Annotation of OpenXM_contrib2/asir2000/gc/include/gc.h, Revision 1.6
1.1 noro 1: /*
2: * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3: * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
1.3 noro 4: * Copyright 1996-1999 by Silicon Graphics. All rights reserved.
5: * Copyright 1999 by Hewlett-Packard Company. All rights reserved.
1.1 noro 6: *
7: * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8: * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
9: *
10: * Permission is hereby granted to use or copy this program
11: * for any purpose, provided the above notices are retained on all copies.
12: * Permission to modify the code and to distribute modified code is granted,
13: * provided the above notices are retained, and a notice that the code was
14: * modified is included with the above copyright notice.
15: */
16:
17: /*
18: * Note that this defines a large number of tuning hooks, which can
19: * safely be ignored in nearly all cases. For normal use it suffices
20: * to call only GC_MALLOC and perhaps GC_REALLOC.
21: * For better performance, also look at GC_MALLOC_ATOMIC, and
22: * GC_enable_incremental. If you need an action to be performed
23: * immediately before an object is collected, look at GC_register_finalizer.
24: * If you are using Solaris threads, look at the end of this file.
25: * Everything else is best ignored unless you encounter performance
26: * problems.
27: */
28:
29: #ifndef _GC_H
30:
31: # define _GC_H
1.3 noro 32:
1.6 ! noro 33: # include "gc_config_macros.h"
1.1 noro 34:
35: # if defined(__STDC__) || defined(__cplusplus)
36: # define GC_PROTO(args) args
37: typedef void * GC_PTR;
1.2 noro 38: # define GC_CONST const
1.1 noro 39: # else
40: # define GC_PROTO(args) ()
41: typedef char * GC_PTR;
1.2 noro 42: # define GC_CONST
1.1 noro 43: # endif
44:
45: # ifdef __cplusplus
46: extern "C" {
47: # endif
48:
49:
50: /* Define word and signed_word to be unsigned and signed types of the */
51: /* size as char * or void *. There seems to be no way to do this */
52: /* even semi-portably. The following is probably no better/worse */
53: /* than almost anything else. */
54: /* The ANSI standard suggests that size_t and ptr_diff_t might be */
55: /* better choices. But those appear to have incorrect definitions */
56: /* on may systems. Notably "typedef int size_t" seems to be both */
57: /* frequent and WRONG. */
58: typedef unsigned long GC_word;
59: typedef long GC_signed_word;
60:
61: /* Public read-only variables */
62:
63: GC_API GC_word GC_gc_no;/* Counter incremented per collection. */
64: /* Includes empty GCs at startup. */
1.3 noro 65:
66: GC_API int GC_parallel; /* GC is parallelized for performance on */
67: /* multiprocessors. Currently set only */
68: /* implicitly if collector is built with */
69: /* -DPARALLEL_MARK and if either: */
70: /* Env variable GC_NPROC is set to > 1, or */
71: /* GC_NPROC is not set and this is an MP. */
72: /* If GC_parallel is set, incremental */
1.5 noro 73: /* collection is only partially functional, */
1.3 noro 74: /* and may not be desirable. */
1.1 noro 75:
76:
77: /* Public R/W variables */
78:
79: GC_API GC_PTR (*GC_oom_fn) GC_PROTO((size_t bytes_requested));
80: /* When there is insufficient memory to satisfy */
81: /* an allocation request, we return */
82: /* (*GC_oom_fn)(). By default this just */
83: /* returns 0. */
84: /* If it returns, it must return 0 or a valid */
85: /* pointer to a previously allocated heap */
86: /* object. */
87:
1.2 noro 88: GC_API int GC_find_leak;
89: /* Do not actually garbage collect, but simply */
90: /* report inaccessible memory that was not */
91: /* deallocated with GC_free. Initial value */
92: /* is determined by FIND_LEAK macro. */
93:
1.3 noro 94: GC_API int GC_all_interior_pointers;
95: /* Arrange for pointers to object interiors to */
96: /* be recognized as valid. May not be changed */
97: /* after GC initialization. */
98: /* Initial value is determined by */
99: /* -DALL_INTERIOR_POINTERS. */
100: /* Unless DONT_ADD_BYTE_AT_END is defined, this */
101: /* also affects whether sizes are increased by */
102: /* at least a byte to allow "off the end" */
103: /* pointer recognition. */
104: /* MUST BE 0 or 1. */
105:
1.1 noro 106: GC_API int GC_quiet; /* Disable statistics output. Only matters if */
107: /* collector has been compiled with statistics */
108: /* enabled. This involves a performance cost, */
109: /* and is thus not the default. */
110:
1.2 noro 111: GC_API int GC_finalize_on_demand;
112: /* If nonzero, finalizers will only be run in */
1.3 noro 113: /* response to an explicit GC_invoke_finalizers */
1.2 noro 114: /* call. The default is determined by whether */
115: /* the FINALIZE_ON_DEMAND macro is defined */
116: /* when the collector is built. */
117:
118: GC_API int GC_java_finalization;
119: /* Mark objects reachable from finalizable */
120: /* objects in a separate postpass. This makes */
121: /* it a bit safer to use non-topologically- */
122: /* ordered finalization. Default value is */
123: /* determined by JAVA_FINALIZATION macro. */
124:
1.3 noro 125: GC_API void (* GC_finalizer_notifier)();
126: /* Invoked by the collector when there are */
127: /* objects to be finalized. Invoked at most */
128: /* once per GC cycle. Never invoked unless */
129: /* GC_finalize_on_demand is set. */
130: /* Typically this will notify a finalization */
131: /* thread, which will call GC_invoke_finalizers */
132: /* in response. */
133:
1.6 ! noro 134: GC_API int GC_dont_gc; /* != 0 ==> Dont collect. In versions 7.2a1+, */
! 135: /* this overrides explicit GC_gcollect() calls. */
! 136: /* Used as a counter, so that nested enabling */
! 137: /* and disabling work correctly. Should */
! 138: /* normally be updated with GC_enable() and */
! 139: /* GC_disable() calls. */
! 140: /* Direct assignment to GC_dont_gc is */
! 141: /* deprecated. */
1.1 noro 142:
143: GC_API int GC_dont_expand;
144: /* Dont expand heap unless explicitly requested */
145: /* or forced to. */
146:
1.3 noro 147: GC_API int GC_use_entire_heap;
148: /* Causes the nonincremental collector to use the */
149: /* entire heap before collecting. This was the only */
150: /* option for GC versions < 5.0. This sometimes */
151: /* results in more large block fragmentation, since */
152: /* very larg blocks will tend to get broken up */
153: /* during each GC cycle. It is likely to result in a */
154: /* larger working set, but lower collection */
155: /* frequencies, and hence fewer instructions executed */
156: /* in the collector. */
157:
1.1 noro 158: GC_API int GC_full_freq; /* Number of partial collections between */
159: /* full collections. Matters only if */
160: /* GC_incremental is set. */
1.2 noro 161: /* Full collections are also triggered if */
162: /* the collector detects a substantial */
163: /* increase in the number of in-use heap */
164: /* blocks. Values in the tens are now */
165: /* perfectly reasonable, unlike for */
166: /* earlier GC versions. */
1.1 noro 167:
168: GC_API GC_word GC_non_gc_bytes;
169: /* Bytes not considered candidates for collection. */
170: /* Used only to control scheduling of collections. */
1.3 noro 171: /* Updated by GC_malloc_uncollectable and GC_free. */
172: /* Wizards only. */
173:
174: GC_API int GC_no_dls;
175: /* Don't register dynamic library data segments. */
176: /* Wizards only. Should be used only if the */
177: /* application explicitly registers all roots. */
178: /* In Microsoft Windows environments, this will */
179: /* usually also prevent registration of the */
180: /* main data segment as part of the root set. */
1.1 noro 181:
182: GC_API GC_word GC_free_space_divisor;
183: /* We try to make sure that we allocate at */
184: /* least N/GC_free_space_divisor bytes between */
185: /* collections, where N is the heap size plus */
186: /* a rough estimate of the root set size. */
187: /* Initially, GC_free_space_divisor = 4. */
188: /* Increasing its value will use less space */
189: /* but more collection time. Decreasing it */
190: /* will appreciably decrease collection time */
191: /* at the expense of space. */
192: /* GC_free_space_divisor = 1 will effectively */
193: /* disable collections. */
194:
195: GC_API GC_word GC_max_retries;
196: /* The maximum number of GCs attempted before */
197: /* reporting out of memory after heap */
198: /* expansion fails. Initially 0. */
199:
200:
201: GC_API char *GC_stackbottom; /* Cool end of user stack. */
202: /* May be set in the client prior to */
203: /* calling any GC_ routines. This */
204: /* avoids some overhead, and */
205: /* potentially some signals that can */
206: /* confuse debuggers. Otherwise the */
207: /* collector attempts to set it */
208: /* automatically. */
209: /* For multithreaded code, this is the */
210: /* cold end of the stack for the */
1.3 noro 211: /* primordial thread. */
1.1 noro 212:
1.3 noro 213: GC_API int GC_dont_precollect; /* Don't collect as part of */
214: /* initialization. Should be set only */
215: /* if the client wants a chance to */
216: /* manually initialize the root set */
217: /* before the first collection. */
218: /* Interferes with blacklisting. */
219: /* Wizards only. */
220:
1.5 noro 221: GC_API unsigned long GC_time_limit;
222: /* If incremental collection is enabled, */
223: /* We try to terminate collections */
224: /* after this many milliseconds. Not a */
225: /* hard time bound. Setting this to */
226: /* GC_TIME_UNLIMITED will essentially */
227: /* disable incremental collection while */
228: /* leaving generational collection */
229: /* enabled. */
230: # define GC_TIME_UNLIMITED 999999
231: /* Setting GC_time_limit to this value */
232: /* will disable the "pause time exceeded"*/
233: /* tests. */
234:
1.1 noro 235: /* Public procedures */
1.5 noro 236:
237: /* Initialize the collector. This is only required when using thread-local
238: * allocation, since unlike the regular allocation routines, GC_local_malloc
239: * is not self-initializing. If you use GC_local_malloc you should arrange
240: * to call this somehow (e.g. from a constructor) before doing any allocation.
241: */
242: GC_API void GC_init GC_PROTO((void));
243:
1.1 noro 244: /*
245: * general purpose allocation routines, with roughly malloc calling conv.
246: * The atomic versions promise that no relevant pointers are contained
247: * in the object. The nonatomic versions guarantee that the new object
248: * is cleared. GC_malloc_stubborn promises that no changes to the object
249: * will occur after GC_end_stubborn_change has been called on the
250: * result of GC_malloc_stubborn. GC_malloc_uncollectable allocates an object
251: * that is scanned for pointers to collectable objects, but is not itself
1.3 noro 252: * collectable. The object is scanned even if it does not appear to
253: * be reachable. GC_malloc_uncollectable and GC_free called on the resulting
1.1 noro 254: * object implicitly update GC_non_gc_bytes appropriately.
1.3 noro 255: *
256: * Note that the GC_malloc_stubborn support is stubbed out by default
257: * starting in 6.0. GC_malloc_stubborn is an alias for GC_malloc unless
258: * the collector is built with STUBBORN_ALLOC defined.
1.1 noro 259: */
260: GC_API GC_PTR GC_malloc GC_PROTO((size_t size_in_bytes));
261: GC_API GC_PTR GC_malloc_atomic GC_PROTO((size_t size_in_bytes));
262: GC_API GC_PTR GC_malloc_uncollectable GC_PROTO((size_t size_in_bytes));
263: GC_API GC_PTR GC_malloc_stubborn GC_PROTO((size_t size_in_bytes));
264:
265: /* The following is only defined if the library has been suitably */
266: /* compiled: */
267: GC_API GC_PTR GC_malloc_atomic_uncollectable GC_PROTO((size_t size_in_bytes));
268:
269: /* Explicitly deallocate an object. Dangerous if used incorrectly. */
270: /* Requires a pointer to the base of an object. */
271: /* If the argument is stubborn, it should not be changeable when freed. */
272: /* An object should not be enable for finalization when it is */
273: /* explicitly deallocated. */
274: /* GC_free(0) is a no-op, as required by ANSI C for free. */
275: GC_API void GC_free GC_PROTO((GC_PTR object_addr));
276:
277: /*
278: * Stubborn objects may be changed only if the collector is explicitly informed.
279: * The collector is implicitly informed of coming change when such
280: * an object is first allocated. The following routines inform the
281: * collector that an object will no longer be changed, or that it will
282: * once again be changed. Only nonNIL pointer stores into the object
283: * are considered to be changes. The argument to GC_end_stubborn_change
284: * must be exacly the value returned by GC_malloc_stubborn or passed to
285: * GC_change_stubborn. (In the second case it may be an interior pointer
286: * within 512 bytes of the beginning of the objects.)
287: * There is a performance penalty for allowing more than
288: * one stubborn object to be changed at once, but it is acceptable to
289: * do so. The same applies to dropping stubborn objects that are still
290: * changeable.
291: */
292: GC_API void GC_change_stubborn GC_PROTO((GC_PTR));
293: GC_API void GC_end_stubborn_change GC_PROTO((GC_PTR));
294:
295: /* Return a pointer to the base (lowest address) of an object given */
296: /* a pointer to a location within the object. */
1.5 noro 297: /* I.e. map an interior pointer to the corresponding bas pointer. */
298: /* Note that with debugging allocation, this returns a pointer to the */
299: /* actual base of the object, i.e. the debug information, not to */
300: /* the base of the user object. */
1.1 noro 301: /* Return 0 if displaced_pointer doesn't point to within a valid */
302: /* object. */
303: GC_API GC_PTR GC_base GC_PROTO((GC_PTR displaced_pointer));
304:
305: /* Given a pointer to the base of an object, return its size in bytes. */
306: /* The returned size may be slightly larger than what was originally */
307: /* requested. */
308: GC_API size_t GC_size GC_PROTO((GC_PTR object_addr));
309:
310: /* For compatibility with C library. This is occasionally faster than */
311: /* a malloc followed by a bcopy. But if you rely on that, either here */
312: /* or with the standard C library, your code is broken. In my */
313: /* opinion, it shouldn't have been invented, but now we're stuck. -HB */
314: /* The resulting object has the same kind as the original. */
315: /* If the argument is stubborn, the result will have changes enabled. */
316: /* It is an error to have changes enabled for the original object. */
317: /* Follows ANSI comventions for NULL old_object. */
318: GC_API GC_PTR GC_realloc
319: GC_PROTO((GC_PTR old_object, size_t new_size_in_bytes));
320:
321: /* Explicitly increase the heap size. */
322: /* Returns 0 on failure, 1 on success. */
323: GC_API int GC_expand_hp GC_PROTO((size_t number_of_bytes));
324:
325: /* Limit the heap size to n bytes. Useful when you're debugging, */
326: /* especially on systems that don't handle running out of memory well. */
327: /* n == 0 ==> unbounded. This is the default. */
328: GC_API void GC_set_max_heap_size GC_PROTO((GC_word n));
329:
330: /* Inform the collector that a certain section of statically allocated */
331: /* memory contains no pointers to garbage collected memory. Thus it */
332: /* need not be scanned. This is sometimes important if the application */
333: /* maps large read/write files into the address space, which could be */
334: /* mistaken for dynamic library data segments on some systems. */
335: GC_API void GC_exclude_static_roots GC_PROTO((GC_PTR start, GC_PTR finish));
336:
337: /* Clear the set of root segments. Wizards only. */
338: GC_API void GC_clear_roots GC_PROTO((void));
339:
340: /* Add a root segment. Wizards only. */
341: GC_API void GC_add_roots GC_PROTO((char * low_address,
342: char * high_address_plus_1));
343:
1.6 ! noro 344: /* Remove a root segment. Wizards only. */
! 345: GC_API void GC_remove_roots GC_PROTO((char * low_address,
! 346: char * high_address_plus_1));
! 347:
1.1 noro 348: /* Add a displacement to the set of those considered valid by the */
349: /* collector. GC_register_displacement(n) means that if p was returned */
350: /* by GC_malloc, then (char *)p + n will be considered to be a valid */
1.6 ! noro 351: /* pointer to p. N must be small and less than the size of p. */
1.1 noro 352: /* (All pointers to the interior of objects from the stack are */
353: /* considered valid in any case. This applies to heap objects and */
354: /* static data.) */
355: /* Preferably, this should be called before any other GC procedures. */
356: /* Calling it later adds to the probability of excess memory */
357: /* retention. */
1.6 ! noro 358: /* This is a no-op if the collector has recognition of */
1.1 noro 359: /* arbitrary interior pointers enabled, which is now the default. */
360: GC_API void GC_register_displacement GC_PROTO((GC_word n));
361:
362: /* The following version should be used if any debugging allocation is */
363: /* being done. */
364: GC_API void GC_debug_register_displacement GC_PROTO((GC_word n));
365:
366: /* Explicitly trigger a full, world-stop collection. */
367: GC_API void GC_gcollect GC_PROTO((void));
368:
369: /* Trigger a full world-stopped collection. Abort the collection if */
370: /* and when stop_func returns a nonzero value. Stop_func will be */
371: /* called frequently, and should be reasonably fast. This works even */
372: /* if virtual dirty bits, and hence incremental collection is not */
373: /* available for this architecture. Collections can be aborted faster */
374: /* than normal pause times for incremental collection. However, */
375: /* aborted collections do no useful work; the next collection needs */
376: /* to start from the beginning. */
377: /* Return 0 if the collection was aborted, 1 if it succeeded. */
378: typedef int (* GC_stop_func) GC_PROTO((void));
379: GC_API int GC_try_to_collect GC_PROTO((GC_stop_func stop_func));
380:
381: /* Return the number of bytes in the heap. Excludes collector private */
382: /* data structures. Includes empty blocks and fragmentation loss. */
383: /* Includes some pages that were allocated but never written. */
384: GC_API size_t GC_get_heap_size GC_PROTO((void));
385:
1.2 noro 386: /* Return a lower bound on the number of free bytes in the heap. */
387: GC_API size_t GC_get_free_bytes GC_PROTO((void));
388:
1.1 noro 389: /* Return the number of bytes allocated since the last collection. */
390: GC_API size_t GC_get_bytes_since_gc GC_PROTO((void));
391:
1.3 noro 392: /* Return the total number of bytes allocated in this process. */
1.6 ! noro 393: /* Never decreases, except due to wrapping. */
1.3 noro 394: GC_API size_t GC_get_total_bytes GC_PROTO((void));
395:
1.6 ! noro 396: /* Disable garbage collection. Even GC_gcollect calls will be */
! 397: /* ineffective. */
! 398: GC_API void GC_disable GC_PROTO((void));
! 399:
! 400: /* Reenable garbage collection. GC_diable() and GC_enable() calls */
! 401: /* nest. Garbage collection is enabled if the number of calls to both */
! 402: /* both functions is equal. */
! 403: GC_API void GC_enable GC_PROTO((void));
! 404:
1.1 noro 405: /* Enable incremental/generational collection. */
406: /* Not advisable unless dirty bits are */
407: /* available or most heap objects are */
408: /* pointerfree(atomic) or immutable. */
409: /* Don't use in leak finding mode. */
410: /* Ignored if GC_dont_gc is true. */
1.3 noro 411: /* Only the generational piece of this is */
1.5 noro 412: /* functional if GC_parallel is TRUE */
413: /* or if GC_time_limit is GC_TIME_UNLIMITED. */
414: /* Causes GC_local_gcj_malloc() to revert to */
415: /* locked allocation. Must be called */
416: /* before any GC_local_gcj_malloc() calls. */
1.1 noro 417: GC_API void GC_enable_incremental GC_PROTO((void));
418:
1.5 noro 419: /* Does incremental mode write-protect pages? Returns zero or */
420: /* more of the following, or'ed together: */
421: #define GC_PROTECTS_POINTER_HEAP 1 /* May protect non-atomic objs. */
422: #define GC_PROTECTS_PTRFREE_HEAP 2
423: #define GC_PROTECTS_STATIC_DATA 4 /* Curently never. */
424: #define GC_PROTECTS_STACK 8 /* Probably impractical. */
425:
426: #define GC_PROTECTS_NONE 0
427: GC_API int GC_incremental_protection_needs GC_PROTO((void));
428:
1.1 noro 429: /* Perform some garbage collection work, if appropriate. */
430: /* Return 0 if there is no more work to be done. */
431: /* Typically performs an amount of work corresponding roughly */
432: /* to marking from one page. May do more work if further */
433: /* progress requires it, e.g. if incremental collection is */
434: /* disabled. It is reasonable to call this in a wait loop */
435: /* until it returns 0. */
436: GC_API int GC_collect_a_little GC_PROTO((void));
437:
438: /* Allocate an object of size lb bytes. The client guarantees that */
439: /* as long as the object is live, it will be referenced by a pointer */
440: /* that points to somewhere within the first 256 bytes of the object. */
441: /* (This should normally be declared volatile to prevent the compiler */
442: /* from invalidating this assertion.) This routine is only useful */
443: /* if a large array is being allocated. It reduces the chance of */
444: /* accidentally retaining such an array as a result of scanning an */
445: /* integer that happens to be an address inside the array. (Actually, */
446: /* it reduces the chance of the allocator not finding space for such */
447: /* an array, since it will try hard to avoid introducing such a false */
448: /* reference.) On a SunOS 4.X or MS Windows system this is recommended */
449: /* for arrays likely to be larger than 100K or so. For other systems, */
450: /* or if the collector is not configured to recognize all interior */
451: /* pointers, the threshold is normally much higher. */
452: GC_API GC_PTR GC_malloc_ignore_off_page GC_PROTO((size_t lb));
453: GC_API GC_PTR GC_malloc_atomic_ignore_off_page GC_PROTO((size_t lb));
454:
455: #if defined(__sgi) && !defined(__GNUC__) && _COMPILER_VERSION >= 720
456: # define GC_ADD_CALLER
457: # define GC_RETURN_ADDR (GC_word)__return_address
458: #endif
459:
1.6 ! noro 460: #ifdef __linux__
! 461: # include <features.h>
! 462: # if (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 1 || __GLIBC__ > 2) \
! 463: && !defined(__ia64__)
! 464: # define GC_HAVE_BUILTIN_BACKTRACE
! 465: # define GC_CAN_SAVE_CALL_STACKS
! 466: # endif
! 467: # if defined(__i386__) || defined(__x86_64__)
! 468: # define GC_CAN_SAVE_CALL_STACKS
! 469: # endif
! 470: #endif
! 471:
! 472: #if defined(__sparc__)
! 473: # define GC_CAN_SAVE_CALL_STACKS
! 474: #endif
! 475:
! 476: /* If we're on an a platform on which we can't save call stacks, but */
! 477: /* gcc is normally used, we go ahead and define GC_ADD_CALLER. */
! 478: /* We make this decision independent of whether gcc is actually being */
! 479: /* used, in order to keep the interface consistent, and allow mixing */
! 480: /* of compilers. */
! 481: /* This may also be desirable if it is possible but expensive to */
! 482: /* retrieve the call chain. */
! 483: #if (defined(__linux__) || defined(__NetBSD__) || defined(__OpenBSD__) \
! 484: || defined(__FreeBSD__)) & !defined(GC_CAN_SAVE_CALL_STACKS)
! 485: # define GC_ADD_CALLER
! 486: # if __GNUC__ >= 3 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 95)
! 487: /* gcc knows how to retrieve return address, but we don't know */
! 488: /* how to generate call stacks. */
! 489: # define GC_RETURN_ADDR (GC_word)__builtin_return_address(0)
! 490: # else
! 491: /* Just pass 0 for gcc compatibility. */
! 492: # define GC_RETURN_ADDR 0
! 493: # endif
! 494: #endif
! 495:
1.1 noro 496: #ifdef GC_ADD_CALLER
497: # define GC_EXTRAS GC_RETURN_ADDR, __FILE__, __LINE__
1.3 noro 498: # define GC_EXTRA_PARAMS GC_word ra, GC_CONST char * s, int i
1.1 noro 499: #else
500: # define GC_EXTRAS __FILE__, __LINE__
1.3 noro 501: # define GC_EXTRA_PARAMS GC_CONST char * s, int i
1.1 noro 502: #endif
503:
504: /* Debugging (annotated) allocation. GC_gcollect will check */
505: /* objects allocated in this way for overwrites, etc. */
506: GC_API GC_PTR GC_debug_malloc
507: GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
508: GC_API GC_PTR GC_debug_malloc_atomic
509: GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
510: GC_API GC_PTR GC_debug_malloc_uncollectable
511: GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
512: GC_API GC_PTR GC_debug_malloc_stubborn
513: GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
1.6 ! noro 514: GC_API GC_PTR GC_debug_malloc_ignore_off_page
! 515: GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
! 516: GC_API GC_PTR GC_debug_malloc_atomic_ignore_off_page
! 517: GC_PROTO((size_t size_in_bytes, GC_EXTRA_PARAMS));
1.1 noro 518: GC_API void GC_debug_free GC_PROTO((GC_PTR object_addr));
519: GC_API GC_PTR GC_debug_realloc
520: GC_PROTO((GC_PTR old_object, size_t new_size_in_bytes,
521: GC_EXTRA_PARAMS));
522: GC_API void GC_debug_change_stubborn GC_PROTO((GC_PTR));
523: GC_API void GC_debug_end_stubborn_change GC_PROTO((GC_PTR));
1.6 ! noro 524:
! 525: /* Routines that allocate objects with debug information (like the */
! 526: /* above), but just fill in dummy file and line number information. */
! 527: /* Thus they can serve as drop-in malloc/realloc replacements. This */
! 528: /* can be useful for two reasons: */
! 529: /* 1) It allows the collector to be built with DBG_HDRS_ALL defined */
! 530: /* even if some allocation calls come from 3rd party libraries */
! 531: /* that can't be recompiled. */
! 532: /* 2) On some platforms, the file and line information is redundant, */
! 533: /* since it can be reconstructed from a stack trace. On such */
! 534: /* platforms it may be more convenient not to recompile, e.g. for */
! 535: /* leak detection. This can be accomplished by instructing the */
! 536: /* linker to replace malloc/realloc with these. */
! 537: GC_API GC_PTR GC_debug_malloc_replacement GC_PROTO((size_t size_in_bytes));
! 538: GC_API GC_PTR GC_debug_realloc_replacement
! 539: GC_PROTO((GC_PTR object_addr, size_t size_in_bytes));
! 540:
1.1 noro 541: # ifdef GC_DEBUG
542: # define GC_MALLOC(sz) GC_debug_malloc(sz, GC_EXTRAS)
543: # define GC_MALLOC_ATOMIC(sz) GC_debug_malloc_atomic(sz, GC_EXTRAS)
1.6 ! noro 544: # define GC_MALLOC_UNCOLLECTABLE(sz) \
! 545: GC_debug_malloc_uncollectable(sz, GC_EXTRAS)
! 546: # define GC_MALLOC_IGNORE_OFF_PAGE(sz) \
! 547: GC_debug_malloc_ignore_off_page(sz, GC_EXTRAS)
! 548: # define GC_MALLOC_ATOMIC_IGNORE_OFF_PAGE(sz) \
! 549: GC_debug_malloc_atomic_ignore_off_page(sz, GC_EXTRAS)
1.1 noro 550: # define GC_REALLOC(old, sz) GC_debug_realloc(old, sz, GC_EXTRAS)
551: # define GC_FREE(p) GC_debug_free(p)
552: # define GC_REGISTER_FINALIZER(p, f, d, of, od) \
553: GC_debug_register_finalizer(p, f, d, of, od)
554: # define GC_REGISTER_FINALIZER_IGNORE_SELF(p, f, d, of, od) \
555: GC_debug_register_finalizer_ignore_self(p, f, d, of, od)
1.3 noro 556: # define GC_REGISTER_FINALIZER_NO_ORDER(p, f, d, of, od) \
557: GC_debug_register_finalizer_no_order(p, f, d, of, od)
1.1 noro 558: # define GC_MALLOC_STUBBORN(sz) GC_debug_malloc_stubborn(sz, GC_EXTRAS);
559: # define GC_CHANGE_STUBBORN(p) GC_debug_change_stubborn(p)
560: # define GC_END_STUBBORN_CHANGE(p) GC_debug_end_stubborn_change(p)
561: # define GC_GENERAL_REGISTER_DISAPPEARING_LINK(link, obj) \
562: GC_general_register_disappearing_link(link, GC_base(obj))
563: # define GC_REGISTER_DISPLACEMENT(n) GC_debug_register_displacement(n)
564: # else
565: # define GC_MALLOC(sz) GC_malloc(sz)
566: # define GC_MALLOC_ATOMIC(sz) GC_malloc_atomic(sz)
567: # define GC_MALLOC_UNCOLLECTABLE(sz) GC_malloc_uncollectable(sz)
1.6 ! noro 568: # define GC_MALLOC_IGNORE_OFF_PAGE(sz) \
! 569: GC_malloc_ignore_off_page(sz)
! 570: # define GC_MALLOC_ATOMIC_IGNORE_OFF_PAGE(sz) \
! 571: GC_malloc_atomic_ignore_off_page(sz)
1.1 noro 572: # define GC_REALLOC(old, sz) GC_realloc(old, sz)
573: # define GC_FREE(p) GC_free(p)
574: # define GC_REGISTER_FINALIZER(p, f, d, of, od) \
575: GC_register_finalizer(p, f, d, of, od)
576: # define GC_REGISTER_FINALIZER_IGNORE_SELF(p, f, d, of, od) \
577: GC_register_finalizer_ignore_self(p, f, d, of, od)
1.3 noro 578: # define GC_REGISTER_FINALIZER_NO_ORDER(p, f, d, of, od) \
579: GC_register_finalizer_no_order(p, f, d, of, od)
1.1 noro 580: # define GC_MALLOC_STUBBORN(sz) GC_malloc_stubborn(sz)
581: # define GC_CHANGE_STUBBORN(p) GC_change_stubborn(p)
582: # define GC_END_STUBBORN_CHANGE(p) GC_end_stubborn_change(p)
583: # define GC_GENERAL_REGISTER_DISAPPEARING_LINK(link, obj) \
584: GC_general_register_disappearing_link(link, obj)
585: # define GC_REGISTER_DISPLACEMENT(n) GC_register_displacement(n)
586: # endif
587: /* The following are included because they are often convenient, and */
588: /* reduce the chance for a misspecifed size argument. But calls may */
589: /* expand to something syntactically incorrect if t is a complicated */
590: /* type expression. */
591: # define GC_NEW(t) (t *)GC_MALLOC(sizeof (t))
592: # define GC_NEW_ATOMIC(t) (t *)GC_MALLOC_ATOMIC(sizeof (t))
593: # define GC_NEW_STUBBORN(t) (t *)GC_MALLOC_STUBBORN(sizeof (t))
594: # define GC_NEW_UNCOLLECTABLE(t) (t *)GC_MALLOC_UNCOLLECTABLE(sizeof (t))
595:
596: /* Finalization. Some of these primitives are grossly unsafe. */
597: /* The idea is to make them both cheap, and sufficient to build */
598: /* a safer layer, closer to PCedar finalization. */
599: /* The interface represents my conclusions from a long discussion */
600: /* with Alan Demers, Dan Greene, Carl Hauser, Barry Hayes, */
601: /* Christian Jacobi, and Russ Atkinson. It's not perfect, and */
602: /* probably nobody else agrees with it. Hans-J. Boehm 3/13/92 */
603: typedef void (*GC_finalization_proc)
604: GC_PROTO((GC_PTR obj, GC_PTR client_data));
605:
606: GC_API void GC_register_finalizer
607: GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
608: GC_finalization_proc *ofn, GC_PTR *ocd));
609: GC_API void GC_debug_register_finalizer
610: GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
611: GC_finalization_proc *ofn, GC_PTR *ocd));
612: /* When obj is no longer accessible, invoke */
613: /* (*fn)(obj, cd). If a and b are inaccessible, and */
614: /* a points to b (after disappearing links have been */
615: /* made to disappear), then only a will be */
616: /* finalized. (If this does not create any new */
617: /* pointers to b, then b will be finalized after the */
618: /* next collection.) Any finalizable object that */
619: /* is reachable from itself by following one or more */
620: /* pointers will not be finalized (or collected). */
621: /* Thus cycles involving finalizable objects should */
622: /* be avoided, or broken by disappearing links. */
623: /* All but the last finalizer registered for an object */
624: /* is ignored. */
625: /* Finalization may be removed by passing 0 as fn. */
626: /* Finalizers are implicitly unregistered just before */
627: /* they are invoked. */
628: /* The old finalizer and client data are stored in */
629: /* *ofn and *ocd. */
630: /* Fn is never invoked on an accessible object, */
631: /* provided hidden pointers are converted to real */
632: /* pointers only if the allocation lock is held, and */
633: /* such conversions are not performed by finalization */
634: /* routines. */
635: /* If GC_register_finalizer is aborted as a result of */
636: /* a signal, the object may be left with no */
637: /* finalization, even if neither the old nor new */
638: /* finalizer were NULL. */
639: /* Obj should be the nonNULL starting address of an */
640: /* object allocated by GC_malloc or friends. */
641: /* Note that any garbage collectable object referenced */
642: /* by cd will be considered accessible until the */
643: /* finalizer is invoked. */
644:
645: /* Another versions of the above follow. It ignores */
646: /* self-cycles, i.e. pointers from a finalizable object to */
647: /* itself. There is a stylistic argument that this is wrong, */
648: /* but it's unavoidable for C++, since the compiler may */
649: /* silently introduce these. It's also benign in that specific */
1.6 ! noro 650: /* case. And it helps if finalizable objects are split to */
! 651: /* avoid cycles. */
1.3 noro 652: /* Note that cd will still be viewed as accessible, even if it */
653: /* refers to the object itself. */
1.1 noro 654: GC_API void GC_register_finalizer_ignore_self
655: GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
656: GC_finalization_proc *ofn, GC_PTR *ocd));
657: GC_API void GC_debug_register_finalizer_ignore_self
658: GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
659: GC_finalization_proc *ofn, GC_PTR *ocd));
660:
1.3 noro 661: /* Another version of the above. It ignores all cycles. */
662: /* It should probably only be used by Java implementations. */
663: /* Note that cd will still be viewed as accessible, even if it */
664: /* refers to the object itself. */
665: GC_API void GC_register_finalizer_no_order
666: GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
667: GC_finalization_proc *ofn, GC_PTR *ocd));
668: GC_API void GC_debug_register_finalizer_no_order
669: GC_PROTO((GC_PTR obj, GC_finalization_proc fn, GC_PTR cd,
670: GC_finalization_proc *ofn, GC_PTR *ocd));
671:
672:
1.1 noro 673: /* The following routine may be used to break cycles between */
674: /* finalizable objects, thus causing cyclic finalizable */
675: /* objects to be finalized in the correct order. Standard */
676: /* use involves calling GC_register_disappearing_link(&p), */
677: /* where p is a pointer that is not followed by finalization */
678: /* code, and should not be considered in determining */
679: /* finalization order. */
680: GC_API int GC_register_disappearing_link GC_PROTO((GC_PTR * /* link */));
681: /* Link should point to a field of a heap allocated */
682: /* object obj. *link will be cleared when obj is */
683: /* found to be inaccessible. This happens BEFORE any */
684: /* finalization code is invoked, and BEFORE any */
685: /* decisions about finalization order are made. */
686: /* This is useful in telling the finalizer that */
687: /* some pointers are not essential for proper */
688: /* finalization. This may avoid finalization cycles. */
689: /* Note that obj may be resurrected by another */
690: /* finalizer, and thus the clearing of *link may */
691: /* be visible to non-finalization code. */
692: /* There's an argument that an arbitrary action should */
693: /* be allowed here, instead of just clearing a pointer. */
694: /* But this causes problems if that action alters, or */
695: /* examines connectivity. */
696: /* Returns 1 if link was already registered, 0 */
697: /* otherwise. */
698: /* Only exists for backward compatibility. See below: */
699:
700: GC_API int GC_general_register_disappearing_link
701: GC_PROTO((GC_PTR * /* link */, GC_PTR obj));
702: /* A slight generalization of the above. *link is */
703: /* cleared when obj first becomes inaccessible. This */
704: /* can be used to implement weak pointers easily and */
705: /* safely. Typically link will point to a location */
706: /* holding a disguised pointer to obj. (A pointer */
707: /* inside an "atomic" object is effectively */
708: /* disguised.) In this way soft */
709: /* pointers are broken before any object */
710: /* reachable from them are finalized. Each link */
711: /* May be registered only once, i.e. with one obj */
712: /* value. This was added after a long email discussion */
713: /* with John Ellis. */
714: /* Obj must be a pointer to the first word of an object */
715: /* we allocated. It is unsafe to explicitly deallocate */
716: /* the object containing link. Explicitly deallocating */
717: /* obj may or may not cause link to eventually be */
718: /* cleared. */
719: GC_API int GC_unregister_disappearing_link GC_PROTO((GC_PTR * /* link */));
720: /* Returns 0 if link was not actually registered. */
721: /* Undoes a registration by either of the above two */
722: /* routines. */
723:
1.3 noro 724: /* Returns !=0 if GC_invoke_finalizers has something to do. */
725: GC_API int GC_should_invoke_finalizers GC_PROTO((void));
726:
1.1 noro 727: GC_API int GC_invoke_finalizers GC_PROTO((void));
728: /* Run finalizers for all objects that are ready to */
729: /* be finalized. Return the number of finalizers */
730: /* that were run. Normally this is also called */
731: /* implicitly during some allocations. If */
1.2 noro 732: /* GC-finalize_on_demand is nonzero, it must be called */
1.1 noro 733: /* explicitly. */
734:
735: /* GC_set_warn_proc can be used to redirect or filter warning messages. */
736: /* p may not be a NULL pointer. */
737: typedef void (*GC_warn_proc) GC_PROTO((char *msg, GC_word arg));
738: GC_API GC_warn_proc GC_set_warn_proc GC_PROTO((GC_warn_proc p));
739: /* Returns old warning procedure. */
1.6 ! noro 740:
! 741: GC_API GC_word GC_set_free_space_divisor GC_PROTO((GC_word value));
! 742: /* Set free_space_divisor. See above for definition. */
! 743: /* Returns old value. */
1.1 noro 744:
745: /* The following is intended to be used by a higher level */
1.5 noro 746: /* (e.g. Java-like) finalization facility. It is expected */
1.1 noro 747: /* that finalization code will arrange for hidden pointers to */
748: /* disappear. Otherwise objects can be accessed after they */
749: /* have been collected. */
750: /* Note that putting pointers in atomic objects or in */
751: /* nonpointer slots of "typed" objects is equivalent to */
752: /* disguising them in this way, and may have other advantages. */
753: # if defined(I_HIDE_POINTERS) || defined(GC_I_HIDE_POINTERS)
754: typedef GC_word GC_hidden_pointer;
755: # define HIDE_POINTER(p) (~(GC_hidden_pointer)(p))
756: # define REVEAL_POINTER(p) ((GC_PTR)(HIDE_POINTER(p)))
757: /* Converting a hidden pointer to a real pointer requires verifying */
758: /* that the object still exists. This involves acquiring the */
759: /* allocator lock to avoid a race with the collector. */
760: # endif /* I_HIDE_POINTERS */
761:
762: typedef GC_PTR (*GC_fn_type) GC_PROTO((GC_PTR client_data));
763: GC_API GC_PTR GC_call_with_alloc_lock
764: GC_PROTO((GC_fn_type fn, GC_PTR client_data));
765:
1.3 noro 766: /* The following routines are primarily intended for use with a */
767: /* preprocessor which inserts calls to check C pointer arithmetic. */
768:
1.1 noro 769: /* Check that p and q point to the same object. */
770: /* Fail conspicuously if they don't. */
771: /* Returns the first argument. */
772: /* Succeeds if neither p nor q points to the heap. */
773: /* May succeed if both p and q point to between heap objects. */
774: GC_API GC_PTR GC_same_obj GC_PROTO((GC_PTR p, GC_PTR q));
775:
776: /* Checked pointer pre- and post- increment operations. Note that */
777: /* the second argument is in units of bytes, not multiples of the */
778: /* object size. This should either be invoked from a macro, or the */
779: /* call should be automatically generated. */
780: GC_API GC_PTR GC_pre_incr GC_PROTO((GC_PTR *p, size_t how_much));
781: GC_API GC_PTR GC_post_incr GC_PROTO((GC_PTR *p, size_t how_much));
782:
783: /* Check that p is visible */
784: /* to the collector as a possibly pointer containing location. */
785: /* If it isn't fail conspicuously. */
786: /* Returns the argument in all cases. May erroneously succeed */
787: /* in hard cases. (This is intended for debugging use with */
788: /* untyped allocations. The idea is that it should be possible, though */
789: /* slow, to add such a call to all indirect pointer stores.) */
790: /* Currently useless for multithreaded worlds. */
791: GC_API GC_PTR GC_is_visible GC_PROTO((GC_PTR p));
792:
793: /* Check that if p is a pointer to a heap page, then it points to */
794: /* a valid displacement within a heap object. */
795: /* Fail conspicuously if this property does not hold. */
1.3 noro 796: /* Uninteresting with GC_all_interior_pointers. */
1.1 noro 797: /* Always returns its argument. */
798: GC_API GC_PTR GC_is_valid_displacement GC_PROTO((GC_PTR p));
799:
800: /* Safer, but slow, pointer addition. Probably useful mainly with */
801: /* a preprocessor. Useful only for heap pointers. */
802: #ifdef GC_DEBUG
803: # define GC_PTR_ADD3(x, n, type_of_result) \
804: ((type_of_result)GC_same_obj((x)+(n), (x)))
805: # define GC_PRE_INCR3(x, n, type_of_result) \
806: ((type_of_result)GC_pre_incr(&(x), (n)*sizeof(*x))
807: # define GC_POST_INCR2(x, type_of_result) \
808: ((type_of_result)GC_post_incr(&(x), sizeof(*x))
809: # ifdef __GNUC__
810: # define GC_PTR_ADD(x, n) \
811: GC_PTR_ADD3(x, n, typeof(x))
1.3 noro 812: # define GC_PRE_INCR(x, n) \
1.1 noro 813: GC_PRE_INCR3(x, n, typeof(x))
1.3 noro 814: # define GC_POST_INCR(x, n) \
1.1 noro 815: GC_POST_INCR3(x, typeof(x))
816: # else
817: /* We can't do this right without typeof, which ANSI */
818: /* decided was not sufficiently useful. Repeatedly */
819: /* mentioning the arguments seems too dangerous to be */
820: /* useful. So does not casting the result. */
821: # define GC_PTR_ADD(x, n) ((x)+(n))
822: # endif
823: #else /* !GC_DEBUG */
824: # define GC_PTR_ADD3(x, n, type_of_result) ((x)+(n))
825: # define GC_PTR_ADD(x, n) ((x)+(n))
826: # define GC_PRE_INCR3(x, n, type_of_result) ((x) += (n))
827: # define GC_PRE_INCR(x, n) ((x) += (n))
828: # define GC_POST_INCR2(x, n, type_of_result) ((x)++)
829: # define GC_POST_INCR(x, n) ((x)++)
830: #endif
831:
832: /* Safer assignment of a pointer to a nonstack location. */
833: #ifdef GC_DEBUG
834: # ifdef __STDC__
835: # define GC_PTR_STORE(p, q) \
836: (*(void **)GC_is_visible(p) = GC_is_valid_displacement(q))
837: # else
838: # define GC_PTR_STORE(p, q) \
839: (*(char **)GC_is_visible(p) = GC_is_valid_displacement(q))
840: # endif
841: #else /* !GC_DEBUG */
842: # define GC_PTR_STORE(p, q) *((p) = (q))
843: #endif
844:
845: /* Fynctions called to report pointer checking errors */
846: GC_API void (*GC_same_obj_print_proc) GC_PROTO((GC_PTR p, GC_PTR q));
847:
848: GC_API void (*GC_is_valid_displacement_print_proc)
849: GC_PROTO((GC_PTR p));
850:
851: GC_API void (*GC_is_visible_print_proc)
852: GC_PROTO((GC_PTR p));
853:
1.3 noro 854:
855: /* For pthread support, we generally need to intercept a number of */
856: /* thread library calls. We do that here by macro defining them. */
857:
858: #if !defined(GC_USE_LD_WRAP) && \
1.5 noro 859: (defined(GC_PTHREADS) || defined(GC_SOLARIS_THREADS))
1.3 noro 860: # include "gc_pthread_redirects.h"
1.1 noro 861: #endif
862:
1.3 noro 863: # if defined(PCR) || defined(GC_SOLARIS_THREADS) || \
1.5 noro 864: defined(GC_PTHREADS) || defined(GC_WIN32_THREADS)
1.1 noro 865: /* Any flavor of threads except SRC_M3. */
866: /* This returns a list of objects, linked through their first */
867: /* word. Its use can greatly reduce lock contention problems, since */
868: /* the allocation lock can be acquired and released many fewer times. */
869: /* lb must be large enough to hold the pointer field. */
1.3 noro 870: /* It is used internally by gc_local_alloc.h, which provides a simpler */
871: /* programming interface on Linux. */
1.1 noro 872: GC_PTR GC_malloc_many(size_t lb);
873: #define GC_NEXT(p) (*(GC_PTR *)(p)) /* Retrieve the next element */
874: /* in returned list. */
875: extern void GC_thr_init(); /* Needed for Solaris/X86 */
876:
877: #endif /* THREADS && !SRC_M3 */
878:
1.6 ! noro 879: #if defined(GC_WIN32_THREADS) && !defined(__CYGWIN32__) && !defined(__CYGWIN__)
1.3 noro 880: # include <windows.h>
1.5 noro 881:
882: /*
883: * All threads must be created using GC_CreateThread, so that they will be
884: * recorded in the thread table. For backwards compatibility, this is not
885: * technically true if the GC is built as a dynamic library, since it can
886: * and does then use DllMain to keep track of thread creations. But new code
887: * should be built to call GC_CreateThread.
888: */
1.6 ! noro 889: GC_API HANDLE GC_CreateThread(
1.5 noro 890: LPSECURITY_ATTRIBUTES lpThreadAttributes,
891: DWORD dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress,
892: LPVOID lpParameter, DWORD dwCreationFlags, LPDWORD lpThreadId );
1.3 noro 893:
1.5 noro 894: # if defined(_WIN32_WCE)
1.3 noro 895: /*
896: * win32_threads.c implements the real WinMain, which will start a new thread
897: * to call GC_WinMain after initializing the garbage collector.
898: */
899: int WINAPI GC_WinMain(
900: HINSTANCE hInstance,
901: HINSTANCE hPrevInstance,
902: LPWSTR lpCmdLine,
903: int nCmdShow );
904:
1.5 noro 905: # ifndef GC_BUILD
906: # define WinMain GC_WinMain
907: # define CreateThread GC_CreateThread
908: # endif
909: # endif /* defined(_WIN32_WCE) */
1.3 noro 910:
1.6 ! noro 911: #endif /* defined(GC_WIN32_THREADS) && !cygwin */
1.3 noro 912:
1.1 noro 913: /*
914: * If you are planning on putting
915: * the collector in a SunOS 5 dynamic library, you need to call GC_INIT()
916: * from the statically loaded program section.
917: * This circumvents a Solaris 2.X (X<=4) linker bug.
918: */
919: #if defined(sparc) || defined(__sparc)
920: # define GC_INIT() { extern end, etext; \
921: GC_noop(&end, &etext); }
922: #else
1.6 ! noro 923: # if defined(__CYGWIN32__) && defined(GC_DLL) || defined (_AIX)
1.1 noro 924: /*
1.5 noro 925: * Similarly gnu-win32 DLLs need explicit initialization from
926: * the main program, as does AIX.
1.1 noro 927: */
928: # define GC_INIT() { GC_add_roots(DATASTART, DATAEND); }
929: # else
1.6 ! noro 930: # if defined(__APPLE__) && defined(__MACH__)
! 931: # define GC_INIT() { GC_init(); }
! 932: # else
1.1 noro 933: # define GC_INIT()
1.6 ! noro 934: # endif
1.1 noro 935: # endif
936: #endif
937:
1.3 noro 938: #if !defined(_WIN32_WCE) \
939: && ((defined(_MSDOS) || defined(_MSC_VER)) && (_M_IX86 >= 300) \
940: || defined(_WIN32) && !defined(__CYGWIN32__) && !defined(__CYGWIN__))
1.1 noro 941: /* win32S may not free all resources on process exit. */
942: /* This explicitly deallocates the heap. */
943: GC_API void GC_win32_free_heap ();
1.3 noro 944: #endif
945:
946: #if ( defined(_AMIGA) && !defined(GC_AMIGA_MAKINGLIB) )
947: /* Allocation really goes through GC_amiga_allocwrapper_do */
948: # include "gc_amiga_redirects.h"
949: #endif
950:
951: #if defined(GC_REDIRECT_TO_LOCAL) && !defined(GC_LOCAL_ALLOC_H)
952: # include "gc_local_alloc.h"
1.1 noro 953: #endif
954:
955: #ifdef __cplusplus
956: } /* end of extern "C" */
957: #endif
958:
959: #endif /* _GC_H */
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>