Annotation of OpenXM_contrib2/asir2000/gc/mallocx.c, Revision 1.2
1.1 noro 1: /*
2: * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3: * Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
4: * Copyright (c) 1996 by Silicon Graphics. All rights reserved.
5: *
6: * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
7: * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
8: *
9: * Permission is hereby granted to use or copy this program
10: * for any purpose, provided the above notices are retained on all copies.
11: * Permission to modify the code and to distribute modified code is granted,
12: * provided the above notices are retained, and a notice that the code was
13: * modified is included with the above copyright notice.
14: */
15:
16: /*
17: * These are extra allocation routines which are likely to be less
18: * frequently used than those in malloc.c. They are separate in the
19: * hope that the .o file will be excluded from statically linked
20: * executables. We should probably break this up further.
21: */
22:
23: #include <stdio.h>
24: #include "gc_priv.h"
25:
26: extern ptr_t GC_clear_stack(); /* in misc.c, behaves like identity */
27: void GC_extend_size_map(); /* in misc.c. */
28: GC_bool GC_alloc_reclaim_list(); /* in malloc.c */
29:
30: /* Some externally visible but unadvertised variables to allow access to */
31: /* free lists from inlined allocators without including gc_priv.h */
32: /* or introducing dependencies on internal data structure layouts. */
33: ptr_t * CONST GC_objfreelist_ptr = GC_objfreelist;
34: ptr_t * CONST GC_aobjfreelist_ptr = GC_aobjfreelist;
35: ptr_t * CONST GC_uobjfreelist_ptr = GC_uobjfreelist;
36: # ifdef ATOMIC_UNCOLLECTABLE
37: ptr_t * CONST GC_auobjfreelist_ptr = GC_auobjfreelist;
38: # endif
39:
40: /* Allocate a composite object of size n bytes. The caller guarantees */
41: /* that pointers past the first page are not relevant. Caller holds */
42: /* allocation lock. */
43: ptr_t GC_generic_malloc_inner_ignore_off_page(lb, k)
44: register size_t lb;
45: register int k;
46: {
47: register struct hblk * h;
48: register word n_blocks;
49: register word lw;
50: register ptr_t op;
51:
52: if (lb <= HBLKSIZE)
53: return(GC_generic_malloc_inner((word)lb, k));
54: n_blocks = divHBLKSZ(ADD_SLOP(lb) + HDR_BYTES + HBLKSIZE-1);
55: if (!GC_is_initialized) GC_init_inner();
56: /* Do our share of marking work */
57: if(GC_incremental && !GC_dont_gc)
58: GC_collect_a_little_inner((int)n_blocks);
59: lw = ROUNDED_UP_WORDS(lb);
60: h = GC_allochblk(lw, k, IGNORE_OFF_PAGE);
61: # ifdef USE_MUNMAP
62: if (0 == h) {
63: GC_merge_unmapped();
64: h = GC_allochblk(lw, k, IGNORE_OFF_PAGE);
65: }
66: # endif
67: while (0 == h && GC_collect_or_expand(n_blocks, TRUE)) {
68: h = GC_allochblk(lw, k, IGNORE_OFF_PAGE);
69: }
70: if (h == 0) {
71: op = 0;
72: } else {
73: op = (ptr_t) (h -> hb_body);
74: GC_words_wasted += BYTES_TO_WORDS(n_blocks * HBLKSIZE) - lw;
75: }
76: GC_words_allocd += lw;
77: return((ptr_t)op);
78: }
79:
80: ptr_t GC_generic_malloc_ignore_off_page(lb, k)
81: register size_t lb;
82: register int k;
83: {
84: register ptr_t result;
85: DCL_LOCK_STATE;
86:
87: GC_INVOKE_FINALIZERS();
88: DISABLE_SIGNALS();
89: LOCK();
90: result = GC_generic_malloc_inner_ignore_off_page(lb,k);
91: UNLOCK();
92: ENABLE_SIGNALS();
93: if (0 == result) {
94: return((*GC_oom_fn)(lb));
95: } else {
96: return(result);
97: }
98: }
99:
100: # if defined(__STDC__) || defined(__cplusplus)
101: void * GC_malloc_ignore_off_page(size_t lb)
102: # else
103: char * GC_malloc_ignore_off_page(lb)
104: register size_t lb;
105: # endif
106: {
107: return((GC_PTR)GC_generic_malloc_ignore_off_page(lb, NORMAL));
108: }
109:
110: # if defined(__STDC__) || defined(__cplusplus)
111: void * GC_malloc_atomic_ignore_off_page(size_t lb)
112: # else
113: char * GC_malloc_atomic_ignore_off_page(lb)
114: register size_t lb;
115: # endif
116: {
117: return((GC_PTR)GC_generic_malloc_ignore_off_page(lb, PTRFREE));
118: }
119:
120: /* Increment GC_words_allocd from code that doesn't have direct access */
121: /* to GC_arrays. */
122: # ifdef __STDC__
123: void GC_incr_words_allocd(size_t n)
124: {
125: GC_words_allocd += n;
126: }
127:
128: /* The same for GC_mem_freed. */
129: void GC_incr_mem_freed(size_t n)
130: {
131: GC_mem_freed += n;
132: }
133: # endif /* __STDC__ */
134:
135: /* Analogous to the above, but assumes a small object size, and */
136: /* bypasses MERGE_SIZES mechanism. Used by gc_inline.h. */
1.2 ! noro 137: ptr_t GC_generic_malloc_words_small_inner(lw, k)
! 138: register word lw;
! 139: register int k;
1.1 noro 140: {
141: register ptr_t op;
142: register ptr_t *opp;
143: register struct obj_kind * kind = GC_obj_kinds + k;
144:
145: opp = &(kind -> ok_freelist[lw]);
146: if( (op = *opp) == 0 ) {
147: if (!GC_is_initialized) {
148: GC_init_inner();
149: }
150: if (kind -> ok_reclaim_list != 0 || GC_alloc_reclaim_list(kind)) {
151: op = GC_clear_stack(GC_allocobj((word)lw, k));
152: }
153: if (op == 0) {
154: UNLOCK();
155: ENABLE_SIGNALS();
156: return ((*GC_oom_fn)(WORDS_TO_BYTES(lw)));
157: }
158: }
159: *opp = obj_link(op);
160: obj_link(op) = 0;
161: GC_words_allocd += lw;
1.2 ! noro 162: return((ptr_t)op);
! 163: }
! 164:
! 165: /* Analogous to the above, but assumes a small object size, and */
! 166: /* bypasses MERGE_SIZES mechanism. Used by gc_inline.h. */
! 167: #ifdef __STDC__
! 168: ptr_t GC_generic_malloc_words_small(size_t lw, int k)
! 169: #else
! 170: ptr_t GC_generic_malloc_words_small(lw, k)
! 171: register word lw;
! 172: register int k;
! 173: #endif
! 174: {
! 175: register ptr_t op;
! 176: DCL_LOCK_STATE;
! 177:
! 178: GC_INVOKE_FINALIZERS();
! 179: DISABLE_SIGNALS();
! 180: LOCK();
! 181: op = GC_generic_malloc_words_small_inner(lw, k);
1.1 noro 182: UNLOCK();
183: ENABLE_SIGNALS();
184: return((ptr_t)op);
185: }
186:
187: #if defined(THREADS) && !defined(SRC_M3)
188: /* Return a list of 1 or more objects of the indicated size, linked */
189: /* through the first word in the object. This has the advantage that */
190: /* it acquires the allocation lock only once, and may greatly reduce */
191: /* time wasted contending for the allocation lock. Typical usage would */
192: /* be in a thread that requires many items of the same size. It would */
193: /* keep its own free list in thread-local storage, and call */
194: /* GC_malloc_many or friends to replenish it. (We do not round up */
195: /* object sizes, since a call indicates the intention to consume many */
196: /* objects of exactly this size.) */
197: /* Note that the client should usually clear the link field. */
198: ptr_t GC_generic_malloc_many(lb, k)
199: register word lb;
200: register int k;
201: {
202: ptr_t op;
203: register ptr_t p;
204: ptr_t *opp;
205: word lw;
206: register word my_words_allocd;
207: DCL_LOCK_STATE;
208:
209: if (!SMALL_OBJ(lb)) {
210: op = GC_generic_malloc(lb, k);
211: if(0 != op) obj_link(op) = 0;
212: return(op);
213: }
214: lw = ALIGNED_WORDS(lb);
215: GC_INVOKE_FINALIZERS();
216: DISABLE_SIGNALS();
217: LOCK();
218: opp = &(GC_obj_kinds[k].ok_freelist[lw]);
219: if( (op = *opp) == 0 ) {
220: if (!GC_is_initialized) {
221: GC_init_inner();
222: }
223: op = GC_clear_stack(GC_allocobj(lw, k));
224: if (op == 0) {
225: UNLOCK();
226: ENABLE_SIGNALS();
227: op = (*GC_oom_fn)(lb);
228: if(0 != op) obj_link(op) = 0;
229: return(op);
230: }
231: }
232: *opp = 0;
233: my_words_allocd = 0;
234: for (p = op; p != 0; p = obj_link(p)) {
235: my_words_allocd += lw;
236: if (my_words_allocd >= BODY_SZ) {
237: *opp = obj_link(p);
238: obj_link(p) = 0;
239: break;
240: }
241: }
242: GC_words_allocd += my_words_allocd;
243:
244: out:
245: UNLOCK();
246: ENABLE_SIGNALS();
247: return(op);
248:
249: }
250:
251: void * GC_malloc_many(size_t lb)
252: {
253: return(GC_generic_malloc_many(lb, NORMAL));
254: }
255:
256: /* Note that the "atomic" version of this would be unsafe, since the */
257: /* links would not be seen by the collector. */
258: # endif
259:
260: /* Allocate lb bytes of pointerful, traced, but not collectable data */
261: # ifdef __STDC__
262: GC_PTR GC_malloc_uncollectable(size_t lb)
263: # else
264: GC_PTR GC_malloc_uncollectable(lb)
265: size_t lb;
266: # endif
267: {
268: register ptr_t op;
269: register ptr_t *opp;
270: register word lw;
271: DCL_LOCK_STATE;
272:
273: if( SMALL_OBJ(lb) ) {
274: # ifdef MERGE_SIZES
275: # ifdef ADD_BYTE_AT_END
276: if (lb != 0) lb--;
277: /* We don't need the extra byte, since this won't be */
278: /* collected anyway. */
279: # endif
280: lw = GC_size_map[lb];
281: # else
282: lw = ALIGNED_WORDS(lb);
283: # endif
284: opp = &(GC_uobjfreelist[lw]);
285: FASTLOCK();
286: if( FASTLOCK_SUCCEEDED() && (op = *opp) != 0 ) {
287: /* See above comment on signals. */
288: *opp = obj_link(op);
289: obj_link(op) = 0;
290: GC_words_allocd += lw;
291: /* Mark bit ws already set on free list. It will be */
292: /* cleared only temporarily during a collection, as a */
293: /* result of the normal free list mark bit clearing. */
294: GC_non_gc_bytes += WORDS_TO_BYTES(lw);
295: FASTUNLOCK();
296: return((GC_PTR) op);
297: }
298: FASTUNLOCK();
299: op = (ptr_t)GC_generic_malloc((word)lb, UNCOLLECTABLE);
300: } else {
301: op = (ptr_t)GC_generic_malloc((word)lb, UNCOLLECTABLE);
302: }
303: if (0 == op) return(0);
304: /* We don't need the lock here, since we have an undisguised */
305: /* pointer. We do need to hold the lock while we adjust */
306: /* mark bits. */
307: {
308: register struct hblk * h;
309:
310: h = HBLKPTR(op);
311: lw = HDR(h) -> hb_sz;
312:
313: DISABLE_SIGNALS();
314: LOCK();
315: GC_set_mark_bit(op);
316: GC_non_gc_bytes += WORDS_TO_BYTES(lw);
317: UNLOCK();
318: ENABLE_SIGNALS();
319: return((GC_PTR) op);
320: }
321: }
322:
323: # ifdef ATOMIC_UNCOLLECTABLE
324: /* Allocate lb bytes of pointerfree, untraced, uncollectable data */
325: /* This is normally roughly equivalent to the system malloc. */
326: /* But it may be useful if malloc is redefined. */
327: # ifdef __STDC__
328: GC_PTR GC_malloc_atomic_uncollectable(size_t lb)
329: # else
330: GC_PTR GC_malloc_atomic_uncollectable(lb)
331: size_t lb;
332: # endif
333: {
334: register ptr_t op;
335: register ptr_t *opp;
336: register word lw;
337: DCL_LOCK_STATE;
338:
339: if( SMALL_OBJ(lb) ) {
340: # ifdef MERGE_SIZES
341: # ifdef ADD_BYTE_AT_END
342: if (lb != 0) lb--;
343: /* We don't need the extra byte, since this won't be */
344: /* collected anyway. */
345: # endif
346: lw = GC_size_map[lb];
347: # else
348: lw = ALIGNED_WORDS(lb);
349: # endif
350: opp = &(GC_auobjfreelist[lw]);
351: FASTLOCK();
352: if( FASTLOCK_SUCCEEDED() && (op = *opp) != 0 ) {
353: /* See above comment on signals. */
354: *opp = obj_link(op);
355: obj_link(op) = 0;
356: GC_words_allocd += lw;
357: /* Mark bit was already set while object was on free list. */
358: GC_non_gc_bytes += WORDS_TO_BYTES(lw);
359: FASTUNLOCK();
360: return((GC_PTR) op);
361: }
362: FASTUNLOCK();
363: op = (ptr_t)GC_generic_malloc((word)lb, AUNCOLLECTABLE);
364: } else {
365: op = (ptr_t)GC_generic_malloc((word)lb, AUNCOLLECTABLE);
366: }
367: if (0 == op) return(0);
368: /* We don't need the lock here, since we have an undisguised */
369: /* pointer. We do need to hold the lock while we adjust */
370: /* mark bits. */
371: {
372: register struct hblk * h;
373:
374: h = HBLKPTR(op);
375: lw = HDR(h) -> hb_sz;
376:
377: DISABLE_SIGNALS();
378: LOCK();
379: GC_set_mark_bit(op);
380: GC_non_gc_bytes += WORDS_TO_BYTES(lw);
381: UNLOCK();
382: ENABLE_SIGNALS();
383: return((GC_PTR) op);
384: }
385: }
386:
387: #endif /* ATOMIC_UNCOLLECTABLE */
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>