Annotation of OpenXM_contrib2/asir2000/gc/include/gc.h, Revision 1.3
1.1 noro 1: /*
2: * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3: * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
1.3 ! noro 4: * Copyright 1996-1999 by Silicon Graphics. All rights reserved.
! 5: * Copyright 1999 by Hewlett-Packard Company. All rights reserved.
1.1 noro 6: *
7: * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8: * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
9: *
10: * Permission is hereby granted to use or copy this program
11: * for any purpose, provided the above notices are retained on all copies.
12: * Permission to modify the code and to distribute modified code is granted,
13: * provided the above notices are retained, and a notice that the code was
14: * modified is included with the above copyright notice.
15: */
16:
17: /*
18: * Note that this defines a large number of tuning hooks, which can
19: * safely be ignored in nearly all cases. For normal use it suffices
20: * to call only GC_MALLOC and perhaps GC_REALLOC.
21: * For better performance, also look at GC_MALLOC_ATOMIC, and
22: * GC_enable_incremental. If you need an action to be performed
23: * immediately before an object is collected, look at GC_register_finalizer.
24: * If you are using Solaris threads, look at the end of this file.
25: * Everything else is best ignored unless you encounter performance
26: * problems.
27: */
28:
29: #ifndef _GC_H
30:
31: # define _GC_H
1.3 ! noro 32:
! 33: #if defined(_SOLARIS_PTHREADS) && !defined(SOLARIS_THREADS)
! 34: # define SOLARIS_THREADS
! 35: #endif
! 36:
! 37: /*
! 38: * Some tests for old macros. These violate our namespace rules and will
! 39: * disappear shortly.
! 40: */
! 41: #if defined(SOLARIS_THREADS) || defined(_SOLARIS_THREADS)
! 42: # define GC_SOLARIS_THREADS
! 43: #endif
! 44: #if defined(_SOLARIS_PTHREADS)
! 45: # define GC_SOLARIS_PTHREADS
! 46: #endif
! 47: #if defined(IRIX_THREADS)
! 48: # define GC_IRIX_THREADS
! 49: #endif
! 50: #if defined(HPUX_THREADS)
! 51: # define GC_HPUX_THREADS
! 52: #endif
! 53: #if defined(OSF1_THREADS)
! 54: # define GC_OSF1_THREADS
! 55: #endif
! 56: #if defined(LINUX_THREADS)
! 57: # define GC_LINUX_THREADS
! 58: #endif
! 59: #if defined(WIN32_THREADS)
! 60: # define GC_WIN32_THREADS
! 61: #endif
! 62: #if defined(USE_LD_WRAP)
! 63: # define GC_USE_LD_WRAP
! 64: #endif
! 65:
! 66: #if !defined(_REENTRANT) && (defined(GC_SOLARIS_THREADS) \
! 67: || defined(GC_SOLARIS_PTHREADS) \
! 68: || defined(GC_HPUX_THREADS) \
! 69: || defined(GC_LINUX_THREADS))
! 70: # define _REENTRANT
! 71: /* Better late than never. This fails if system headers that */
! 72: /* depend on this were previously included. */
! 73: #endif
! 74:
1.1 noro 75: # define __GC
76: # include <stddef.h>
1.3 ! noro 77: # ifdef _WIN32_WCE
! 78: /* Yet more kluges for WinCE */
! 79: # include <stdlib.h> /* size_t is defined here */
! 80: typedef long ptrdiff_t; /* ptrdiff_t is not defined */
! 81: # endif
1.1 noro 82:
83: #if defined(__CYGWIN32__) && defined(GC_USE_DLL)
84: #include "libgc_globals.h"
85: #endif
86:
1.3 ! noro 87: #if defined(__MINGW32__) && defined(WIN32_THREADS)
1.1 noro 88: # ifdef GC_BUILD
89: # define GC_API __declspec(dllexport)
90: # else
91: # define GC_API __declspec(dllimport)
92: # endif
93: #endif
94:
1.3 ! noro 95: #if defined(_MSC_VER) && (defined(_DLL) && !defined(NOT_GC_DLL) \
! 96: || defined(GC_DLL))
! 97: # ifdef GC_BUILD
! 98: # define GC_API extern __declspec(dllexport)
! 99: # else
! 100: # define GC_API __declspec(dllimport)
! 101: # endif
! 102: #endif
! 103:
1.1 noro 104: #if defined(__WATCOMC__) && defined(GC_DLL)
105: # ifdef GC_BUILD
106: # define GC_API extern __declspec(dllexport)
107: # else
108: # define GC_API extern __declspec(dllimport)
109: # endif
110: #endif
111:
112: #ifndef GC_API
113: #define GC_API extern
114: #endif
115:
116: # if defined(__STDC__) || defined(__cplusplus)
117: # define GC_PROTO(args) args
118: typedef void * GC_PTR;
1.2 noro 119: # define GC_CONST const
1.1 noro 120: # else
121: # define GC_PROTO(args) ()
122: typedef char * GC_PTR;
1.2 noro 123: # define GC_CONST
1.1 noro 124: # endif
125:
126: # ifdef __cplusplus
127: extern "C" {
128: # endif
129:
130:
131: /* Define word and signed_word to be unsigned and signed types of the */
132: /* size as char * or void *. There seems to be no way to do this */
133: /* even semi-portably. The following is probably no better/worse */
134: /* than almost anything else. */
135: /* The ANSI standard suggests that size_t and ptr_diff_t might be */
136: /* better choices. But those appear to have incorrect definitions */
137: /* on may systems. Notably "typedef int size_t" seems to be both */
138: /* frequent and WRONG. */
139: typedef unsigned long GC_word;
140: typedef long GC_signed_word;
141:
142: /* Public read-only variables */
143:
144: GC_API GC_word GC_gc_no;/* Counter incremented per collection. */
145: /* Includes empty GCs at startup. */
1.3 ! noro 146:
! 147: GC_API int GC_parallel; /* GC is parallelized for performance on */
! 148: /* multiprocessors. Currently set only */
! 149: /* implicitly if collector is built with */
! 150: /* -DPARALLEL_MARK and if either: */
! 151: /* Env variable GC_NPROC is set to > 1, or */
! 152: /* GC_NPROC is not set and this is an MP. */
! 153: /* If GC_parallel is set, incremental */
! 154: /* collection is aonly partially functional, */
! 155: /* and may not be desirable. */
1.1 noro 156:
157:
158: /* Public R/W variables */
159:
160: GC_API GC_PTR (*GC_oom_fn) GC_PROTO((size_t bytes_requested));
161: /* When there is insufficient memory to satisfy */
162: /* an allocation request, we return */
163: /* (*GC_oom_fn)(). By default this just */
164: /* returns 0. */
165: /* If it returns, it must return 0 or a valid */
166: /* pointer to a previously allocated heap */
167: /* object. */
168:
1.2 noro 169: GC_API int GC_find_leak;
170: /* Do not actually garbage collect, but simply */
171: /* report inaccessible memory that was not */
172: /* deallocated with GC_free. Initial value */
173: /* is determined by FIND_LEAK macro. */
174:
1.3 ! noro 175: GC_API int GC_all_interior_pointers;
! 176: /* Arrange for pointers to object interiors to */
! 177: /* be recognized as valid. May not be changed */
! 178: /* after GC initialization. */
! 179: /* Initial value is determined by */
! 180: /* -DALL_INTERIOR_POINTERS. */
! 181: /* Unless DONT_ADD_BYTE_AT_END is defined, this */
! 182: /* also affects whether sizes are increased by */
! 183: /* at least a byte to allow "off the end" */
! 184: /* pointer recognition. */
! 185: /* MUST BE 0 or 1. */
! 186:
1.1 noro 187: GC_API int GC_quiet; /* Disable statistics output. Only matters if */
188: /* collector has been compiled with statistics */
189: /* enabled. This involves a performance cost, */
190: /* and is thus not the default. */
191:
1.2 noro 192: GC_API int GC_finalize_on_demand;
193: /* If nonzero, finalizers will only be run in */
1.3 ! noro 194: /* response to an explicit GC_invoke_finalizers */
1.2 noro 195: /* call. The default is determined by whether */
196: /* the FINALIZE_ON_DEMAND macro is defined */
197: /* when the collector is built. */
198:
199: GC_API int GC_java_finalization;
200: /* Mark objects reachable from finalizable */
201: /* objects in a separate postpass. This makes */
202: /* it a bit safer to use non-topologically- */
203: /* ordered finalization. Default value is */
204: /* determined by JAVA_FINALIZATION macro. */
205:
1.3 ! noro 206: GC_API void (* GC_finalizer_notifier)();
! 207: /* Invoked by the collector when there are */
! 208: /* objects to be finalized. Invoked at most */
! 209: /* once per GC cycle. Never invoked unless */
! 210: /* GC_finalize_on_demand is set. */
! 211: /* Typically this will notify a finalization */
! 212: /* thread, which will call GC_invoke_finalizers */
! 213: /* in response. */
! 214:
1.1 noro 215: GC_API int GC_dont_gc; /* Dont collect unless explicitly requested, e.g. */
216: /* because it's not safe. */
217:
218: GC_API int GC_dont_expand;
219: /* Dont expand heap unless explicitly requested */
220: /* or forced to. */
221:
1.3 ! noro 222: GC_API int GC_use_entire_heap;
! 223: /* Causes the nonincremental collector to use the */
! 224: /* entire heap before collecting. This was the only */
! 225: /* option for GC versions < 5.0. This sometimes */
! 226: /* results in more large block fragmentation, since */
! 227: /* very larg blocks will tend to get broken up */
! 228: /* during each GC cycle. It is likely to result in a */
! 229: /* larger working set, but lower collection */
! 230: /* frequencies, and hence fewer instructions executed */
! 231: /* in the collector. */
! 232:
1.1 noro 233: GC_API int GC_full_freq; /* Number of partial collections between */
234: /* full collections. Matters only if */
235: /* GC_incremental is set. */
1.2 noro 236: /* Full collections are also triggered if */
237: /* the collector detects a substantial */
238: /* increase in the number of in-use heap */
239: /* blocks. Values in the tens are now */
240: /* perfectly reasonable, unlike for */
241: /* earlier GC versions. */
1.1 noro 242:
243: GC_API GC_word GC_non_gc_bytes;
244: /* Bytes not considered candidates for collection. */
245: /* Used only to control scheduling of collections. */
1.3 ! noro 246: /* Updated by GC_malloc_uncollectable and GC_free. */
! 247: /* Wizards only. */
! 248:
! 249: GC_API int GC_no_dls;
! 250: /* Don't register dynamic library data segments. */
! 251: /* Wizards only. Should be used only if the */
! 252: /* application explicitly registers all roots. */
! 253: /* In Microsoft Windows environments, this will */
! 254: /* usually also prevent registration of the */
! 255: /* main data segment as part of the root set. */
1.1 noro 256:
257: GC_API GC_word GC_free_space_divisor;
258: /* We try to make sure that we allocate at */
259: /* least N/GC_free_space_divisor bytes between */
260: /* collections, where N is the heap size plus */
261: /* a rough estimate of the root set size. */
262: /* Initially, GC_free_space_divisor = 4. */
263: /* Increasing its value will use less space */
264: /* but more collection time. Decreasing it */
265: /* will appreciably decrease collection time */
266: /* at the expense of space. */
267: /* GC_free_space_divisor = 1 will effectively */
268: /* disable collections. */
269:
270: GC_API GC_word GC_max_retries;
271: /* The maximum number of GCs attempted before */
272: /* reporting out of memory after heap */
273: /* expansion fails. Initially 0. */
274:
275:
276: GC_API char *GC_stackbottom; /* Cool end of user stack. */
277: /* May be set in the client prior to */
278: /* calling any GC_ routines. This */
279: /* avoids some overhead, and */
280: /* potentially some signals that can */
281: /* confuse debuggers. Otherwise the */
282: /* collector attempts to set it */
283: /* automatically. */
284: /* For multithreaded code, this is the */
285: /* cold end of the stack for the */
1.3 ! noro 286: /* primordial thread. */
1.1 noro 287:
1.3 ! noro 288: GC_API int GC_dont_precollect; /* Don't collect as part of */
! 289: /* initialization. Should be set only */
! 290: /* if the client wants a chance to */
! 291: /* manually initialize the root set */
! 292: /* before the first collection. */
! 293: /* Interferes with blacklisting. */
! 294: /* Wizards only. */
! 295:
1.1 noro 296: /* Public procedures */
297: /*
298: * general purpose allocation routines, with roughly malloc calling conv.
299: * The atomic versions promise that no relevant pointers are contained
300: * in the object. The nonatomic versions guarantee that the new object
301: * is cleared. GC_malloc_stubborn promises that no changes to the object
302: * will occur after GC_end_stubborn_change has been called on the
303: * result of GC_malloc_stubborn. GC_malloc_uncollectable allocates an object
304: * that is scanned for pointers to collectable objects, but is not itself
1.3 ! noro 305: * collectable. The object is scanned even if it does not appear to
! 306: * be reachable. GC_malloc_uncollectable and GC_free called on the resulting
1.1 noro 307: * object implicitly update GC_non_gc_bytes appropriately.
1.3 ! noro 308: *
! 309: * Note that the GC_malloc_stubborn support is stubbed out by default
! 310: * starting in 6.0. GC_malloc_stubborn is an alias for GC_malloc unless
! 311: * the collector is built with STUBBORN_ALLOC defined.
1.1 noro 312: */
313: GC_API GC_PTR GC_malloc GC_PROTO((size_t size_in_bytes));
314: GC_API GC_PTR GC_malloc_atomic GC_PROTO((size_t size_in_bytes));
315: GC_API GC_PTR GC_malloc_uncollectable GC_PROTO((size_t size_in_bytes));
316: GC_API GC_PTR GC_malloc_stubborn GC_PROTO((size_t size_in_bytes));
317:
318: /* The following is only defined if the library has been suitably */
319: /* compiled: */
320: GC_API GC_PTR GC_malloc_atomic_uncollectable GC_PROTO((size_t size_in_bytes));
321:
322: /* Explicitly deallocate an object. Dangerous if used incorrectly. */
323: /* Requires a pointer to the base of an object. */
324: /* If the argument is stubborn, it should not be changeable when freed. */
325: /* An object should not be enable for finalization when it is */
326: /* explicitly deallocated. */
327: /* GC_free(0) is a no-op, as required by ANSI C for free. */
328: GC_API void GC_free GC_PROTO((GC_PTR object_addr));
329:
330: /*
331: * Stubborn objects may be changed only if the collector is explicitly informed.
332: * The collector is implicitly informed of coming change when such
333: * an object is first allocated. The following routines inform the
334: * collector that an object will no longer be changed, or that it will
335: * once again be changed. Only nonNIL pointer stores into the object
336: * are considered to be changes. The argument to GC_end_stubborn_change
337: * must be exacly the value returned by GC_malloc_stubborn or passed to
338: * GC_change_stubborn. (In the second case it may be an interior pointer
339: * within 512 bytes of the beginning of the objects.)
340: * There is a performance penalty for allowing more than
341: * one stubborn object to be changed at once, but it is acceptable to
342: * do so. The same applies to dropping stubborn objects that are still
343: * changeable.
344: */
345: GC_API void GC_change_stubborn GC_PROTO((GC_PTR));
346: GC_API void GC_end_stubborn_change GC_PROTO((GC_PTR));
347:
348: /* Return a pointer to the base (lowest address) of an object given */
349: /* a pointer to a location within the object. */
350: /* Return 0 if displaced_pointer doesn't point to within a valid */
351: /* object. */
352: GC_API GC_PTR GC_base GC_PROTO((GC_PTR displaced_pointer));
353:
354: /* Given a pointer to the base of an object, return its size in bytes. */
355: /* The returned size may be slightly larger than what was originally */
356: /* requested. */
357: GC_API size_t GC_size GC_PROTO((GC_PTR object_addr));
358:
359: /* For compatibility with C library. This is occasionally faster than */
360: /* a malloc followed by a bcopy. But if you rely on that, either here */
361: /* or with the standard C library, your code is broken. In my */
362: /* opinion, it shouldn't have been invented, but now we're stuck. -HB */
363: /* The resulting object has the same kind as the original. */
364: /* If the argument is stubborn, the result will have changes enabled. */
365: /* It is an error to have changes enabled for the original object. */
366: /* Follows ANSI comventions for NULL old_object. */
367: GC_API GC_PTR GC_realloc
368: GC_PROTO((GC_PTR old_object, size_t new_size_in_bytes));
369:
370: /* Explicitly increase the heap size. */
371: /* Returns 0 on failure, 1 on success. */
372: GC_API int GC_expand_hp GC_PROTO((size_t number_of_bytes));
373:
374: /* Limit the heap size to n bytes. Useful when you're debugging, */
375: /* especially on systems that don't handle running out of memory well. */
376: /* n == 0 ==> unbounded. This is the default. */
377: GC_API void GC_set_max_heap_size GC_PROTO((GC_word n));
378:
379: /* Inform the collector that a certain section of statically allocated */
380: /* memory contains no pointers to garbage collected memory. Thus it */
381: /* need not be scanned. This is sometimes important if the application */
382: /* maps large read/write files into the address space, which could be */
383: /* mistaken for dynamic library data segments on some systems. */
384: GC_API void GC_exclude_static_roots GC_PROTO((GC_PTR start, GC_PTR finish));
385:
386: /* Clear the set of root segments. Wizards only. */
387: GC_API void GC_clear_roots GC_PROTO((void));
388:
389: /* Add a root segment. Wizards only. */
390: GC_API void GC_add_roots GC_PROTO((char * low_address,
391: char * high_address_plus_1));
392:
393: /* Add a displacement to the set of those considered valid by the */
394: /* collector. GC_register_displacement(n) means that if p was returned */
395: /* by GC_malloc, then (char *)p + n will be considered to be a valid */
396: /* pointer to n. N must be small and less than the size of p. */
397: /* (All pointers to the interior of objects from the stack are */
398: /* considered valid in any case. This applies to heap objects and */
399: /* static data.) */
400: /* Preferably, this should be called before any other GC procedures. */
401: /* Calling it later adds to the probability of excess memory */
402: /* retention. */
403: /* This is a no-op if the collector was compiled with recognition of */
404: /* arbitrary interior pointers enabled, which is now the default. */
405: GC_API void GC_register_displacement GC_PROTO((GC_word n));
406:
407: /* The following version should be used if any debugging allocation is */
408: /* being done. */
409: GC_API void GC_debug_register_displacement GC_PROTO((GC_word n));
410:
411: /* Explicitly trigger a full, world-stop collection. */
412: GC_API void GC_gcollect GC_PROTO((void));
413:
414: /* Trigger a full world-stopped collection. Abort the collection if */
415: /* and when stop_func returns a nonzero value. Stop_func will be */
416: /* called frequently, and should be reasonably fast. This works even */
417: /* if virtual dirty bits, and hence incremental collection is not */
418: /* available for this architecture. Collections can be aborted faster */
419: /* than normal pause times for incremental collection. However, */
420: /* aborted collections do no useful work; the next collection needs */
421: /* to start from the beginning. */
422: /* Return 0 if the collection was aborted, 1 if it succeeded. */
423: typedef int (* GC_stop_func) GC_PROTO((void));
424: GC_API int GC_try_to_collect GC_PROTO((GC_stop_func stop_func));
425:
426: /* Return the number of bytes in the heap. Excludes collector private */
427: /* data structures. Includes empty blocks and fragmentation loss. */
428: /* Includes some pages that were allocated but never written. */
429: GC_API size_t GC_get_heap_size GC_PROTO((void));
430:
1.2 noro 431: /* Return a lower bound on the number of free bytes in the heap. */
432: GC_API size_t GC_get_free_bytes GC_PROTO((void));
433:
1.1 noro 434: /* Return the number of bytes allocated since the last collection. */
435: GC_API size_t GC_get_bytes_since_gc GC_PROTO((void));
436:
1.3 ! noro 437: /* Return the total number of bytes allocated in this process. */
! 438: /* Never decreases. */
! 439: GC_API size_t GC_get_total_bytes GC_PROTO((void));
! 440:
1.1 noro 441: /* Enable incremental/generational collection. */
442: /* Not advisable unless dirty bits are */
443: /* available or most heap objects are */
444: /* pointerfree(atomic) or immutable. */
445: /* Don't use in leak finding mode. */
446: /* Ignored if GC_dont_gc is true. */
1.3 ! noro 447: /* Only the generational piece of this is */
! 448: /* functional if GC_parallel is TRUE. */
1.1 noro 449: GC_API void GC_enable_incremental GC_PROTO((void));
450:
451: /* Perform some garbage collection work, if appropriate. */
452: /* Return 0 if there is no more work to be done. */
453: /* Typically performs an amount of work corresponding roughly */
454: /* to marking from one page. May do more work if further */
455: /* progress requires it, e.g. if incremental collection is */
456: /* disabled. It is reasonable to call this in a wait loop */
457: /* until it returns 0. */
458: GC_API int GC_collect_a_little GC_PROTO((void));
459:
460: /* Allocate an object of size lb bytes. The client guarantees that */
461: /* as long as the object is live, it will be referenced by a pointer */
462: /* that points to somewhere within the first 256 bytes of the object. */
463: /* (This should normally be declared volatile to prevent the compiler */
464: /* from invalidating this assertion.) This routine is only useful */
465: /* if a large array is being allocated. It reduces the chance of */
466: /* accidentally retaining such an array as a result of scanning an */
467: /* integer that happens to be an address inside the array. (Actually, */
468: /* it reduces the chance of the allocator not finding space for such */
469: /* an array, since it will try hard to avoid introducing such a false */
470: /* reference.) On a SunOS 4.X or MS Windows system this is recommended */
471: /* for arrays likely to be larger than 100K or so. For other systems, */
472: /* or if the collector is not configured to recognize all interior */
473: /* pointers, the threshold is normally much higher. */
474: GC_API GC_PTR GC_malloc_ignore_off_page GC_PROTO((size_t lb));
475: GC_API GC_PTR GC_malloc_atomic_ignore_off_page GC_PROTO((size_t lb));
476:
477: #if defined(__sgi) && !defined(__GNUC__) && _COMPILER_VERSION >= 720
478: # define GC_ADD_CALLER
479: # define GC_RETURN_ADDR (GC_word)__return_address
480: #endif
481:
482: #ifdef GC_ADD_CALLER
483: # define GC_EXTRAS GC_RETURN_ADDR, __FILE__, __LINE__
1.3 ! noro 484: # define GC_EXTRA_PARAMS GC_word ra, GC_CONST char * s, int i
1.1 noro 485: #else
486: # define GC_EXTRAS __FILE__, __LINE__
1.3 ! noro 487: # define GC_EXTRA_PARAMS GC_CONST char * s, int i
1.1 noro 488: #endif
489:
490: /* Debugging (annotated) allocation. GC_gcollect will check */
491: /* objects allocated in this way for overwrites, etc. */
492: GC_API GC_PTR GC_debug_malloc
493: GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
494: GC_API GC_PTR GC_debug_malloc_atomic
495: GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
496: GC_API GC_PTR GC_debug_malloc_uncollectable
497: GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
498: GC_API GC_PTR GC_debug_malloc_stubborn
499: GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
500: GC_API void GC_debug_free GC_PROTO((GC_PTR object_addr));
501: GC_API GC_PTR GC_debug_realloc
502: GC_PROTO((GC_PTR old_object, size_t new_size_in_bytes,
503: GC_EXTRA_PARAMS));
504:
505: GC_API void GC_debug_change_stubborn GC_PROTO((GC_PTR));
506: GC_API void GC_debug_end_stubborn_change GC_PROTO((GC_PTR));
507: # ifdef GC_DEBUG
508: # define GC_MALLOC(sz) GC_debug_malloc(sz, GC_EXTRAS)
509: # define GC_MALLOC_ATOMIC(sz) GC_debug_malloc_atomic(sz, GC_EXTRAS)
510: # define GC_MALLOC_UNCOLLECTABLE(sz) GC_debug_malloc_uncollectable(sz, \
511: GC_EXTRAS)
512: # define GC_REALLOC(old, sz) GC_debug_realloc(old, sz, GC_EXTRAS)
513: # define GC_FREE(p) GC_debug_free(p)
514: # define GC_REGISTER_FINALIZER(p, f, d, of, od) \
515: GC_debug_register_finalizer(p, f, d, of, od)
516: # define GC_REGISTER_FINALIZER_IGNORE_SELF(p, f, d, of, od) \
517: GC_debug_register_finalizer_ignore_self(p, f, d, of, od)
1.3 ! noro 518: # define GC_REGISTER_FINALIZER_NO_ORDER(p, f, d, of, od) \
! 519: GC_debug_register_finalizer_no_order(p, f, d, of, od)
1.1 noro 520: # define GC_MALLOC_STUBBORN(sz) GC_debug_malloc_stubborn(sz, GC_EXTRAS);
521: # define GC_CHANGE_STUBBORN(p) GC_debug_change_stubborn(p)
522: # define GC_END_STUBBORN_CHANGE(p) GC_debug_end_stubborn_change(p)
523: # define GC_GENERAL_REGISTER_DISAPPEARING_LINK(link, obj) \
524: GC_general_register_disappearing_link(link, GC_base(obj))
525: # define GC_REGISTER_DISPLACEMENT(n) GC_debug_register_displacement(n)
526: # else
527: # define GC_MALLOC(sz) GC_malloc(sz)
528: # define GC_MALLOC_ATOMIC(sz) GC_malloc_atomic(sz)
529: # define GC_MALLOC_UNCOLLECTABLE(sz) GC_malloc_uncollectable(sz)
530: # define GC_REALLOC(old, sz) GC_realloc(old, sz)
531: # define GC_FREE(p) GC_free(p)
532: # define GC_REGISTER_FINALIZER(p, f, d, of, od) \
533: GC_register_finalizer(p, f, d, of, od)
534: # define GC_REGISTER_FINALIZER_IGNORE_SELF(p, f, d, of, od) \
535: GC_register_finalizer_ignore_self(p, f, d, of, od)
1.3 ! noro 536: # define GC_REGISTER_FINALIZER_NO_ORDER(p, f, d, of, od) \
! 537: GC_register_finalizer_no_order(p, f, d, of, od)
1.1 noro 538: # define GC_MALLOC_STUBBORN(sz) GC_malloc_stubborn(sz)
539: # define GC_CHANGE_STUBBORN(p) GC_change_stubborn(p)
540: # define GC_END_STUBBORN_CHANGE(p) GC_end_stubborn_change(p)
541: # define GC_GENERAL_REGISTER_DISAPPEARING_LINK(link, obj) \
542: GC_general_register_disappearing_link(link, obj)
543: # define GC_REGISTER_DISPLACEMENT(n) GC_register_displacement(n)
544: # endif
545: /* The following are included because they are often convenient, and */
546: /* reduce the chance for a misspecifed size argument. But calls may */
547: /* expand to something syntactically incorrect if t is a complicated */
548: /* type expression. */
549: # define GC_NEW(t) (t *)GC_MALLOC(sizeof (t))
550: # define GC_NEW_ATOMIC(t) (t *)GC_MALLOC_ATOMIC(sizeof (t))
551: # define GC_NEW_STUBBORN(t) (t *)GC_MALLOC_STUBBORN(sizeof (t))
552: # define GC_NEW_UNCOLLECTABLE(t) (t *)GC_MALLOC_UNCOLLECTABLE(sizeof (t))
553:
554: /* Finalization. Some of these primitives are grossly unsafe. */
555: /* The idea is to make them both cheap, and sufficient to build */
556: /* a safer layer, closer to PCedar finalization. */
557: /* The interface represents my conclusions from a long discussion */
558: /* with Alan Demers, Dan Greene, Carl Hauser, Barry Hayes, */
559: /* Christian Jacobi, and Russ Atkinson. It's not perfect, and */
560: /* probably nobody else agrees with it. Hans-J. Boehm 3/13/92 */
561: typedef void (*GC_finalization_proc)
562: GC_PROTO((GC_PTR obj, GC_PTR client_data));
563:
564: GC_API void GC_register_finalizer
565: GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
566: GC_finalization_proc *ofn, GC_PTR *ocd));
567: GC_API void GC_debug_register_finalizer
568: GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
569: GC_finalization_proc *ofn, GC_PTR *ocd));
570: /* When obj is no longer accessible, invoke */
571: /* (*fn)(obj, cd). If a and b are inaccessible, and */
572: /* a points to b (after disappearing links have been */
573: /* made to disappear), then only a will be */
574: /* finalized. (If this does not create any new */
575: /* pointers to b, then b will be finalized after the */
576: /* next collection.) Any finalizable object that */
577: /* is reachable from itself by following one or more */
578: /* pointers will not be finalized (or collected). */
579: /* Thus cycles involving finalizable objects should */
580: /* be avoided, or broken by disappearing links. */
581: /* All but the last finalizer registered for an object */
582: /* is ignored. */
583: /* Finalization may be removed by passing 0 as fn. */
584: /* Finalizers are implicitly unregistered just before */
585: /* they are invoked. */
586: /* The old finalizer and client data are stored in */
587: /* *ofn and *ocd. */
588: /* Fn is never invoked on an accessible object, */
589: /* provided hidden pointers are converted to real */
590: /* pointers only if the allocation lock is held, and */
591: /* such conversions are not performed by finalization */
592: /* routines. */
593: /* If GC_register_finalizer is aborted as a result of */
594: /* a signal, the object may be left with no */
595: /* finalization, even if neither the old nor new */
596: /* finalizer were NULL. */
597: /* Obj should be the nonNULL starting address of an */
598: /* object allocated by GC_malloc or friends. */
599: /* Note that any garbage collectable object referenced */
600: /* by cd will be considered accessible until the */
601: /* finalizer is invoked. */
602:
603: /* Another versions of the above follow. It ignores */
604: /* self-cycles, i.e. pointers from a finalizable object to */
605: /* itself. There is a stylistic argument that this is wrong, */
606: /* but it's unavoidable for C++, since the compiler may */
607: /* silently introduce these. It's also benign in that specific */
608: /* case. */
1.3 ! noro 609: /* Note that cd will still be viewed as accessible, even if it */
! 610: /* refers to the object itself. */
1.1 noro 611: GC_API void GC_register_finalizer_ignore_self
612: GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
613: GC_finalization_proc *ofn, GC_PTR *ocd));
614: GC_API void GC_debug_register_finalizer_ignore_self
615: GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
616: GC_finalization_proc *ofn, GC_PTR *ocd));
617:
1.3 ! noro 618: /* Another version of the above. It ignores all cycles. */
! 619: /* It should probably only be used by Java implementations. */
! 620: /* Note that cd will still be viewed as accessible, even if it */
! 621: /* refers to the object itself. */
! 622: GC_API void GC_register_finalizer_no_order
! 623: GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
! 624: GC_finalization_proc *ofn, GC_PTR *ocd));
! 625: GC_API void GC_debug_register_finalizer_no_order
! 626: GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
! 627: GC_finalization_proc *ofn, GC_PTR *ocd));
! 628:
! 629:
1.1 noro 630: /* The following routine may be used to break cycles between */
631: /* finalizable objects, thus causing cyclic finalizable */
632: /* objects to be finalized in the correct order. Standard */
633: /* use involves calling GC_register_disappearing_link(&p), */
634: /* where p is a pointer that is not followed by finalization */
635: /* code, and should not be considered in determining */
636: /* finalization order. */
637: GC_API int GC_register_disappearing_link GC_PROTO((GC_PTR * /* link */));
638: /* Link should point to a field of a heap allocated */
639: /* object obj. *link will be cleared when obj is */
640: /* found to be inaccessible. This happens BEFORE any */
641: /* finalization code is invoked, and BEFORE any */
642: /* decisions about finalization order are made. */
643: /* This is useful in telling the finalizer that */
644: /* some pointers are not essential for proper */
645: /* finalization. This may avoid finalization cycles. */
646: /* Note that obj may be resurrected by another */
647: /* finalizer, and thus the clearing of *link may */
648: /* be visible to non-finalization code. */
649: /* There's an argument that an arbitrary action should */
650: /* be allowed here, instead of just clearing a pointer. */
651: /* But this causes problems if that action alters, or */
652: /* examines connectivity. */
653: /* Returns 1 if link was already registered, 0 */
654: /* otherwise. */
655: /* Only exists for backward compatibility. See below: */
656:
657: GC_API int GC_general_register_disappearing_link
658: GC_PROTO((GC_PTR * /* link */, GC_PTR obj));
659: /* A slight generalization of the above. *link is */
660: /* cleared when obj first becomes inaccessible. This */
661: /* can be used to implement weak pointers easily and */
662: /* safely. Typically link will point to a location */
663: /* holding a disguised pointer to obj. (A pointer */
664: /* inside an "atomic" object is effectively */
665: /* disguised.) In this way soft */
666: /* pointers are broken before any object */
667: /* reachable from them are finalized. Each link */
668: /* May be registered only once, i.e. with one obj */
669: /* value. This was added after a long email discussion */
670: /* with John Ellis. */
671: /* Obj must be a pointer to the first word of an object */
672: /* we allocated. It is unsafe to explicitly deallocate */
673: /* the object containing link. Explicitly deallocating */
674: /* obj may or may not cause link to eventually be */
675: /* cleared. */
676: GC_API int GC_unregister_disappearing_link GC_PROTO((GC_PTR * /* link */));
677: /* Returns 0 if link was not actually registered. */
678: /* Undoes a registration by either of the above two */
679: /* routines. */
680:
681: /* Auxiliary fns to make finalization work correctly with displaced */
682: /* pointers introduced by the debugging allocators. */
683: GC_API GC_PTR GC_make_closure GC_PROTO((GC_finalization_proc fn, GC_PTR data));
684: GC_API void GC_debug_invoke_finalizer GC_PROTO((GC_PTR obj, GC_PTR data));
685:
1.3 ! noro 686: /* Returns !=0 if GC_invoke_finalizers has something to do. */
! 687: GC_API int GC_should_invoke_finalizers GC_PROTO((void));
! 688:
1.1 noro 689: GC_API int GC_invoke_finalizers GC_PROTO((void));
690: /* Run finalizers for all objects that are ready to */
691: /* be finalized. Return the number of finalizers */
692: /* that were run. Normally this is also called */
693: /* implicitly during some allocations. If */
1.2 noro 694: /* GC-finalize_on_demand is nonzero, it must be called */
1.1 noro 695: /* explicitly. */
696:
697: /* GC_set_warn_proc can be used to redirect or filter warning messages. */
698: /* p may not be a NULL pointer. */
699: typedef void (*GC_warn_proc) GC_PROTO((char *msg, GC_word arg));
700: GC_API GC_warn_proc GC_set_warn_proc GC_PROTO((GC_warn_proc p));
701: /* Returns old warning procedure. */
702:
703: /* The following is intended to be used by a higher level */
704: /* (e.g. cedar-like) finalization facility. It is expected */
705: /* that finalization code will arrange for hidden pointers to */
706: /* disappear. Otherwise objects can be accessed after they */
707: /* have been collected. */
708: /* Note that putting pointers in atomic objects or in */
709: /* nonpointer slots of "typed" objects is equivalent to */
710: /* disguising them in this way, and may have other advantages. */
711: # if defined(I_HIDE_POINTERS) || defined(GC_I_HIDE_POINTERS)
712: typedef GC_word GC_hidden_pointer;
713: # define HIDE_POINTER(p) (~(GC_hidden_pointer)(p))
714: # define REVEAL_POINTER(p) ((GC_PTR)(HIDE_POINTER(p)))
715: /* Converting a hidden pointer to a real pointer requires verifying */
716: /* that the object still exists. This involves acquiring the */
717: /* allocator lock to avoid a race with the collector. */
718: # endif /* I_HIDE_POINTERS */
719:
720: typedef GC_PTR (*GC_fn_type) GC_PROTO((GC_PTR client_data));
721: GC_API GC_PTR GC_call_with_alloc_lock
722: GC_PROTO((GC_fn_type fn, GC_PTR client_data));
723:
1.3 ! noro 724: /* The following routines are primarily intended for use with a */
! 725: /* preprocessor which inserts calls to check C pointer arithmetic. */
! 726:
1.1 noro 727: /* Check that p and q point to the same object. */
728: /* Fail conspicuously if they don't. */
729: /* Returns the first argument. */
730: /* Succeeds if neither p nor q points to the heap. */
731: /* May succeed if both p and q point to between heap objects. */
732: GC_API GC_PTR GC_same_obj GC_PROTO((GC_PTR p, GC_PTR q));
733:
734: /* Checked pointer pre- and post- increment operations. Note that */
735: /* the second argument is in units of bytes, not multiples of the */
736: /* object size. This should either be invoked from a macro, or the */
737: /* call should be automatically generated. */
738: GC_API GC_PTR GC_pre_incr GC_PROTO((GC_PTR *p, size_t how_much));
739: GC_API GC_PTR GC_post_incr GC_PROTO((GC_PTR *p, size_t how_much));
740:
741: /* Check that p is visible */
742: /* to the collector as a possibly pointer containing location. */
743: /* If it isn't fail conspicuously. */
744: /* Returns the argument in all cases. May erroneously succeed */
745: /* in hard cases. (This is intended for debugging use with */
746: /* untyped allocations. The idea is that it should be possible, though */
747: /* slow, to add such a call to all indirect pointer stores.) */
748: /* Currently useless for multithreaded worlds. */
749: GC_API GC_PTR GC_is_visible GC_PROTO((GC_PTR p));
750:
751: /* Check that if p is a pointer to a heap page, then it points to */
752: /* a valid displacement within a heap object. */
753: /* Fail conspicuously if this property does not hold. */
1.3 ! noro 754: /* Uninteresting with GC_all_interior_pointers. */
1.1 noro 755: /* Always returns its argument. */
756: GC_API GC_PTR GC_is_valid_displacement GC_PROTO((GC_PTR p));
757:
758: /* Safer, but slow, pointer addition. Probably useful mainly with */
759: /* a preprocessor. Useful only for heap pointers. */
760: #ifdef GC_DEBUG
761: # define GC_PTR_ADD3(x, n, type_of_result) \
762: ((type_of_result)GC_same_obj((x)+(n), (x)))
763: # define GC_PRE_INCR3(x, n, type_of_result) \
764: ((type_of_result)GC_pre_incr(&(x), (n)*sizeof(*x))
765: # define GC_POST_INCR2(x, type_of_result) \
766: ((type_of_result)GC_post_incr(&(x), sizeof(*x))
767: # ifdef __GNUC__
768: # define GC_PTR_ADD(x, n) \
769: GC_PTR_ADD3(x, n, typeof(x))
1.3 ! noro 770: # define GC_PRE_INCR(x, n) \
1.1 noro 771: GC_PRE_INCR3(x, n, typeof(x))
1.3 ! noro 772: # define GC_POST_INCR(x, n) \
1.1 noro 773: GC_POST_INCR3(x, typeof(x))
774: # else
775: /* We can't do this right without typeof, which ANSI */
776: /* decided was not sufficiently useful. Repeatedly */
777: /* mentioning the arguments seems too dangerous to be */
778: /* useful. So does not casting the result. */
779: # define GC_PTR_ADD(x, n) ((x)+(n))
780: # endif
781: #else /* !GC_DEBUG */
782: # define GC_PTR_ADD3(x, n, type_of_result) ((x)+(n))
783: # define GC_PTR_ADD(x, n) ((x)+(n))
784: # define GC_PRE_INCR3(x, n, type_of_result) ((x) += (n))
785: # define GC_PRE_INCR(x, n) ((x) += (n))
786: # define GC_POST_INCR2(x, n, type_of_result) ((x)++)
787: # define GC_POST_INCR(x, n) ((x)++)
788: #endif
789:
790: /* Safer assignment of a pointer to a nonstack location. */
791: #ifdef GC_DEBUG
792: # ifdef __STDC__
793: # define GC_PTR_STORE(p, q) \
794: (*(void **)GC_is_visible(p) = GC_is_valid_displacement(q))
795: # else
796: # define GC_PTR_STORE(p, q) \
797: (*(char **)GC_is_visible(p) = GC_is_valid_displacement(q))
798: # endif
799: #else /* !GC_DEBUG */
800: # define GC_PTR_STORE(p, q) *((p) = (q))
801: #endif
802:
803: /* Fynctions called to report pointer checking errors */
804: GC_API void (*GC_same_obj_print_proc) GC_PROTO((GC_PTR p, GC_PTR q));
805:
806: GC_API void (*GC_is_valid_displacement_print_proc)
807: GC_PROTO((GC_PTR p));
808:
809: GC_API void (*GC_is_visible_print_proc)
810: GC_PROTO((GC_PTR p));
811:
1.3 ! noro 812:
! 813: /* For pthread support, we generally need to intercept a number of */
! 814: /* thread library calls. We do that here by macro defining them. */
! 815:
! 816: #if !defined(GC_USE_LD_WRAP) && \
! 817: (defined(GC_LINUX_THREADS) || defined(GC_HPUX_THREADS) || \
! 818: defined(GC_IRIX_THREADS) || defined(GC_SOLARIS_PTHREADS) || \
! 819: defined(GC_SOLARIS_THREADS) || defined(GC_OSF1_THREADS))
! 820: # include "gc_pthread_redirects.h"
1.1 noro 821: #endif
822:
1.3 ! noro 823: # if defined(PCR) || defined(GC_SOLARIS_THREADS) || \
! 824: defined(GC_SOLARIS_PTHREADS) || defined(GC_WIN32_THREADS) || \
! 825: defined(GC_IRIX_THREADS) || defined(GC_LINUX_THREADS) || \
! 826: defined(GC_HPUX_THREADS)
1.1 noro 827: /* Any flavor of threads except SRC_M3. */
828: /* This returns a list of objects, linked through their first */
829: /* word. Its use can greatly reduce lock contention problems, since */
830: /* the allocation lock can be acquired and released many fewer times. */
831: /* lb must be large enough to hold the pointer field. */
1.3 ! noro 832: /* It is used internally by gc_local_alloc.h, which provides a simpler */
! 833: /* programming interface on Linux. */
1.1 noro 834: GC_PTR GC_malloc_many(size_t lb);
835: #define GC_NEXT(p) (*(GC_PTR *)(p)) /* Retrieve the next element */
836: /* in returned list. */
837: extern void GC_thr_init(); /* Needed for Solaris/X86 */
838:
839: #endif /* THREADS && !SRC_M3 */
840:
1.3 ! noro 841: #if defined(WIN32_THREADS) && defined(_WIN32_WCE)
! 842: # include <windows.h>
! 843:
! 844: /*
! 845: * win32_threads.c implements the real WinMain, which will start a new thread
! 846: * to call GC_WinMain after initializing the garbage collector.
! 847: */
! 848: int WINAPI GC_WinMain(
! 849: HINSTANCE hInstance,
! 850: HINSTANCE hPrevInstance,
! 851: LPWSTR lpCmdLine,
! 852: int nCmdShow );
! 853:
! 854: /*
! 855: * All threads must be created using GC_CreateThread, so that they will be
! 856: * recorded in the thread table.
! 857: */
! 858: HANDLE WINAPI GC_CreateThread(
! 859: LPSECURITY_ATTRIBUTES lpThreadAttributes,
! 860: DWORD dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress,
! 861: LPVOID lpParameter, DWORD dwCreationFlags, LPDWORD lpThreadId );
! 862:
! 863: # ifndef GC_BUILD
! 864: # define WinMain GC_WinMain
! 865: # define CreateThread GC_CreateThread
! 866: # endif
! 867:
! 868: #endif
! 869:
1.1 noro 870: /*
871: * If you are planning on putting
872: * the collector in a SunOS 5 dynamic library, you need to call GC_INIT()
873: * from the statically loaded program section.
874: * This circumvents a Solaris 2.X (X<=4) linker bug.
875: */
876: #if defined(sparc) || defined(__sparc)
877: # define GC_INIT() { extern end, etext; \
878: GC_noop(&end, &etext); }
879: #else
880: # if defined(__CYGWIN32__) && defined(GC_USE_DLL)
881: /*
882: * Similarly gnu-win32 DLLs need explicit initialization
883: */
884: # define GC_INIT() { GC_add_roots(DATASTART, DATAEND); }
885: # else
886: # define GC_INIT()
887: # endif
888: #endif
889:
1.3 ! noro 890: #if !defined(_WIN32_WCE) \
! 891: && ((defined(_MSDOS) || defined(_MSC_VER)) && (_M_IX86 >= 300) \
! 892: || defined(_WIN32) && !defined(__CYGWIN32__) && !defined(__CYGWIN__))
1.1 noro 893: /* win32S may not free all resources on process exit. */
894: /* This explicitly deallocates the heap. */
895: GC_API void GC_win32_free_heap ();
1.3 ! noro 896: #endif
! 897:
! 898: #if ( defined(_AMIGA) && !defined(GC_AMIGA_MAKINGLIB) )
! 899: /* Allocation really goes through GC_amiga_allocwrapper_do */
! 900: # include "gc_amiga_redirects.h"
! 901: #endif
! 902:
! 903: #if defined(GC_REDIRECT_TO_LOCAL) && !defined(GC_LOCAL_ALLOC_H)
! 904: # include "gc_local_alloc.h"
1.1 noro 905: #endif
906:
907: #ifdef __cplusplus
908: } /* end of extern "C" */
909: #endif
910:
911: #endif /* _GC_H */
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>