/asir2000/engine/real.c, Revision 1.5
1.3 noro 1: /*
2: * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
3: * All rights reserved.
4: *
5: * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
6: * non-exclusive and royalty-free license to use, copy, modify and
7: * redistribute, solely for non-commercial and non-profit purposes, the
8: * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
9: * conditions of this Agreement. For the avoidance of doubt, you acquire
10: * only a limited right to use the SOFTWARE hereunder, and FLL or any
11: * third party developer retains all rights, including but not limited to
12: * copyrights, in and to the SOFTWARE.
13: *
14: * (1) FLL does not grant you a license in any way for commercial
15: * purposes. You may use the SOFTWARE only for non-commercial and
16: * non-profit purposes only, such as academic, research and internal
17: * business use.
18: * (2) The SOFTWARE is protected by the Copyright Law of Japan and
19: * international copyright treaties. If you make copies of the SOFTWARE,
20: * with or without modification, as permitted hereunder, you shall affix
21: * to all such copies of the SOFTWARE the above copyright notice.
22: * (3) An explicit reference to this SOFTWARE and its copyright owner
23: * shall be made on your publication or presentation in any form of the
24: * results obtained by use of the SOFTWARE.
25: * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
1.4 noro 26: * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
1.3 noro 27: * for such modification or the source code of the modified part of the
28: * SOFTWARE.
29: *
30: * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
31: * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
32: * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
33: * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
34: * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
35: * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
36: * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
37: * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
38: * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
39: * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
40: * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
41: * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
42: * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
43: * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
44: * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
45: * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
46: * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
47: *
1.5 ! noro 48: * $OpenXM: OpenXM_contrib2/asir2000/engine/real.c,v 1.4 2000/08/22 05:04:06 noro Exp $
1.3 noro 49: */
1.1 noro 50: #include "ca.h"
51: #include "base.h"
52: #include <math.h>
53:
54: #if defined(THINK_C)
55: double RatnToReal(a)
56: Q a;
57: {
58: double nm,dn,t;
59: int enm,edn;
60: char buf[BUFSIZ];
61:
62: nm = NatToReal(NM(a),&enm);
63: if ( INT(a) )
64: if ( enm >= 1 )
65: error("RatnToReal : Overflow");
66: else
67: return SGN(a)>0 ? nm : -nm;
68: else {
69: dn = NatToReal(DN(a),&edn);
70: sprintf(buf,"1.0E%d",enm-edn);
71: sscanf(buf,"%lf",&t);
72: if ( SGN(a) < 0 )
73: t = -t;
74: return nm/dn*t;
75: }
76: }
77:
78: double NatToReal(a,expo)
79: N a;
80: int *expo;
81: {
82: int *p;
83: int l,all,i,j,s,tb,top,tail;
84: unsigned int t,m[2];
85:
86: p = BD(a); l = PL(a) - 1;
87: for ( top = 0, t = p[l]; t; t >>= 1, top++ );
88: all = top + BSH*l; tail = (53-top)%BSH; i = l-(53-top)/BSH-1;
89: m[1] = i < 0 ? 0 : p[i]>>(BSH-tail);
90: for ( j = 1, i++, tb = tail; i <= l; i++ ) {
91: s = 32-tb; t = i < 0 ? 0 : p[i];
92: if ( BSH > s ) {
93: m[j] |= ((t&((1<<s)-1))<<tb);
94: if ( !j )
95: break;
96: else {
97: j--; m[j] = t>>s; tb = BSH-s;
98: }
99: } else {
100: m[j] |= (t<<tb); tb += BSH;
101: }
102: }
103: s = (all-1)+1023;
104: m[0] = (m[0]&((1<<20)-1))|(MIN(2046,s)<<20); *expo = MAX(s-2046,0);
105: #ifdef vax
106: t = m[0]; m[0] = m[1]; m[1] = t; itod(m);
107: #endif
108: #if defined(MIPSEL)
109: t = m[0]; m[0] = m[1]; m[1] = t;
110: #endif
111: return (double)(*((short double *)m));
112: }
113: #else
114: double RatnToReal(a)
115: Q a;
116: {
117: double nm,dn,t,man;
118: int enm,edn,e;
119: unsigned int *p,s;
120:
121: nm = NatToReal(NM(a),&enm);
122: if ( INT(a) )
123: if ( enm >= 1 )
124: error("RatnToReal : Overflow");
125: else
126: return SGN(a)>0 ? nm : -nm;
127: else {
128: dn = NatToReal(DN(a),&edn);
129: man = nm/dn;
130: if ( SGN(a) < 0 )
131: man = -man;
132: if ( ((e = enm - edn) >= 1024) || (e <= -1023) )
133: error("RatnToReal : Overflow"); /* XXX */
134: else if ( !e )
135: return man;
136: else
137: return man*pow(2,e);
138: }
139: }
140:
141: double NatToReal(a,expo)
142: N a;
143: int *expo;
144: {
145: unsigned int *p;
146: int l,all,i,j,s,tb,top,tail;
147: unsigned int t,m[2];
148:
149: p = BD(a); l = PL(a) - 1;
150: for ( top = 0, t = p[l]; t; t >>= 1, top++ );
151: all = top + BSH*l; tail = (53-top)%BSH; i = l-(53-top)/BSH-1;
152: m[1] = i < 0 ? 0 : p[i]>>(BSH-tail);
153: for ( j = 1, i++, tb = tail; i <= l; i++ ) {
154: s = 32-tb; t = i < 0 ? 0 : p[i];
155: if ( BSH > s ) {
156: m[j] |= ((t&((1<<s)-1))<<tb);
157: if ( !j )
158: break;
159: else {
160: j--; m[j] = t>>s; tb = BSH-s;
161: }
162: } else {
163: m[j] |= (t<<tb); tb += BSH;
164: }
165: }
166: s = (all-1)+1023;
167: m[0] = (m[0]&((1<<20)-1))|(MIN(2046,s)<<20); *expo = MAX(s-2046,0);
168: #ifdef vax
169: t = m[0]; m[0] = m[1]; m[1] = t; itod(m);
170: #endif
1.2 noro 171: #if defined(__i386__) || defined(MIPSEL) || defined(VISUAL) || defined(__alpha) || defined(__FreeBSD__) || defined(__NetBSD__)
1.1 noro 172: t = m[0]; m[0] = m[1]; m[1] = t;
173: #endif
174: return *((double *)m);
175: }
176: #endif
177:
178: void addreal(a,b,c)
179: Num a,b;
180: Real *c;
181: {
182: double t;
183:
184: t = ToReal(a)+ToReal(b); MKReal(t,*c);
185: }
186:
187: void subreal(a,b,c)
188: Num a,b;
189: Real *c;
190: {
191: double t;
192:
193: t = ToReal(a)-ToReal(b); MKReal(t,*c);
194: }
195:
196: void mulreal(a,b,c)
197: Num a,b;
198: Real *c;
199: {
200: double t;
201:
202: if ( !a || !b )
203: *c = 0;
204: else {
205: t = ToReal(a)*ToReal(b);
1.5 ! noro 206: #if 0
1.1 noro 207: if ( !t )
208: error("mulreal : Underflow"); /* XXX */
209: else
1.5 ! noro 210: #endif
1.1 noro 211: MKReal(t,*c);
212: }
213: }
214:
215: void divreal(a,b,c)
216: Num a,b;
217: Real *c;
218: {
219: double t;
220:
221: if ( !a )
222: *c = 0;
223: else {
224: t = ToReal(a)/ToReal(b);
1.5 ! noro 225: #if 0
1.1 noro 226: if ( !t )
227: error("divreal : Underflow"); /* XXX */
228: else
1.5 ! noro 229: #endif
1.1 noro 230: MKReal(t,*c);
231: }
232: }
233:
234: void chsgnreal(a,c)
235: Num a,*c;
236: {
237: double t;
238: Real s;
239:
240: if ( !a )
241: *c = 0;
242: else if ( NID(a) == N_Q )
243: chsgnq((Q)a,(Q *)c);
244: else {
245: t = -ToReal(a); MKReal(t,s); *c = (Num)s;
246: }
247: }
248:
249: void pwrreal(a,b,c)
250: Num a,b;
251: Real *c;
252: {
253: double t;
254: double pwrreal0();
255:
256: if ( !b )
257: MKReal(1.0,*c);
258: else if ( !a )
259: *c = 0;
260: else if ( !RATN(b) || !INT(b) || (PL(NM((Q)b)) > 1) ) {
261: t = (double)pow((double)ToReal(a),(double)ToReal(b));
1.5 ! noro 262: #if 0
1.1 noro 263: if ( !t )
264: error("pwrreal : Underflow"); /* XXX */
265: else
1.5 ! noro 266: #endif
1.1 noro 267: MKReal(t,*c);
268: } else {
269: t = pwrreal0(BDY((Real)a),BD(NM((Q)b))[0]);
270: t = SGN((Q)b)>0?t:1/t;
1.5 ! noro 271: #if 0
1.1 noro 272: if ( !t )
273: error("pwrreal : Underflow"); /* XXX */
274: else
1.5 ! noro 275: #endif
1.1 noro 276: MKReal(t,*c);
277: }
278: }
279:
280: double pwrreal0(n,e)
281: double n;
282: int e;
283: {
284: double t;
285:
286: if ( e == 1 )
287: return n;
288: else {
289: t = pwrreal0(n,e / 2);
290: return e%2 ? t*t*n : t*t;
291: }
292: }
293:
294: int cmpreal(a,b)
295: Real a,b;
296: {
297: double t;
298:
299: t = ToReal(a)-ToReal(b);
300: return t>0.0 ? 1 : t<0.0?-1 : 0;
301: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>