[BACK]Return to up_lm.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2000 / engine

Annotation of OpenXM_contrib2/asir2000/engine/up_lm.c, Revision 1.3

1.2       noro        1: /*
                      2:  * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
                      3:  * All rights reserved.
                      4:  *
                      5:  * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
                      6:  * non-exclusive and royalty-free license to use, copy, modify and
                      7:  * redistribute, solely for non-commercial and non-profit purposes, the
                      8:  * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
                      9:  * conditions of this Agreement. For the avoidance of doubt, you acquire
                     10:  * only a limited right to use the SOFTWARE hereunder, and FLL or any
                     11:  * third party developer retains all rights, including but not limited to
                     12:  * copyrights, in and to the SOFTWARE.
                     13:  *
                     14:  * (1) FLL does not grant you a license in any way for commercial
                     15:  * purposes. You may use the SOFTWARE only for non-commercial and
                     16:  * non-profit purposes only, such as academic, research and internal
                     17:  * business use.
                     18:  * (2) The SOFTWARE is protected by the Copyright Law of Japan and
                     19:  * international copyright treaties. If you make copies of the SOFTWARE,
                     20:  * with or without modification, as permitted hereunder, you shall affix
                     21:  * to all such copies of the SOFTWARE the above copyright notice.
                     22:  * (3) An explicit reference to this SOFTWARE and its copyright owner
                     23:  * shall be made on your publication or presentation in any form of the
                     24:  * results obtained by use of the SOFTWARE.
                     25:  * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
1.3     ! noro       26:  * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
1.2       noro       27:  * for such modification or the source code of the modified part of the
                     28:  * SOFTWARE.
                     29:  *
                     30:  * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
                     31:  * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
                     32:  * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
                     33:  * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
                     34:  * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
                     35:  * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
                     36:  * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
                     37:  * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
                     38:  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
                     39:  * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
                     40:  * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
                     41:  * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
                     42:  * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
                     43:  * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
                     44:  * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
                     45:  * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
                     46:  * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
                     47:  *
1.3     ! noro       48:  * $OpenXM: OpenXM_contrib2/asir2000/engine/up_lm.c,v 1.2 2000/08/21 08:31:28 noro Exp $
1.2       noro       49: */
1.1       noro       50: #include "ca.h"
                     51: #include <math.h>
                     52:
                     53: extern GC_dont_gc;
                     54: extern struct oEGT eg_chrem,eg_fore,eg_back;
                     55: extern int debug_up;
                     56: extern int up_lazy;
                     57:
                     58: void crup_lm(ModNum **,int,int *,int,N,N,UP *);
                     59:
                     60: void fft_mulup_lm(n1,n2,nr)
                     61: UP n1,n2;
                     62: UP *nr;
                     63: {
                     64:        ModNum *f1,*f2,*w,*fr;
                     65:        ModNum *frarray[1024];
                     66:        int modarray[1024];
                     67:        int frarray_index = 0;
                     68:        N m,m1,m2,lm_mod;
                     69:        int d1,d2,dmin,i,mod,root,d,cond,bound;
                     70:        UP r;
                     71:
                     72:        if ( !n1 || !n2 ) {
                     73:                *nr = 0; return;
                     74:        }
                     75:        d1 = n1->d; d2 = n2->d; dmin = MIN(d1,d2);
                     76:        if ( !d1 || !d2 ) {
                     77:                mulup(n1,n2,nr); return;
                     78:        }
                     79:        getmod_lm(&lm_mod);
                     80:        if ( !lm_mod )
                     81:                error("fft_mulup_lm : current_mod_lm is not set");
                     82:        m = ONEN;
                     83:        bound = maxblenup(n1)+maxblenup(n2)+int_bits(dmin)+2;
                     84:        f1 = (ModNum *)ALLOCA((d1+d2+1)*sizeof(ModNum));
                     85:        f2 = (ModNum *)ALLOCA((d1+d2+1)*sizeof(ModNum));
                     86:        w = (ModNum *)ALLOCA(6*(1<<int_bits(d1+d2+1))*sizeof(ModNum));
                     87:        for ( i = 0; i < NPrimes; i++ ) {
                     88:                FFT_primes(i,&mod,&root,&d);
                     89:                if ( (1<<d) < d1+d2+1 )
                     90:                        continue;
                     91:                modarray[frarray_index] = mod;
                     92:                frarray[frarray_index++] = fr
                     93:                        = (ModNum *)ALLOCA((d1+d2+1)*sizeof(ModNum));
                     94:                uptofmarray(mod,n1,f1);
                     95:                uptofmarray(mod,n2,f2);
                     96:                cond = FFT_pol_product(d1,f1,d2,f2,fr,i,w);
                     97:                if ( cond )
                     98:                        error("fft_mulup : error in FFT_pol_product");
                     99:                STON(mod,m1); muln(m,m1,&m2); m = m2;
                    100:                if ( n_bits(m) > bound ) {
                    101: /*                     GC_dont_gc = 1; */
                    102:                        crup_lm(frarray,d1+d2,modarray,frarray_index,m,lm_mod,&r);
                    103:                        uptolmup(r,nr);
                    104:                        GC_dont_gc = 0;
                    105:                        return;
                    106:                }
                    107:        }
                    108:        error("fft_mulup : FFT_primes exhausted");
                    109: }
                    110:
                    111: void fft_squareup_lm(n1,nr)
                    112: UP n1;
                    113: UP *nr;
                    114: {
                    115:        ModNum *f1,*w,*fr;
                    116:        ModNum *frarray[1024];
                    117:        int modarray[1024];
                    118:        int frarray_index = 0;
                    119:        N m,m1,m2,lm_mod;
                    120:        int d1,dmin,i,mod,root,d,cond,bound;
                    121:        UP r;
                    122:
                    123:        if ( !n1 ) {
                    124:                *nr = 0; return;
                    125:        }
                    126:        d1 = n1->d; dmin = d1;
                    127:        if ( !d1 ) {
                    128:                mulup(n1,n1,nr); return;
                    129:        }
                    130:        getmod_lm(&lm_mod);
                    131:        if ( !lm_mod )
                    132:                error("fft_squareup_lm : current_mod_lm is not set");
                    133:        m = ONEN;
                    134:        bound = 2*maxblenup(n1)+int_bits(d1)+2;
                    135:        f1 = (ModNum *)ALLOCA((2*d1+1)*sizeof(ModNum));
                    136:        w = (ModNum *)ALLOCA(6*(1<<int_bits(2*d1+1))*sizeof(ModNum));
                    137:        for ( i = 0; i < NPrimes; i++ ) {
                    138:                FFT_primes(i,&mod,&root,&d);
                    139:                if ( (1<<d) < 2*d1+1 )
                    140:                        continue;
                    141:                modarray[frarray_index] = mod;
                    142:                frarray[frarray_index++] = fr
                    143:                        = (ModNum *)ALLOCA((2*d1+1)*sizeof(ModNum));
                    144:                uptofmarray(mod,n1,f1);
                    145:                cond = FFT_pol_square(d1,f1,fr,i,w);
                    146:                if ( cond )
                    147:                        error("fft_mulup : error in FFT_pol_product");
                    148:                STON(mod,m1); muln(m,m1,&m2); m = m2;
                    149:                if ( n_bits(m) > bound ) {
                    150: /*                     GC_dont_gc = 1; */
                    151:                        crup_lm(frarray,2*d1,modarray,frarray_index,m,lm_mod,&r);
                    152:                        uptolmup(r,nr);
                    153:                        GC_dont_gc = 0;
                    154:                        return;
                    155:                }
                    156:        }
                    157:        error("fft_squareup : FFT_primes exhausted");
                    158: }
                    159:
                    160: void trunc_fft_mulup_lm(n1,n2,dbd,nr)
                    161: UP n1,n2;
                    162: int dbd;
                    163: UP *nr;
                    164: {
                    165:        ModNum *f1,*f2,*fr,*w;
                    166:        ModNum *frarray[1024];
                    167:        int modarray[1024];
                    168:        int frarray_index = 0;
                    169:        N m,m1,m2,lm_mod;
                    170:        int d1,d2,dmin,i,mod,root,d,cond,bound;
                    171:        UP r;
                    172:
                    173:        if ( !n1 || !n2 ) {
                    174:                *nr = 0; return;
                    175:        }
                    176:        d1 = n1->d; d2 = n2->d; dmin = MIN(d1,d2);
                    177:        if ( !d1 || !d2 ) {
                    178:                tmulup(n1,n2,dbd,nr); return;
                    179:        }
                    180:        getmod_lm(&lm_mod);
                    181:        if ( !lm_mod )
                    182:                error("trunc_fft_mulup_lm : current_mod_lm is not set");
                    183:        m = ONEN;
                    184:        bound = maxblenup(n1)+maxblenup(n2)+int_bits(dmin)+2;
                    185:        f1 = (ModNum *)ALLOCA((d1+d2+1)*sizeof(ModNum));
                    186:        f2 = (ModNum *)ALLOCA((d1+d2+1)*sizeof(ModNum));
                    187:        w = (ModNum *)ALLOCA(6*(1<<int_bits(d1+d2+1))*sizeof(ModNum));
                    188:        for ( i = 0; i < NPrimes; i++ ) {
                    189:                FFT_primes(i,&mod,&root,&d);
                    190:                if ( (1<<d) < d1+d2+1 )
                    191:                        continue;
                    192:
                    193:                modarray[frarray_index] = mod;
                    194:                frarray[frarray_index++] = fr
                    195:                        = (ModNum *)ALLOCA((d1+d2+1)*sizeof(ModNum));
                    196:                uptofmarray(mod,n1,f1);
                    197:                uptofmarray(mod,n2,f2);
                    198:                cond = FFT_pol_product(d1,f1,d2,f2,fr,i,w);
                    199:                if ( cond )
                    200:                        error("fft_mulup : error in FFT_pol_product");
                    201:                STON(mod,m1); muln(m,m1,&m2); m = m2;
                    202:                if ( n_bits(m) > bound ) {
                    203: /*                     GC_dont_gc = 1; */
                    204:                        crup_lm(frarray,MIN(dbd-1,d1+d2),modarray,frarray_index,m,lm_mod,&r);
                    205:                        uptolmup(r,nr);
                    206:                        GC_dont_gc = 0;
                    207:                        return;
                    208:                }
                    209:        }
                    210:        error("trunc_fft_mulup : FFT_primes exhausted");
                    211: }
                    212:
                    213: void crup_lm(f,d,mod,index,m,lm_mod,r)
                    214: ModNum **f;
                    215: int d;
                    216: int *mod;
                    217: int index;
                    218: N m;
                    219: N lm_mod;
                    220: UP *r;
                    221: {
                    222:        double *k;
                    223:        double c2;
                    224:        unsigned int *w;
                    225:        unsigned int zi,au,al;
                    226:        UL a;
                    227:        int i,j,l,len;
                    228:        UP s,s1,u;
                    229:        struct oUP c;
                    230:        N t,ci,mi,qn;
                    231:        unsigned int **sum;
                    232:        unsigned int *sum_b;
                    233:        Q q;
                    234:        struct oEGT eg0,eg1;
                    235:
                    236:        if ( !lm_mod )
                    237:                error("crup_lm : current_mod_lm is not set");
                    238:        k = (double *)ALLOCA((d+1)*sizeof(double));
                    239:        for ( j = 0; j <= d; j++ )
                    240:                k[j] = 0.5;
                    241:        up_lazy = 1;
                    242:        sum = (unsigned int **)ALLOCA((d+1)*sizeof(unsigned int *));
                    243:        len = (int_bits(index)+n_bits(lm_mod)+31)/32+1;
                    244:        w = (unsigned int *)ALLOCA((len+1)*sizeof(unsigned int));
                    245:        sum_b = (unsigned int *)MALLOC_ATOMIC((d+1)*len*sizeof(unsigned int));
                    246:        for ( j = 0; j <= d; j++ ) {
                    247:                sum[j] = sum_b+len*j;
                    248:                bzero((char *)sum[j],len*sizeof(unsigned int));
                    249:        }
                    250:        for ( i = 0, s = 0; i < index; i++ ) {
                    251:                divin(m,mod[i],&ci);
                    252:                zi = (unsigned int)invm((unsigned int)rem(ci,mod[i]),mod[i]);
                    253:
                    254:                STON(zi,t); muln(ci,t,&mi);
                    255:                divn(mi,lm_mod,&qn,&t);
                    256:                if ( t )
                    257:                        for ( j = 0; j <= d; j++ ) {
                    258:                                bzero((char *)w,(len+1)*sizeof(unsigned int));
                    259:                                muln_1(BD(t),PL(t),(unsigned int)f[i][j],w);
                    260:                                for ( l = PL(t); l >= 0 && !w[l]; l--);
                    261:                                l++;
                    262:                                if ( l )
                    263:                                        addarray_to(w,l,sum[j],len);
                    264:                        }
                    265:                c2 = (double)zi/(double)mod[i];
                    266:                for ( j = 0; j <= d; j++ )
                    267:                        k[j] += c2*f[i][j];
                    268:        }
                    269:        uiarraytoup(sum,len,d,&s);
                    270:        GC_free(sum_b);
                    271:
                    272:        u = UPALLOC(d);
                    273:        for ( j = 0; j <= d; j++ ) {
                    274: #if 1
                    275:                a = (UL)floor(k[j]);
                    276: #if defined(i386) || defined(__alpha) || defined(VISUAL)
                    277:                au = ((unsigned int *)&a)[1];
                    278:                al = ((unsigned int *)&a)[0];
                    279: #else
                    280:                al = ((unsigned int *)&a)[1];
                    281:                au = ((unsigned int *)&a)[0];
                    282: #endif
                    283:                if ( au ) {
                    284:                        NEWQ(q); SGN(q) = 1; NM(q)=NALLOC(2); DN(q)=0;
                    285:                        PL(NM(q))=2; BD(NM(q))[0]=al; BD(NM(q))[1] = au;
                    286:                } else
                    287:                        UTOQ(al,q);
                    288: #else
                    289:                al = (int)floor(k[j]); STOQ(al,q);
                    290: #endif
                    291:                 u->c[j] = (Num)q;
                    292:        }
                    293:        for ( j = d; j >= 0 && !u->c[j]; j-- );
                    294:        if ( j < 0 )
                    295:                u = 0;
                    296:        else
                    297:                u->d = j;
                    298:        divn(m,lm_mod,&qn,&t); NTOQ(t,-1,q);
                    299:        c.d = 0; c.c[0] = (Num)q;
                    300:        mulup(u,&c,&s1);
                    301:        up_lazy = 0;
                    302:
                    303:        addup(s,s1,r);
                    304: }
                    305:
                    306: void fft_rembymulup_special_lm(n1,n2,inv2,nr)
                    307: UP n1,n2,inv2;
                    308: UP *nr;
                    309: {
                    310:        int d1,d2,d;
                    311:        UP r1,t,s,q,u;
                    312:
                    313:        if ( !n2 )
                    314:                error("rembymulup : division by 0");
                    315:        else if ( !n1 || !n2->d )
                    316:                *nr = 0;
                    317:        else if ( (d1 = n1->d) < (d2 = n2->d) )
                    318:                *nr = n1;
                    319:        else {
                    320:                d = d1-d2;
                    321:                reverseup(n1,d1,&t); truncup(t,d+1,&r1);
                    322:                trunc_fft_mulup_lm(r1,inv2,d+1,&t);
                    323:                truncup(t,d+1,&s);
                    324:                reverseup(s,d,&q);
                    325:                trunc_fft_mulup_lm(q,n2,d2,&t); truncup(t,d2,&u);
                    326:                truncup(n1,d2,&s);
                    327:                subup(s,u,nr);
                    328:        }
                    329: }
                    330:
                    331: void uptolmup(n,nr)
                    332: UP n;
                    333: UP *nr;
                    334: {
                    335:        int i,d;
                    336:        Q *c;
                    337:        LM *cr;
                    338:        UP r;
                    339:
                    340:        if ( !n )
                    341:                *nr = 0;
                    342:        else {
                    343:                d = n->d; c = (Q *)n->c;
                    344:                *nr = r = UPALLOC(d); cr = (LM *)r->c;
                    345:                for ( i = 0; i <= d; i++ )
                    346:                        qtolm(c[i],&cr[i]);
                    347:                for ( i = d; i >= 0 && !cr[i]; i-- );
                    348:                if ( i < 0 )
                    349:                        *nr = 0;
                    350:                else
                    351:                        r->d = i;
                    352:        }
                    353: }
                    354:
                    355: save_up(obj,name)
                    356: UP obj;
                    357: char *name;
                    358: {
                    359:        P p;
                    360:        Obj ret;
                    361:        NODE n0,n1;
                    362:        STRING s;
                    363:
                    364:        uptop(obj,&p);
                    365:        MKSTR(s,name);
                    366:        MKNODE(n1,s,0); MKNODE(n0,p,n1);
                    367:        Pbsave(n0,&ret);
                    368: }
                    369:
                    370: void hybrid_powermodup(f,xp)
                    371: UP f;
                    372: UP *xp;
                    373: {
                    374:        N n;
                    375:        UP x,y,t,invf,s;
                    376:        int k;
                    377:        LM lm;
                    378:        struct oEGT eg_sq,eg_rem,eg_mul,eg_inv,eg0,eg1,eg2,eg3;
                    379:        char name[BUFSIZ];
                    380:
                    381:        getmod_lm(&n);
                    382:        if ( !n )
                    383:                error("hybrid_powermodup : current_mod_lm is not set");
                    384:        MKLM(ONEN,lm);
                    385:        x = UPALLOC(1); x->d = 1; x->c[1] = (Num)lm;
                    386:        y = UPALLOC(0); y->d = 0; y->c[0] = (Num)lm;
                    387:
                    388:        reverseup(f,f->d,&t);
                    389:        invmodup(t,f->d,&s); uptolmup(s,&invf);
                    390:        for ( k = n_bits(n)-1; k >= 0; k-- ) {
                    391:                hybrid_squareup(FF_GFP,y,&t);
                    392:                hybrid_rembymulup_special(FF_GFP,t,f,invf,&s);
                    393:                y = s;
                    394:                if ( n->b[k/32] & (1<<(k%32)) ) {
                    395:                        mulup(y,x,&t);
                    396:                        remup(t,f,&s);
                    397:                        y = s;
                    398:                }
                    399:        }
                    400:        *xp = y;
                    401: }
                    402:
                    403: void powermodup(f,xp)
                    404: UP f;
                    405: UP *xp;
                    406: {
                    407:        N n;
                    408:        UP x,y,t,invf,s;
                    409:        int k;
                    410:        LM lm;
                    411:        struct oEGT eg_sq,eg_rem,eg_mul,eg_inv,eg0,eg1,eg2,eg3;
                    412:
                    413:        field_order_ff(&n);
                    414:        if ( !n )
                    415:                error("powermodup : current_mod_lm is not set");
                    416:        MKLM(ONEN,lm);
                    417:        x = UPALLOC(1); x->d = 1; x->c[1] = (Num)lm;
                    418:        y = UPALLOC(0); y->d = 0; y->c[0] = (Num)lm;
                    419:
                    420:        reverseup(f,f->d,&t);
                    421:        invmodup(t,f->d,&s); uptolmup(s,&invf);
                    422:        for ( k = n_bits(n)-1; k >= 0; k-- ) {
                    423:                ksquareup(y,&t);
                    424:                rembymulup_special(t,f,invf,&s);
                    425:                y = s;
                    426:                if ( n->b[k/32] & (1<<(k%32)) ) {
                    427:                        mulup(y,x,&t);
                    428:                        remup(t,f,&s);
                    429:                        y = s;
                    430:                }
                    431:        }
                    432:        *xp = y;
                    433: }
                    434:
                    435: /* g^d mod f */
                    436:
                    437: void hybrid_generic_powermodup(g,f,d,xp)
                    438: UP g,f;
                    439: Q d;
                    440: UP *xp;
                    441: {
                    442:        N e;
                    443:        UP x,y,t,invf,s;
                    444:        int k;
                    445:        LM lm;
                    446:        struct oEGT eg_sq,eg_rem,eg_mul,eg_inv,eg0,eg1,eg2,eg3;
                    447:
                    448:        e = NM(d);
                    449:        MKLM(ONEN,lm);
                    450:        y = UPALLOC(0); y->d = 0; y->c[0] = (Num)lm;
                    451:        remup(g,f,&x);
                    452:        if ( !x ) {
                    453:                *xp = !d ? y : 0;
                    454:                return;
                    455:        } else if ( !x->d ) {
                    456:                pwrup(x,d,xp);
                    457:                return;
                    458:        }
                    459:        reverseup(f,f->d,&t);
                    460:        invmodup(t,f->d,&invf);
                    461:        for ( k = n_bits(e)-1; k >= 0; k-- ) {
                    462:                hybrid_squareup(FF_GFP,y,&t);
                    463:                hybrid_rembymulup_special(FF_GFP,t,f,invf,&s);
                    464:                y = s;
                    465:                if ( e->b[k/32] & (1<<(k%32)) ) {
                    466:                        mulup(y,x,&t);
                    467:                        remup(t,f,&s);
                    468:                        y = s;
                    469:                }
                    470:        }
                    471:        *xp = y;
                    472: }
                    473:
                    474: void generic_powermodup(g,f,d,xp)
                    475: UP g,f;
                    476: Q d;
                    477: UP *xp;
                    478: {
                    479:        N e;
                    480:        UP x,y,t,invf,s;
                    481:        int k;
                    482:        LM lm;
                    483:        struct oEGT eg_sq,eg_rem,eg_mul,eg_inv,eg0,eg1,eg2,eg3;
                    484:
                    485:        e = NM(d);
                    486:        MKLM(ONEN,lm);
                    487:        y = UPALLOC(0); y->d = 0; y->c[0] = (Num)lm;
                    488:        remup(g,f,&x);
                    489:        if ( !x ) {
                    490:                *xp = !d ? y : 0;
                    491:                return;
                    492:        } else if ( !x->d ) {
                    493:                pwrup(x,d,xp);
                    494:                return;
                    495:        }
                    496:        reverseup(f,f->d,&t);
                    497:        invmodup(t,f->d,&invf);
                    498:        for ( k = n_bits(e)-1; k >= 0; k-- ) {
                    499:                ksquareup(y,&t);
                    500:                rembymulup_special(t,f,invf,&s);
                    501:                y = s;
                    502:                if ( e->b[k/32] & (1<<(k%32)) ) {
                    503:                        mulup(y,x,&t);
                    504:                        remup(t,f,&s);
                    505:                        y = s;
                    506:                }
                    507:        }
                    508:        *xp = y;
                    509: }
                    510:
                    511: void hybrid_powertabup(f,xp,tab)
                    512: UP f;
                    513: UP xp;
                    514: UP *tab;
                    515: {
                    516:        UP y,t,invf;
                    517:        int i,d;
                    518:        LM lm;
                    519:        struct oEGT eg_rem,eg_mul,eg0,eg1,eg2;
                    520:
                    521:        d = f->d;
                    522:        MKLM(ONEN,lm);
                    523:        y = UPALLOC(0); y->d = 0; y->c[0] = (Num)lm;
                    524:        tab[0] = y;
                    525:        tab[1] = xp;
                    526:
                    527:        reverseup(f,f->d,&t);
                    528:        invmodup(t,f->d,&invf);
                    529:
                    530:        for ( i = 2; i < d; i++ ) {
                    531:                if ( debug_up )
                    532:                        fprintf(stderr,".");
                    533:                hybrid_mulup(FF_GFP,tab[i-1],xp,&t);
                    534:                hybrid_rembymulup_special(FF_GFP,t,f,invf,&tab[i]);
                    535:        }
                    536: }
                    537:
                    538: void powertabup(f,xp,tab)
                    539: UP f;
                    540: UP xp;
                    541: UP *tab;
                    542: {
                    543:        UP y,t,invf;
                    544:        int i,d;
                    545:        LM lm;
                    546:        struct oEGT eg_rem,eg_mul,eg0,eg1,eg2;
                    547:
                    548:        d = f->d;
                    549:        MKLM(ONEN,lm);
                    550:        y = UPALLOC(0); y->d = 0; y->c[0] = (Num)lm;
                    551:        tab[0] = y;
                    552:        tab[1] = xp;
                    553:
                    554:        reverseup(f,f->d,&t);
                    555:        invmodup(t,f->d,&invf);
                    556:
                    557:        for ( i = 2; i < d; i++ ) {
                    558:                if ( debug_up )
                    559:                        fprintf(stderr,".");
                    560:                kmulup(tab[i-1],xp,&t);
                    561:                rembymulup_special(t,f,invf,&tab[i]);
                    562:        }
                    563: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>