[BACK]Return to mark.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2000 / gc

Diff for /OpenXM_contrib2/asir2000/gc/mark.c between version 1.2 and 1.7

version 1.2, 2000/04/10 08:31:31 version 1.7, 2003/06/24 05:11:33
Line 2 
Line 2 
 /*  /*
  * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers   * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
  * Copyright (c) 1991-1995 by Xerox Corporation.  All rights reserved.   * Copyright (c) 1991-1995 by Xerox Corporation.  All rights reserved.
    * Copyright (c) 2000 by Hewlett-Packard Company.  All rights reserved.
  *   *
  * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED   * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
  * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.   * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
Line 16 
Line 17 
   
   
 # include <stdio.h>  # include <stdio.h>
 # include "gc_priv.h"  # include "private/gc_pmark.h"
 # include "gc_mark.h"  
   
   #if defined(MSWIN32) && defined(__GNUC__)
   # include <excpt.h>
   #endif
   
 /* We put this here to minimize the risk of inlining. */  /* We put this here to minimize the risk of inlining. */
 /*VARARGS*/  /*VARARGS*/
 #ifdef __WATCOMC__  #ifdef __WATCOMC__
Line 38  word x;
Line 42  word x;
   
 /* mark_proc GC_mark_procs[MAX_MARK_PROCS] = {0} -- declared in gc_priv.h */  /* mark_proc GC_mark_procs[MAX_MARK_PROCS] = {0} -- declared in gc_priv.h */
   
 word GC_n_mark_procs = 0;  word GC_n_mark_procs = GC_RESERVED_MARK_PROCS;
   
 /* Initialize GC_obj_kinds properly and standard free lists properly.   */  /* Initialize GC_obj_kinds properly and standard free lists properly.   */
 /* This must be done statically since they may be accessed before       */  /* This must be done statically since they may be accessed before       */
Line 46  word GC_n_mark_procs = 0;
Line 50  word GC_n_mark_procs = 0;
 /* It's done here, since we need to deal with mark descriptors.         */  /* It's done here, since we need to deal with mark descriptors.         */
 struct obj_kind GC_obj_kinds[MAXOBJKINDS] = {  struct obj_kind GC_obj_kinds[MAXOBJKINDS] = {
 /* PTRFREE */ { &GC_aobjfreelist[0], 0 /* filled in dynamically */,  /* PTRFREE */ { &GC_aobjfreelist[0], 0 /* filled in dynamically */,
                 0 | DS_LENGTH, FALSE, FALSE },                  0 | GC_DS_LENGTH, FALSE, FALSE },
 /* NORMAL  */ { &GC_objfreelist[0], 0,  /* NORMAL  */ { &GC_objfreelist[0], 0,
 #               if defined(ADD_BYTE_AT_END) && ALIGNMENT > DS_TAGS                  0 | GC_DS_LENGTH,  /* Adjusted in GC_init_inner for EXTRA_BYTES */
                 (word)(-ALIGNMENT) | DS_LENGTH,  
 #               else  
                 0 | DS_LENGTH,  
 #               endif  
                 TRUE /* add length to descr */, TRUE },                  TRUE /* add length to descr */, TRUE },
 /* UNCOLLECTABLE */  /* UNCOLLECTABLE */
               { &GC_uobjfreelist[0], 0,                { &GC_uobjfreelist[0], 0,
                 0 | DS_LENGTH, TRUE /* add length to descr */, TRUE },                  0 | GC_DS_LENGTH, TRUE /* add length to descr */, TRUE },
 # ifdef ATOMIC_UNCOLLECTABLE  # ifdef ATOMIC_UNCOLLECTABLE
    /* AUNCOLLECTABLE */     /* AUNCOLLECTABLE */
               { &GC_auobjfreelist[0], 0,                { &GC_auobjfreelist[0], 0,
                 0 | DS_LENGTH, FALSE /* add length to descr */, FALSE },                  0 | GC_DS_LENGTH, FALSE /* add length to descr */, FALSE },
 # endif  # endif
 # ifdef STUBBORN_ALLOC  # ifdef STUBBORN_ALLOC
 /*STUBBORN*/ { &GC_sobjfreelist[0], 0,  /*STUBBORN*/ { &GC_sobjfreelist[0], 0,
                 0 | DS_LENGTH, TRUE /* add length to descr */, TRUE },                  0 | GC_DS_LENGTH, TRUE /* add length to descr */, TRUE },
 # endif  # endif
 };  };
   
Line 104  word GC_n_rescuing_pages; /* Number of dirty pages we 
Line 104  word GC_n_rescuing_pages; /* Number of dirty pages we 
   
 mse * GC_mark_stack;  mse * GC_mark_stack;
   
   mse * GC_mark_stack_limit;
   
 word GC_mark_stack_size = 0;  word GC_mark_stack_size = 0;
   
 mse * GC_mark_stack_top;  #ifdef PARALLEL_MARK
     mse * VOLATILE GC_mark_stack_top;
   #else
     mse * GC_mark_stack_top;
   #endif
   
 static struct hblk * scan_ptr;  static struct hblk * scan_ptr;
   
Line 129  GC_bool GC_collection_in_progress()
Line 135  GC_bool GC_collection_in_progress()
 void GC_clear_hdr_marks(hhdr)  void GC_clear_hdr_marks(hhdr)
 register hdr * hhdr;  register hdr * hhdr;
 {  {
     BZERO(hhdr -> hb_marks, MARK_BITS_SZ*sizeof(word));  #   ifdef USE_MARK_BYTES
         BZERO(hhdr -> hb_marks, MARK_BITS_SZ);
   #   else
         BZERO(hhdr -> hb_marks, MARK_BITS_SZ*sizeof(word));
   #   endif
 }  }
   
 /* Set all mark bits in the header.  Used for uncollectable blocks. */  /* Set all mark bits in the header.  Used for uncollectable blocks. */
Line 139  register hdr * hhdr;
Line 149  register hdr * hhdr;
     register int i;      register int i;
   
     for (i = 0; i < MARK_BITS_SZ; ++i) {      for (i = 0; i < MARK_BITS_SZ; ++i) {
   #     ifdef USE_MARK_BYTES
           hhdr -> hb_marks[i] = 1;
   #     else
         hhdr -> hb_marks[i] = ONES;          hhdr -> hb_marks[i] = ONES;
   #     endif
     }      }
 }  }
   
Line 147  register hdr * hhdr;
Line 161  register hdr * hhdr;
  * Clear all mark bits associated with block h.   * Clear all mark bits associated with block h.
  */   */
 /*ARGSUSED*/  /*ARGSUSED*/
 static void clear_marks_for_block(h, dummy)  # if defined(__STDC__) || defined(__cplusplus)
 struct hblk *h;      static void clear_marks_for_block(struct hblk *h, word dummy)
 word dummy;  # else
       static void clear_marks_for_block(h, dummy)
       struct hblk *h;
       word dummy;
   # endif
 {  {
     register hdr * hhdr = HDR(h);      register hdr * hhdr = HDR(h);
   
Line 227  void GC_initiate_gc()
Line 245  void GC_initiate_gc()
             if (GC_dirty_maintained) GC_check_dirty();              if (GC_dirty_maintained) GC_check_dirty();
         }          }
 #   endif  #   endif
 #   ifdef GATHERSTATS      GC_n_rescuing_pages = 0;
         GC_n_rescuing_pages = 0;  
 #   endif  
     if (GC_mark_state == MS_NONE) {      if (GC_mark_state == MS_NONE) {
         GC_mark_state = MS_PUSH_RESCUERS;          GC_mark_state = MS_PUSH_RESCUERS;
     } else if (GC_mark_state != MS_INVALID) {      } else if (GC_mark_state != MS_INVALID) {
Line 249  static void alloc_mark_stack();
Line 265  static void alloc_mark_stack();
 /* remains valid until all marking is complete.         */  /* remains valid until all marking is complete.         */
 /* A zero value indicates that it's OK to miss some     */  /* A zero value indicates that it's OK to miss some     */
 /* register values.                                     */  /* register values.                                     */
 GC_bool GC_mark_some(cold_gc_frame)  /* We hold the allocation lock.  In the case of         */
 ptr_t cold_gc_frame;  /* incremental collection, the world may not be stopped.*/
   #ifdef MSWIN32
     /* For win32, this is called after we establish a structured  */
     /* exception handler, in case Windows unmaps one of our root  */
     /* segments.  See below.  In either case, we acquire the      */
     /* allocator lock long before we get here.                    */
     GC_bool GC_mark_some_inner(cold_gc_frame)
     ptr_t cold_gc_frame;
   #else
     GC_bool GC_mark_some(cold_gc_frame)
     ptr_t cold_gc_frame;
   #endif
 {  {
     switch(GC_mark_state) {      switch(GC_mark_state) {
         case MS_NONE:          case MS_NONE:
Line 258  ptr_t cold_gc_frame;
Line 285  ptr_t cold_gc_frame;
   
         case MS_PUSH_RESCUERS:          case MS_PUSH_RESCUERS:
             if (GC_mark_stack_top              if (GC_mark_stack_top
                 >= GC_mark_stack + GC_mark_stack_size                  >= GC_mark_stack_limit - INITIAL_MARK_STACK_SIZE/2) {
                    - INITIAL_MARK_STACK_SIZE/2) {  
                 /* Go ahead and mark, even though that might cause us to */                  /* Go ahead and mark, even though that might cause us to */
                 /* see more marked dirty objects later on.  Avoid this   */                  /* see more marked dirty objects later on.  Avoid this   */
                 /* in the future.                                        */                  /* in the future.                                        */
                 GC_mark_stack_too_small = TRUE;                  GC_mark_stack_too_small = TRUE;
                 GC_mark_from_mark_stack();                  MARK_FROM_MARK_STACK();
                 return(FALSE);                  return(FALSE);
             } else {              } else {
                 scan_ptr = GC_push_next_marked_dirty(scan_ptr);                  scan_ptr = GC_push_next_marked_dirty(scan_ptr);
                 if (scan_ptr == 0) {                  if (scan_ptr == 0) {
 #                   ifdef PRINTSTATS  #                   ifdef CONDPRINT
                         if (GC_print_stats) {
                         GC_printf1("Marked from %lu dirty pages\n",                          GC_printf1("Marked from %lu dirty pages\n",
                                    (unsigned long)GC_n_rescuing_pages);                                     (unsigned long)GC_n_rescuing_pages);
                         }
 #                   endif  #                   endif
                     GC_push_roots(FALSE, cold_gc_frame);                      GC_push_roots(FALSE, cold_gc_frame);
                     GC_objects_are_marked = TRUE;                      GC_objects_are_marked = TRUE;
Line 284  ptr_t cold_gc_frame;
Line 312  ptr_t cold_gc_frame;
   
         case MS_PUSH_UNCOLLECTABLE:          case MS_PUSH_UNCOLLECTABLE:
             if (GC_mark_stack_top              if (GC_mark_stack_top
                 >= GC_mark_stack + INITIAL_MARK_STACK_SIZE/4) {                  >= GC_mark_stack + GC_mark_stack_size/4) {
                 GC_mark_from_mark_stack();  #               ifdef PARALLEL_MARK
                     /* Avoid this, since we don't parallelize the marker  */
                     /* here.                                              */
                     if (GC_parallel) GC_mark_stack_too_small = TRUE;
   #               endif
                   MARK_FROM_MARK_STACK();
                 return(FALSE);                  return(FALSE);
             } else {              } else {
                 scan_ptr = GC_push_next_marked_uncollectable(scan_ptr);                  scan_ptr = GC_push_next_marked_uncollectable(scan_ptr);
Line 300  ptr_t cold_gc_frame;
Line 333  ptr_t cold_gc_frame;
             return(FALSE);              return(FALSE);
   
         case MS_ROOTS_PUSHED:          case MS_ROOTS_PUSHED:
   #           ifdef PARALLEL_MARK
                 /* In the incremental GC case, this currently doesn't     */
                 /* quite do the right thing, since it runs to             */
                 /* completion.  On the other hand, starting a             */
                 /* parallel marker is expensive, so perhaps it is         */
                 /* the right thing?                                       */
                 /* Eventually, incremental marking should run             */
                 /* asynchronously in multiple threads, without grabbing   */
                 /* the allocation lock.                                   */
                   if (GC_parallel) {
                     GC_do_parallel_mark();
                     GC_ASSERT(GC_mark_stack_top < GC_first_nonempty);
                     GC_mark_stack_top = GC_mark_stack - 1;
                     if (GC_mark_stack_too_small) {
                       alloc_mark_stack(2*GC_mark_stack_size);
                     }
                     if (GC_mark_state == MS_ROOTS_PUSHED) {
                       GC_mark_state = MS_NONE;
                       return(TRUE);
                     } else {
                       return(FALSE);
                     }
                   }
   #           endif
             if (GC_mark_stack_top >= GC_mark_stack) {              if (GC_mark_stack_top >= GC_mark_stack) {
                 GC_mark_from_mark_stack();                  MARK_FROM_MARK_STACK();
                 return(FALSE);                  return(FALSE);
             } else {              } else {
                 GC_mark_state = MS_NONE;                  GC_mark_state = MS_NONE;
Line 318  ptr_t cold_gc_frame;
Line 375  ptr_t cold_gc_frame;
                 return(FALSE);                  return(FALSE);
             }              }
             if (GC_mark_stack_top >= GC_mark_stack) {              if (GC_mark_stack_top >= GC_mark_stack) {
                 GC_mark_from_mark_stack();                  MARK_FROM_MARK_STACK();
                 return(FALSE);                  return(FALSE);
             }              }
             if (scan_ptr == 0 && GC_mark_state == MS_INVALID) {              if (scan_ptr == 0 && GC_mark_state == MS_INVALID) {
Line 345  ptr_t cold_gc_frame;
Line 402  ptr_t cold_gc_frame;
 }  }
   
   
   #ifdef MSWIN32
   
   # ifdef __GNUC__
   
       typedef struct {
         EXCEPTION_REGISTRATION ex_reg;
         void *alt_path;
       } ext_ex_regn;
   
   
       static EXCEPTION_DISPOSITION mark_ex_handler(
           struct _EXCEPTION_RECORD *ex_rec,
           void *est_frame,
           struct _CONTEXT *context,
           void *disp_ctxt)
       {
           if (ex_rec->ExceptionCode == STATUS_ACCESS_VIOLATION) {
             ext_ex_regn *xer = (ext_ex_regn *)est_frame;
   
             /* Unwind from the inner function assuming the standard */
             /* function prologue.                                   */
             /* Assumes code has not been compiled with              */
             /* -fomit-frame-pointer.                                */
             context->Esp = context->Ebp;
             context->Ebp = *((DWORD *)context->Esp);
             context->Esp = context->Esp - 8;
   
             /* Resume execution at the "real" handler within the    */
             /* wrapper function.                                    */
             context->Eip = (DWORD )(xer->alt_path);
   
             return ExceptionContinueExecution;
   
           } else {
               return ExceptionContinueSearch;
           }
       }
   # endif /* __GNUC__ */
   
   
     GC_bool GC_mark_some(cold_gc_frame)
     ptr_t cold_gc_frame;
     {
         GC_bool ret_val;
   
   #   ifndef __GNUC__
         /* Windows 98 appears to asynchronously create and remove  */
         /* writable memory mappings, for reasons we haven't yet    */
         /* understood.  Since we look for writable regions to      */
         /* determine the root set, we may try to mark from an      */
         /* address range that disappeared since we started the     */
         /* collection.  Thus we have to recover from faults here.  */
         /* This code does not appear to be necessary for Windows   */
         /* 95/NT/2000. Note that this code should never generate   */
         /* an incremental GC write fault.                          */
   
         __try {
   
   #   else /* __GNUC__ */
   
         /* Manually install an exception handler since GCC does    */
         /* not yet support Structured Exception Handling (SEH) on  */
         /* Win32.                                                  */
   
         ext_ex_regn er;
   
         er.alt_path = &&handle_ex;
         er.ex_reg.handler = mark_ex_handler;
         asm volatile ("movl %%fs:0, %0" : "=r" (er.ex_reg.prev));
         asm volatile ("movl %0, %%fs:0" : : "r" (&er));
   
   #   endif /* __GNUC__ */
   
             ret_val = GC_mark_some_inner(cold_gc_frame);
   
   #   ifndef __GNUC__
   
         } __except (GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION ?
                   EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) {
   
   #   else /* __GNUC__ */
   
             /* Prevent GCC from considering the following code unreachable */
             /* and thus eliminating it.                                    */
             if (er.alt_path != 0)
                 goto rm_handler;
   
   handle_ex:
             /* Execution resumes from here on an access violation. */
   
   #   endif /* __GNUC__ */
   
   #         ifdef CONDPRINT
               if (GC_print_stats) {
                 GC_printf0("Caught ACCESS_VIOLATION in marker. "
                            "Memory mapping disappeared.\n");
               }
   #         endif /* CONDPRINT */
   
             /* We have bad roots on the stack.  Discard mark stack.  */
             /* Rescan from marked objects.  Redetermine roots.     */
             GC_invalidate_mark_state();
             scan_ptr = 0;
   
             ret_val = FALSE;
   
   #   ifndef __GNUC__
   
         }
   
   #   else /* __GNUC__ */
   
   rm_handler:
         /* Uninstall the exception handler */
         asm volatile ("mov %0, %%fs:0" : : "r" (er.ex_reg.prev));
   
   #   endif /* __GNUC__ */
   
         return ret_val;
     }
   #endif /* MSWIN32 */
   
   
 GC_bool GC_mark_stack_empty()  GC_bool GC_mark_stack_empty()
 {  {
     return(GC_mark_stack_top < GC_mark_stack);      return(GC_mark_stack_top < GC_mark_stack);
Line 358  GC_bool GC_mark_stack_empty()
Line 538  GC_bool GC_mark_stack_empty()
 #endif  #endif
   
 /* Given a pointer to someplace other than a small object page or the   */  /* Given a pointer to someplace other than a small object page or the   */
 /* first page of a large object, return a pointer either to the         */  /* first page of a large object, either:                                */
 /* start of the large object or NIL.                                    */  /*      - return a pointer to somewhere in the first page of the large  */
 /* In the latter case black list the address current.                   */  /*        object, if current points to a large object.                  */
 /* Returns NIL without black listing if current points to a block       */  /*        In this case *hhdr is replaced with a pointer to the header   */
 /* with IGNORE_OFF_PAGE set.                                            */  /*        for the large object.                                         */
   /*      - just return current if it does not point to a large object.   */
 /*ARGSUSED*/  /*ARGSUSED*/
 # ifdef PRINT_BLACK_LIST  ptr_t GC_find_start(current, hhdr, new_hdr_p)
   word GC_find_start(current, hhdr, source)  register ptr_t current;
   word source;  register hdr *hhdr, **new_hdr_p;
 # else  
   word GC_find_start(current, hhdr)  
 # define source 0  
 # endif  
 register word current;  
 register hdr * hhdr;  
 {  {
 #   ifdef ALL_INTERIOR_POINTERS      if (GC_all_interior_pointers) {
         if (hhdr != 0) {          if (hhdr != 0) {
             register word orig = current;              register ptr_t orig = current;
   
             current = (word)HBLKPTR(current) + HDR_BYTES;              current = (ptr_t)HBLKPTR(current);
             do {              do {
               current = current - HBLKSIZE*(word)hhdr;                current = current - HBLKSIZE*(word)hhdr;
               hhdr = HDR(current);                hhdr = HDR(current);
Line 388  register hdr * hhdr;
Line 563  register hdr * hhdr;
             if ((word *)orig - (word *)current              if ((word *)orig - (word *)current
                  >= (ptrdiff_t)(hhdr->hb_sz)) {                   >= (ptrdiff_t)(hhdr->hb_sz)) {
                 /* Pointer past the end of the block */                  /* Pointer past the end of the block */
                 GC_ADD_TO_BLACK_LIST_NORMAL(orig, source);                  return(orig);
                 return(0);  
             }              }
               *new_hdr_p = hhdr;
             return(current);              return(current);
         } else {          } else {
             GC_ADD_TO_BLACK_LIST_NORMAL(current, source);              return(current);
             return(0);  
         }          }
 #   else      } else {
         GC_ADD_TO_BLACK_LIST_NORMAL(current, source);          return(current);
         return(0);      }
 #   endif  
 #   undef source  
 }  }
   
 void GC_invalidate_mark_state()  void GC_invalidate_mark_state()
Line 414  mse * msp;
Line 586  mse * msp;
 {  {
     GC_mark_state = MS_INVALID;      GC_mark_state = MS_INVALID;
     GC_mark_stack_too_small = TRUE;      GC_mark_stack_too_small = TRUE;
 #   ifdef PRINTSTATS  #   ifdef CONDPRINT
         if (GC_print_stats) {
         GC_printf1("Mark stack overflow; current size = %lu entries\n",          GC_printf1("Mark stack overflow; current size = %lu entries\n",
                     GC_mark_stack_size);                      GC_mark_stack_size);
 #    endif        }
      return(msp-INITIAL_MARK_STACK_SIZE/8);  #   endif
       return(msp - GC_MARK_STACK_DISCARDS);
 }  }
   
   
 /*  /*
  * Mark objects pointed to by the regions described by   * Mark objects pointed to by the regions described by
  * mark stack entries between GC_mark_stack and GC_mark_stack_top,   * mark stack entries between GC_mark_stack and GC_mark_stack_top,
Line 429  mse * msp;
Line 602  mse * msp;
  * is never 0.  A mark stack entry never has size 0.   * is never 0.  A mark stack entry never has size 0.
  * We try to traverse on the order of a hblk of memory before we return.   * We try to traverse on the order of a hblk of memory before we return.
  * Caller is responsible for calling this until the mark stack is empty.   * Caller is responsible for calling this until the mark stack is empty.
    * Note that this is the most performance critical routine in the
    * collector.  Hence it contains all sorts of ugly hacks to speed
    * things up.  In particular, we avoid procedure calls on the common
    * path, we take advantage of peculiarities of the mark descriptor
    * encoding, we optionally maintain a cache for the block address to
    * header mapping, we prefetch when an object is "grayed", etc.
  */   */
 void GC_mark_from_mark_stack()  mse * GC_mark_from(mark_stack_top, mark_stack, mark_stack_limit)
   mse * mark_stack_top;
   mse * mark_stack;
   mse * mark_stack_limit;
 {  {
   mse * GC_mark_stack_reg = GC_mark_stack;  
   mse * GC_mark_stack_top_reg = GC_mark_stack_top;  
   mse * mark_stack_limit = &(GC_mark_stack[GC_mark_stack_size]);  
   int credit = HBLKSIZE;        /* Remaining credit for marking work    */    int credit = HBLKSIZE;        /* Remaining credit for marking work    */
   register word * current_p;    /* Pointer to current candidate ptr.    */    register word * current_p;    /* Pointer to current candidate ptr.    */
   register word current;        /* Candidate pointer.                   */    register word current;        /* Candidate pointer.                   */
Line 443  void GC_mark_from_mark_stack()
Line 622  void GC_mark_from_mark_stack()
   register word descr;    register word descr;
   register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;    register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
   register ptr_t least_ha = GC_least_plausible_heap_addr;    register ptr_t least_ha = GC_least_plausible_heap_addr;
     DECLARE_HDR_CACHE;
   
 # define SPLIT_RANGE_WORDS 128  /* Must be power of 2.          */  # define SPLIT_RANGE_WORDS 128  /* Must be power of 2.          */
   
   GC_objects_are_marked = TRUE;    GC_objects_are_marked = TRUE;
     INIT_HDR_CACHE;
 # ifdef OS2 /* Use untweaked version to circumvent compiler problem */  # ifdef OS2 /* Use untweaked version to circumvent compiler problem */
   while (GC_mark_stack_top_reg >= GC_mark_stack_reg && credit >= 0) {    while (mark_stack_top >= mark_stack && credit >= 0) {
 # else  # else
   while ((((ptr_t)GC_mark_stack_top_reg - (ptr_t)GC_mark_stack_reg) | credit)    while ((((ptr_t)mark_stack_top - (ptr_t)mark_stack) | credit)
         >= 0) {          >= 0) {
 # endif  # endif
     current_p = GC_mark_stack_top_reg -> mse_start;      current_p = mark_stack_top -> mse_start;
       descr = mark_stack_top -> mse_descr;
   retry:    retry:
     descr = GC_mark_stack_top_reg -> mse_descr;      /* current_p and descr describe the current object.         */
     if (descr & ((~(WORDS_TO_BYTES(SPLIT_RANGE_WORDS) - 1)) | DS_TAGS)) {      /* *mark_stack_top is vacant.                               */
       word tag = descr & DS_TAGS;      /* The following is 0 only for small objects described by a simple  */
       /* length descriptor.  For many applications this is the common     */
       /* case, so we try to detect it quickly.                            */
       if (descr & ((~(WORDS_TO_BYTES(SPLIT_RANGE_WORDS) - 1)) | GC_DS_TAGS)) {
         word tag = descr & GC_DS_TAGS;
   
       switch(tag) {        switch(tag) {
         case DS_LENGTH:          case GC_DS_LENGTH:
           /* Large length.                                              */            /* Large length.                                              */
           /* Process part of the range to avoid pushing too much on the */            /* Process part of the range to avoid pushing too much on the */
           /* stack.                                                     */            /* stack.                                                     */
           GC_mark_stack_top_reg -> mse_start =            GC_ASSERT(descr < (word)GC_greatest_plausible_heap_addr
                               - (word)GC_least_plausible_heap_addr);
   #         ifdef PARALLEL_MARK
   #           define SHARE_BYTES 2048
               if (descr > SHARE_BYTES && GC_parallel
                   && mark_stack_top < mark_stack_limit - 1) {
                 int new_size = (descr/2) & ~(sizeof(word)-1);
                 mark_stack_top -> mse_start = current_p;
                 mark_stack_top -> mse_descr = new_size + sizeof(word);
                                           /* makes sure we handle         */
                                           /* misaligned pointers.         */
                 mark_stack_top++;
                 current_p = (word *) ((char *)current_p + new_size);
                 descr -= new_size;
                 goto retry;
               }
   #         endif /* PARALLEL_MARK */
             mark_stack_top -> mse_start =
                 limit = current_p + SPLIT_RANGE_WORDS-1;                  limit = current_p + SPLIT_RANGE_WORDS-1;
           GC_mark_stack_top_reg -> mse_descr -=            mark_stack_top -> mse_descr =
                         WORDS_TO_BYTES(SPLIT_RANGE_WORDS-1);                          descr - WORDS_TO_BYTES(SPLIT_RANGE_WORDS-1);
           /* Make sure that pointers overlapping the two ranges are     */            /* Make sure that pointers overlapping the two ranges are     */
           /* considered.                                                */            /* considered.                                                */
           limit = (word *)((char *)limit + sizeof(word) - ALIGNMENT);            limit = (word *)((char *)limit + sizeof(word) - ALIGNMENT);
           break;            break;
         case DS_BITMAP:          case GC_DS_BITMAP:
           GC_mark_stack_top_reg--;            mark_stack_top--;
           descr &= ~DS_TAGS;            descr &= ~GC_DS_TAGS;
           credit -= WORDS_TO_BYTES(WORDSZ/2); /* guess */            credit -= WORDS_TO_BYTES(WORDSZ/2); /* guess */
           while (descr != 0) {            while (descr != 0) {
             if ((signed_word)descr < 0) {              if ((signed_word)descr < 0) {
               current = *current_p;                current = *current_p;
                 FIXUP_POINTER(current);
               if ((ptr_t)current >= least_ha && (ptr_t)current < greatest_ha) {                if ((ptr_t)current >= least_ha && (ptr_t)current < greatest_ha) {
                 PUSH_CONTENTS(current, GC_mark_stack_top_reg, mark_stack_limit,                  PREFETCH(current);
                               current_p, exit1);                  HC_PUSH_CONTENTS((ptr_t)current, mark_stack_top,
                                 mark_stack_limit, current_p, exit1);
               }                }
             }              }
             descr <<= 1;              descr <<= 1;
             ++ current_p;              ++ current_p;
           }            }
           continue;            continue;
         case DS_PROC:          case GC_DS_PROC:
           GC_mark_stack_top_reg--;            mark_stack_top--;
           credit -= PROC_BYTES;            credit -= GC_PROC_BYTES;
           GC_mark_stack_top_reg =            mark_stack_top =
               (*PROC(descr))                (*PROC(descr))
                     (current_p, GC_mark_stack_top_reg,                      (current_p, mark_stack_top,
                     mark_stack_limit, ENV(descr));                      mark_stack_limit, ENV(descr));
           continue;            continue;
         case DS_PER_OBJECT:          case GC_DS_PER_OBJECT:
           GC_mark_stack_top_reg -> mse_descr =            if ((signed_word)descr >= 0) {
                         *(word *)((ptr_t)current_p + descr - tag);              /* Descriptor is in the object.     */
               descr = *(word *)((ptr_t)current_p + descr - GC_DS_PER_OBJECT);
             } else {
               /* Descriptor is in type descriptor pointed to by first     */
               /* word in object.                                          */
               ptr_t type_descr = *(ptr_t *)current_p;
               /* type_descr is either a valid pointer to the descriptor   */
               /* structure, or this object was on a free list.  If it     */
               /* it was anything but the last object on the free list,    */
               /* we will misinterpret the next object on the free list as */
               /* the type descriptor, and get a 0 GC descriptor, which    */
               /* is ideal.  Unfortunately, we need to check for the last  */
               /* object case explicitly.                                  */
               if (0 == type_descr) {
                   /* Rarely executed.     */
                   mark_stack_top--;
                   continue;
               }
               descr = *(word *)(type_descr
                                 - (descr - (GC_DS_PER_OBJECT
                                             - GC_INDIR_PER_OBJ_BIAS)));
             }
             if (0 == descr) {
                 /* Can happen either because we generated a 0 descriptor  */
                 /* or we saw a pointer to a free object.                  */
                 mark_stack_top--;
                 continue;
             }
           goto retry;            goto retry;
       }        }
     } else {      } else /* Small object with length descriptor */ {
       GC_mark_stack_top_reg--;        mark_stack_top--;
       limit = (word *)(((ptr_t)current_p) + (word)descr);        limit = (word *)(((ptr_t)current_p) + (word)descr);
     }      }
     /* The simple case in which we're scanning a range. */      /* The simple case in which we're scanning a range. */
       GC_ASSERT(!((word)current_p & (ALIGNMENT-1)));
     credit -= (ptr_t)limit - (ptr_t)current_p;      credit -= (ptr_t)limit - (ptr_t)current_p;
     limit -= 1;      limit -= 1;
     while (current_p <= limit) {      {
       current = *current_p;  #     define PREF_DIST 4
       if ((ptr_t)current >= least_ha && (ptr_t)current <  greatest_ha) {  
         PUSH_CONTENTS(current, GC_mark_stack_top_reg,  #     ifndef SMALL_CONFIG
                       mark_stack_limit, current_p, exit2);          word deferred;
   
           /* Try to prefetch the next pointer to be examined asap.        */
           /* Empirically, this also seems to help slightly without        */
           /* prefetches, at least on linux/X86.  Presumably this loop     */
           /* ends up with less register pressure, and gcc thus ends up    */
           /* generating slightly better code.  Overall gcc code quality   */
           /* for this loop is still not great.                            */
           for(;;) {
             PREFETCH((ptr_t)limit - PREF_DIST*CACHE_LINE_SIZE);
             GC_ASSERT(limit >= current_p);
             deferred = *limit;
             FIXUP_POINTER(deferred);
             limit = (word *)((char *)limit - ALIGNMENT);
             if ((ptr_t)deferred >= least_ha && (ptr_t)deferred <  greatest_ha) {
               PREFETCH(deferred);
               break;
             }
             if (current_p > limit) goto next_object;
             /* Unroll once, so we don't do too many of the prefetches     */
             /* based on limit.                                            */
             deferred = *limit;
             FIXUP_POINTER(deferred);
             limit = (word *)((char *)limit - ALIGNMENT);
             if ((ptr_t)deferred >= least_ha && (ptr_t)deferred <  greatest_ha) {
               PREFETCH(deferred);
               break;
             }
             if (current_p > limit) goto next_object;
           }
   #     endif
   
         while (current_p <= limit) {
           /* Empirically, unrolling this loop doesn't help a lot. */
           /* Since HC_PUSH_CONTENTS expands to a lot of code,     */
           /* we don't.                                            */
           current = *current_p;
           FIXUP_POINTER(current);
           PREFETCH((ptr_t)current_p + PREF_DIST*CACHE_LINE_SIZE);
           if ((ptr_t)current >= least_ha && (ptr_t)current <  greatest_ha) {
             /* Prefetch the contents of the object we just pushed.  It's  */
             /* likely we will need them soon.                             */
             PREFETCH(current);
             HC_PUSH_CONTENTS((ptr_t)current, mark_stack_top,
                              mark_stack_limit, current_p, exit2);
           }
           current_p = (word *)((char *)current_p + ALIGNMENT);
       }        }
       current_p = (word *)((char *)current_p + ALIGNMENT);  
   #     ifndef SMALL_CONFIG
           /* We still need to mark the entry we previously prefetched.    */
           /* We alrady know that it passes the preliminary pointer        */
           /* validity test.                                               */
           HC_PUSH_CONTENTS((ptr_t)deferred, mark_stack_top,
                            mark_stack_limit, current_p, exit4);
           next_object:;
   #     endif
     }      }
   }    }
   GC_mark_stack_top = GC_mark_stack_top_reg;    return mark_stack_top;
 }  }
   
   #ifdef PARALLEL_MARK
   
   /* We assume we have an ANSI C Compiler.        */
   GC_bool GC_help_wanted = FALSE;
   unsigned GC_helper_count = 0;
   unsigned GC_active_count = 0;
   mse * VOLATILE GC_first_nonempty;
   word GC_mark_no = 0;
   
   #define LOCAL_MARK_STACK_SIZE HBLKSIZE
           /* Under normal circumstances, this is big enough to guarantee  */
           /* We don't overflow half of it in a single call to             */
           /* GC_mark_from.                                                */
   
   
   /* Steal mark stack entries starting at mse low into mark stack local   */
   /* until we either steal mse high, or we have max entries.              */
   /* Return a pointer to the top of the local mark stack.                 */
   /* *next is replaced by a pointer to the next unscanned mark stack      */
   /* entry.                                                               */
   mse * GC_steal_mark_stack(mse * low, mse * high, mse * local,
                             unsigned max, mse **next)
   {
       mse *p;
       mse *top = local - 1;
       unsigned i = 0;
   
       /* Make sure that prior writes to the mark stack are visible. */
       /* On some architectures, the fact that the reads are         */
       /* volatile should suffice.                                   */
   #   if !defined(IA64) && !defined(HP_PA) && !defined(I386)
         GC_memory_barrier();
   #   endif
       GC_ASSERT(high >= low-1 && high - low + 1 <= GC_mark_stack_size);
       for (p = low; p <= high && i <= max; ++p) {
           word descr = *(volatile word *) &(p -> mse_descr);
           /* In the IA64 memory model, the following volatile store is    */
           /* ordered after this read of descr.  Thus a thread must read   */
           /* the original nonzero value.  HP_PA appears to be similar,    */
           /* and if I'm reading the P4 spec correctly, X86 is probably    */
           /* also OK.  In some other cases we need a barrier.             */
   #       if !defined(IA64) && !defined(HP_PA) && !defined(I386)
             GC_memory_barrier();
   #       endif
           if (descr != 0) {
               *(volatile word *) &(p -> mse_descr) = 0;
               /* More than one thread may get this entry, but that's only */
               /* a minor performance problem.                             */
               ++top;
               top -> mse_descr = descr;
               top -> mse_start = p -> mse_start;
               GC_ASSERT(  top -> mse_descr & GC_DS_TAGS != GC_DS_LENGTH ||
                           top -> mse_descr < GC_greatest_plausible_heap_addr
                                              - GC_least_plausible_heap_addr);
               /* If this is a big object, count it as                     */
               /* size/256 + 1 objects.                                    */
               ++i;
               if ((descr & GC_DS_TAGS) == GC_DS_LENGTH) i += (descr >> 8);
           }
       }
       *next = p;
       return top;
   }
   
   /* Copy back a local mark stack.        */
   /* low and high are inclusive bounds.   */
   void GC_return_mark_stack(mse * low, mse * high)
   {
       mse * my_top;
       mse * my_start;
       size_t stack_size;
   
       if (high < low) return;
       stack_size = high - low + 1;
       GC_acquire_mark_lock();
       my_top = GC_mark_stack_top;
       my_start = my_top + 1;
       if (my_start - GC_mark_stack + stack_size > GC_mark_stack_size) {
   #     ifdef CONDPRINT
           if (GC_print_stats) {
             GC_printf0("No room to copy back mark stack.");
           }
   #     endif
         GC_mark_state = MS_INVALID;
         GC_mark_stack_too_small = TRUE;
         /* We drop the local mark stack.  We'll fix things later. */
       } else {
         BCOPY(low, my_start, stack_size * sizeof(mse));
         GC_ASSERT(GC_mark_stack_top = my_top);
   #     if !defined(IA64) && !defined(HP_PA)
           GC_memory_barrier();
   #     endif
           /* On IA64, the volatile write acts as a release barrier. */
         GC_mark_stack_top = my_top + stack_size;
       }
       GC_release_mark_lock();
       GC_notify_all_marker();
   }
   
   /* Mark from the local mark stack.              */
   /* On return, the local mark stack is empty.    */
   /* But this may be achieved by copying the      */
   /* local mark stack back into the global one.   */
   void GC_do_local_mark(mse *local_mark_stack, mse *local_top)
   {
       unsigned n;
   #   define N_LOCAL_ITERS 1
   
   #   ifdef GC_ASSERTIONS
         /* Make sure we don't hold mark lock. */
           GC_acquire_mark_lock();
           GC_release_mark_lock();
   #   endif
       for (;;) {
           for (n = 0; n < N_LOCAL_ITERS; ++n) {
               local_top = GC_mark_from(local_top, local_mark_stack,
                                        local_mark_stack + LOCAL_MARK_STACK_SIZE);
               if (local_top < local_mark_stack) return;
               if (local_top - local_mark_stack >= LOCAL_MARK_STACK_SIZE/2) {
                   GC_return_mark_stack(local_mark_stack, local_top);
                   return;
               }
           }
           if (GC_mark_stack_top < GC_first_nonempty &&
               GC_active_count < GC_helper_count
               && local_top > local_mark_stack + 1) {
               /* Try to share the load, since the main stack is empty,    */
               /* and helper threads are waiting for a refill.             */
               /* The entries near the bottom of the stack are likely      */
               /* to require more work.  Thus we return those, eventhough  */
               /* it's harder.                                             */
               mse * p;
               mse * new_bottom = local_mark_stack
                                   + (local_top - local_mark_stack)/2;
               GC_ASSERT(new_bottom > local_mark_stack
                         && new_bottom < local_top);
               GC_return_mark_stack(local_mark_stack, new_bottom - 1);
               memmove(local_mark_stack, new_bottom,
                       (local_top - new_bottom + 1) * sizeof(mse));
               local_top -= (new_bottom - local_mark_stack);
           }
       }
   }
   
   #define ENTRIES_TO_GET 5
   
   long GC_markers = 2;            /* Normally changed by thread-library-  */
                                   /* -specific code.                      */
   
   /* Mark using the local mark stack until the global mark stack is empty */
   /* and there are no active workers. Update GC_first_nonempty to reflect */
   /* progress.                                                            */
   /* Caller does not hold mark lock.                                      */
   /* Caller has already incremented GC_helper_count.  We decrement it,    */
   /* and maintain GC_active_count.                                        */
   void GC_mark_local(mse *local_mark_stack, int id)
   {
       mse * my_first_nonempty;
   
       GC_acquire_mark_lock();
       GC_active_count++;
       my_first_nonempty = GC_first_nonempty;
       GC_ASSERT(GC_first_nonempty >= GC_mark_stack &&
                 GC_first_nonempty <= GC_mark_stack_top + 1);
   #   ifdef PRINTSTATS
           GC_printf1("Starting mark helper %lu\n", (unsigned long)id);
   #   endif
       GC_release_mark_lock();
       for (;;) {
           size_t n_on_stack;
           size_t n_to_get;
           mse *next;
           mse * my_top;
           mse * local_top;
           mse * global_first_nonempty = GC_first_nonempty;
   
           GC_ASSERT(my_first_nonempty >= GC_mark_stack &&
                     my_first_nonempty <= GC_mark_stack_top + 1);
           GC_ASSERT(global_first_nonempty >= GC_mark_stack &&
                     global_first_nonempty <= GC_mark_stack_top + 1);
           if (my_first_nonempty < global_first_nonempty) {
               my_first_nonempty = global_first_nonempty;
           } else if (global_first_nonempty < my_first_nonempty) {
               GC_compare_and_exchange((word *)(&GC_first_nonempty),
                                      (word) global_first_nonempty,
                                      (word) my_first_nonempty);
               /* If this fails, we just go ahead, without updating        */
               /* GC_first_nonempty.                                       */
           }
           /* Perhaps we should also update GC_first_nonempty, if it */
           /* is less.  But that would require using atomic updates. */
           my_top = GC_mark_stack_top;
           n_on_stack = my_top - my_first_nonempty + 1;
           if (0 == n_on_stack) {
               GC_acquire_mark_lock();
               my_top = GC_mark_stack_top;
               n_on_stack = my_top - my_first_nonempty + 1;
               if (0 == n_on_stack) {
                   GC_active_count--;
                   GC_ASSERT(GC_active_count <= GC_helper_count);
                   /* Other markers may redeposit objects  */
                   /* on the stack.                                */
                   if (0 == GC_active_count) GC_notify_all_marker();
                   while (GC_active_count > 0
                          && GC_first_nonempty > GC_mark_stack_top) {
                       /* We will be notified if either GC_active_count    */
                       /* reaches zero, or if more objects are pushed on   */
                       /* the global mark stack.                           */
                       GC_wait_marker();
                   }
                   if (GC_active_count == 0 &&
                       GC_first_nonempty > GC_mark_stack_top) {
                       GC_bool need_to_notify = FALSE;
                       /* The above conditions can't be falsified while we */
                       /* hold the mark lock, since neither                */
                       /* GC_active_count nor GC_mark_stack_top can        */
                       /* change.  GC_first_nonempty can only be           */
                       /* incremented asynchronously.  Thus we know that   */
                       /* both conditions actually held simultaneously.    */
                       GC_helper_count--;
                       if (0 == GC_helper_count) need_to_notify = TRUE;
   #                   ifdef PRINTSTATS
                         GC_printf1(
                           "Finished mark helper %lu\n", (unsigned long)id);
   #                   endif
                       GC_release_mark_lock();
                       if (need_to_notify) GC_notify_all_marker();
                       return;
                   }
                   /* else there's something on the stack again, or        */
                   /* another helper may push something.                   */
                   GC_active_count++;
                   GC_ASSERT(GC_active_count > 0);
                   GC_release_mark_lock();
                   continue;
               } else {
                   GC_release_mark_lock();
               }
           }
           n_to_get = ENTRIES_TO_GET;
           if (n_on_stack < 2 * ENTRIES_TO_GET) n_to_get = 1;
           local_top = GC_steal_mark_stack(my_first_nonempty, my_top,
                                           local_mark_stack, n_to_get,
                                           &my_first_nonempty);
           GC_ASSERT(my_first_nonempty >= GC_mark_stack &&
                     my_first_nonempty <= GC_mark_stack_top + 1);
           GC_do_local_mark(local_mark_stack, local_top);
       }
   }
   
   /* Perform Parallel mark.                       */
   /* We hold the GC lock, not the mark lock.      */
   /* Currently runs until the mark stack is       */
   /* empty.                                       */
   void GC_do_parallel_mark()
   {
       mse local_mark_stack[LOCAL_MARK_STACK_SIZE];
       mse * local_top;
       mse * my_top;
   
       GC_acquire_mark_lock();
       GC_ASSERT(I_HOLD_LOCK());
       /* This could be a GC_ASSERT, but it seems safer to keep it on      */
       /* all the time, especially since it's cheap.                       */
       if (GC_help_wanted || GC_active_count != 0 || GC_helper_count != 0)
           ABORT("Tried to start parallel mark in bad state");
   #   ifdef PRINTSTATS
           GC_printf1("Starting marking for mark phase number %lu\n",
                      (unsigned long)GC_mark_no);
   #   endif
       GC_first_nonempty = GC_mark_stack;
       GC_active_count = 0;
       GC_helper_count = 1;
       GC_help_wanted = TRUE;
       GC_release_mark_lock();
       GC_notify_all_marker();
           /* Wake up potential helpers.   */
       GC_mark_local(local_mark_stack, 0);
       GC_acquire_mark_lock();
       GC_help_wanted = FALSE;
       /* Done; clean up.  */
       while (GC_helper_count > 0) GC_wait_marker();
       /* GC_helper_count cannot be incremented while GC_help_wanted == FALSE */
   #   ifdef PRINTSTATS
           GC_printf1(
               "Finished marking for mark phase number %lu\n",
               (unsigned long)GC_mark_no);
   #   endif
       GC_mark_no++;
       GC_release_mark_lock();
       GC_notify_all_marker();
   }
   
   
   /* Try to help out the marker, if it's running.         */
   /* We do not hold the GC lock, but the requestor does.  */
   void GC_help_marker(word my_mark_no)
   {
       mse local_mark_stack[LOCAL_MARK_STACK_SIZE];
       unsigned my_id;
       mse * my_first_nonempty;
   
       if (!GC_parallel) return;
       GC_acquire_mark_lock();
       while (GC_mark_no < my_mark_no
              || !GC_help_wanted && GC_mark_no == my_mark_no) {
         GC_wait_marker();
       }
       my_id = GC_helper_count;
       if (GC_mark_no != my_mark_no || my_id >= GC_markers) {
         /* Second test is useful only if original threads can also        */
         /* act as helpers.  Under Linux they can't.                       */
         GC_release_mark_lock();
         return;
       }
       GC_helper_count = my_id + 1;
       GC_release_mark_lock();
       GC_mark_local(local_mark_stack, my_id);
       /* GC_mark_local decrements GC_helper_count. */
   }
   
   #endif /* PARALLEL_MARK */
   
 /* Allocate or reallocate space for mark stack of size s words  */  /* Allocate or reallocate space for mark stack of size s words  */
 /* May silently fail.                                           */  /* May silently fail.                                           */
 static void alloc_mark_stack(n)  static void alloc_mark_stack(n)
 word n;  word n;
 {  {
     mse * new_stack = (mse *)GC_scratch_alloc(n * sizeof(struct ms_entry));      mse * new_stack = (mse *)GC_scratch_alloc(n * sizeof(struct GC_ms_entry));
   
     GC_mark_stack_too_small = FALSE;      GC_mark_stack_too_small = FALSE;
     if (GC_mark_stack_size != 0) {      if (GC_mark_stack_size != 0) {
         if (new_stack != 0) {          if (new_stack != 0) {
           word displ = (word)GC_mark_stack & (GC_page_size - 1);            word displ = (word)GC_mark_stack & (GC_page_size - 1);
           signed_word size = GC_mark_stack_size * sizeof(struct ms_entry);            signed_word size = GC_mark_stack_size * sizeof(struct GC_ms_entry);
   
           /* Recycle old space */            /* Recycle old space */
               if (0 != displ) displ = GC_page_size - displ;                if (0 != displ) displ = GC_page_size - displ;
Line 541  word n;
Line 1152  word n;
               }                }
           GC_mark_stack = new_stack;            GC_mark_stack = new_stack;
           GC_mark_stack_size = n;            GC_mark_stack_size = n;
 #         ifdef PRINTSTATS            GC_mark_stack_limit = new_stack + n;
   #         ifdef CONDPRINT
               if (GC_print_stats) {
               GC_printf1("Grew mark stack to %lu frames\n",                GC_printf1("Grew mark stack to %lu frames\n",
                          (unsigned long) GC_mark_stack_size);                           (unsigned long) GC_mark_stack_size);
               }
 #         endif  #         endif
         } else {          } else {
 #         ifdef PRINTSTATS  #         ifdef CONDPRINT
               if (GC_print_stats) {
               GC_printf1("Failed to grow mark stack to %lu frames\n",                GC_printf1("Failed to grow mark stack to %lu frames\n",
                          (unsigned long) n);                           (unsigned long) n);
               }
 #         endif  #         endif
         }          }
     } else {      } else {
Line 558  word n;
Line 1174  word n;
         }          }
         GC_mark_stack = new_stack;          GC_mark_stack = new_stack;
         GC_mark_stack_size = n;          GC_mark_stack_size = n;
           GC_mark_stack_limit = new_stack + n;
     }      }
     GC_mark_stack_top = GC_mark_stack-1;      GC_mark_stack_top = GC_mark_stack-1;
 }  }
Line 584  ptr_t top;
Line 1201  ptr_t top;
     top = (ptr_t)(((word) top) & ~(ALIGNMENT-1));      top = (ptr_t)(((word) top) & ~(ALIGNMENT-1));
     if (top == 0 || bottom == top) return;      if (top == 0 || bottom == top) return;
     GC_mark_stack_top++;      GC_mark_stack_top++;
     if (GC_mark_stack_top >= GC_mark_stack + GC_mark_stack_size) {      if (GC_mark_stack_top >= GC_mark_stack_limit) {
         ABORT("unexpected mark stack overflow");          ABORT("unexpected mark stack overflow");
     }      }
     length = top - bottom;      length = top - bottom;
 #   if DS_TAGS > ALIGNMENT - 1  #   if GC_DS_TAGS > ALIGNMENT - 1
         length += DS_TAGS;          length += GC_DS_TAGS;
         length &= ~DS_TAGS;          length &= ~GC_DS_TAGS;
 #   endif  #   endif
     GC_mark_stack_top -> mse_start = (word *)bottom;      GC_mark_stack_top -> mse_start = (word *)bottom;
     GC_mark_stack_top -> mse_descr = length;      GC_mark_stack_top -> mse_descr = length;
 }  }
   
 /*  /*
  * Analogous to the above, but push only those pages that may have been   * Analogous to the above, but push only those pages h with dirty_fn(h) != 0.
  * dirtied.  A block h is assumed dirty if dirty_fn(h) != 0.  
  * We use push_fn to actually push the block.   * We use push_fn to actually push the block.
    * Used both to selectively push dirty pages, or to push a block
    * in piecemeal fashion, to allow for more marking concurrency.
  * Will not overflow mark stack if push_fn pushes a small fixed number   * Will not overflow mark stack if push_fn pushes a small fixed number
  * of entries.  (This is invoked only if push_fn pushes a single entry,   * of entries.  (This is invoked only if push_fn pushes a single entry,
  * or if it marks each object before pushing it, thus ensuring progress   * or if it marks each object before pushing it, thus ensuring progress
  * in the event of a stack overflow.)   * in the event of a stack overflow.)
  */   */
 void GC_push_dirty(bottom, top, dirty_fn, push_fn)  void GC_push_selected(bottom, top, dirty_fn, push_fn)
 ptr_t bottom;  ptr_t bottom;
 ptr_t top;  ptr_t top;
 int (*dirty_fn)(/* struct hblk * h */);  int (*dirty_fn) GC_PROTO((struct hblk * h));
 void (*push_fn)(/* ptr_t bottom, ptr_t top */);  void (*push_fn) GC_PROTO((ptr_t bottom, ptr_t top));
 {  {
     register struct hblk * h;      register struct hblk * h;
   
Line 645  void (*push_fn)(/* ptr_t bottom, ptr_t top */);
Line 1263  void (*push_fn)(/* ptr_t bottom, ptr_t top */);
             (*push_fn)((ptr_t)h, top);              (*push_fn)((ptr_t)h, top);
         }          }
     }      }
     if (GC_mark_stack_top >= GC_mark_stack + GC_mark_stack_size) {      if (GC_mark_stack_top >= GC_mark_stack_limit) {
         ABORT("unexpected mark stack overflow");          ABORT("unexpected mark stack overflow");
     }      }
 }  }
   
 # ifndef SMALL_CONFIG  # ifndef SMALL_CONFIG
   
   #ifdef PARALLEL_MARK
       /* Break up root sections into page size chunks to better spread    */
       /* out work.                                                        */
       GC_bool GC_true_func(struct hblk *h) { return TRUE; }
   #   define GC_PUSH_ALL(b,t) GC_push_selected(b,t,GC_true_func,GC_push_all);
   #else
   #   define GC_PUSH_ALL(b,t) GC_push_all(b,t);
   #endif
   
   
 void GC_push_conditional(bottom, top, all)  void GC_push_conditional(bottom, top, all)
 ptr_t bottom;  ptr_t bottom;
 ptr_t top;  ptr_t top;
Line 660  int all;
Line 1289  int all;
       if (GC_dirty_maintained) {        if (GC_dirty_maintained) {
 #       ifdef PROC_VDB  #       ifdef PROC_VDB
             /* Pages that were never dirtied cannot contain pointers    */              /* Pages that were never dirtied cannot contain pointers    */
             GC_push_dirty(bottom, top, GC_page_was_ever_dirty, GC_push_all);              GC_push_selected(bottom, top, GC_page_was_ever_dirty, GC_push_all);
 #       else  #       else
             GC_push_all(bottom, top);              GC_push_all(bottom, top);
 #       endif  #       endif
Line 668  int all;
Line 1297  int all;
         GC_push_all(bottom, top);          GC_push_all(bottom, top);
       }        }
     } else {      } else {
         GC_push_dirty(bottom, top, GC_page_was_dirty, GC_push_all);          GC_push_selected(bottom, top, GC_page_was_dirty, GC_push_all);
     }      }
 }  }
 #endif  #endif
   
 # ifdef MSWIN32  # if defined(MSWIN32) || defined(MSWINCE)
   void __cdecl GC_push_one(p)    void __cdecl GC_push_one(p)
 # else  # else
   void GC_push_one(p)    void GC_push_one(p)
 # endif  # endif
 word p;  word p;
 {  {
 #   ifdef NURSERY      GC_PUSH_ONE_STACK(p, MARKED_FROM_REGISTER);
       if (0 != GC_push_proc) {  
         GC_push_proc(p);  
         return;  
       }  
 #   endif  
     GC_PUSH_ONE_STACK(p, 0);  
 }  }
   
   struct GC_ms_entry *GC_mark_and_push(obj, mark_stack_ptr, mark_stack_limit, src)
   GC_PTR obj;
   struct GC_ms_entry * mark_stack_ptr;
   struct GC_ms_entry * mark_stack_limit;
   GC_PTR *src;
   {
      PREFETCH(obj);
      PUSH_CONTENTS(obj, mark_stack_ptr /* modified */, mark_stack_limit, src,
                    was_marked /* internally generated exit label */);
      return mark_stack_ptr;
   }
   
 # ifdef __STDC__  # ifdef __STDC__
 #   define BASE(p) (word)GC_base((void *)(p))  #   define BASE(p) (word)GC_base((void *)(p))
 # else  # else
 #   define BASE(p) (word)GC_base((char *)(p))  #   define BASE(p) (word)GC_base((char *)(p))
 # endif  # endif
   
 /* As above, but argument passed preliminary test. */  /* Mark and push (i.e. gray) a single object p onto the main    */
   /* mark stack.  Consider p to be valid if it is an interior     */
   /* pointer.                                                     */
   /* The object p has passed a preliminary pointer validity       */
   /* test, but we do not definitely know whether it is valid.     */
   /* Mark bits are NOT atomically updated.  Thus this must be the */
   /* only thread setting them.                                    */
 # if defined(PRINT_BLACK_LIST) || defined(KEEP_BACK_PTRS)  # if defined(PRINT_BLACK_LIST) || defined(KEEP_BACK_PTRS)
     void GC_push_one_checked(p, interior_ptrs, source)      void GC_mark_and_push_stack(p, source)
     ptr_t source;      ptr_t source;
 # else  # else
     void GC_push_one_checked(p, interior_ptrs)      void GC_mark_and_push_stack(p)
 #   define source 0  #   define source 0
 # endif  # endif
 register word p;  register word p;
 register GC_bool interior_ptrs;  
 {  {
     register word r;      register word r;
     register hdr * hhdr;      register hdr * hhdr;
Line 712  register GC_bool interior_ptrs;
Line 1352  register GC_bool interior_ptrs;
   
     GET_HDR(p, hhdr);      GET_HDR(p, hhdr);
     if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {      if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
         if (hhdr != 0 && interior_ptrs) {          if (hhdr != 0) {
           r = BASE(p);            r = BASE(p);
           hhdr = HDR(r);            hhdr = HDR(r);
           displ = BYTES_TO_WORDS(HBLKDISPL(r));            displ = BYTES_TO_WORDS(HBLKDISPL(r));
         } else {  
           hhdr = 0;  
         }          }
     } else {      } else {
         register map_entry_type map_entry;          register map_entry_type map_entry;
   
         displ = HBLKDISPL(p);          displ = HBLKDISPL(p);
         map_entry = MAP_ENTRY((hhdr -> hb_map), displ);          map_entry = MAP_ENTRY((hhdr -> hb_map), displ);
         if (map_entry == OBJ_INVALID) {          if (map_entry >= MAX_OFFSET) {
 #         ifndef ALL_INTERIOR_POINTERS            if (map_entry == OFFSET_TOO_BIG || !GC_all_interior_pointers) {
             if (interior_ptrs) {  
               r = BASE(p);                r = BASE(p);
               displ = BYTES_TO_WORDS(HBLKDISPL(r));                displ = BYTES_TO_WORDS(HBLKDISPL(r));
               if (r == 0) hhdr = 0;                if (r == 0) hhdr = 0;
             } else {            } else {
                 /* Offset invalid, but map reflects interior pointers     */
               hhdr = 0;                hhdr = 0;
             }            }
 #         else  
             /* map already reflects interior pointers */  
             hhdr = 0;  
 #         endif  
         } else {          } else {
           displ = BYTES_TO_WORDS(displ);            displ = BYTES_TO_WORDS(displ);
           displ -= map_entry;            displ -= map_entry;
Line 746  register GC_bool interior_ptrs;
Line 1380  register GC_bool interior_ptrs;
     /* If hhdr != 0 then r == GC_base(p), only we did it faster. */      /* If hhdr != 0 then r == GC_base(p), only we did it faster. */
     /* displ is the word index within the block.                 */      /* displ is the word index within the block.                 */
     if (hhdr == 0) {      if (hhdr == 0) {
         if (interior_ptrs) {  #       ifdef PRINT_BLACK_LIST
 #           ifdef PRINT_BLACK_LIST            GC_add_to_black_list_stack(p, source);
               GC_add_to_black_list_stack(p, source);  #       else
 #           else            GC_add_to_black_list_stack(p);
               GC_add_to_black_list_stack(p);  #       endif
 #           endif  #       undef source  /* In case we had to define it. */
         } else {  
             GC_ADD_TO_BLACK_LIST_NORMAL(p, source);  
 #           undef source  /* In case we had to define it. */  
         }  
     } else {      } else {
         if (!mark_bit_from_hdr(hhdr, displ)) {          if (!mark_bit_from_hdr(hhdr, displ)) {
             set_mark_bit_from_hdr(hhdr, displ);              set_mark_bit_from_hdr(hhdr, displ);
             GC_STORE_BACK_PTR(source, (ptr_t)r);              GC_STORE_BACK_PTR(source, (ptr_t)r);
             PUSH_OBJ((word *)r, hhdr, GC_mark_stack_top,              PUSH_OBJ((word *)r, hhdr, GC_mark_stack_top,
                      &(GC_mark_stack[GC_mark_stack_size]));                       GC_mark_stack_limit);
         }          }
     }      }
 }  }
Line 831  ptr_t top;
Line 1461  ptr_t top;
 #   define GC_least_plausible_heap_addr least_ha  #   define GC_least_plausible_heap_addr least_ha
   
     if (top == 0) return;      if (top == 0) return;
     /* check all pointers in range and put in push if they appear */      /* check all pointers in range and push if they appear      */
     /* to be valid.                                               */      /* to be valid.                                             */
       lim = t - 1 /* longword */;        lim = t - 1 /* longword */;
       for (p = b; p <= lim; p = (word *)(((char *)p) + ALIGNMENT)) {        for (p = b; p <= lim; p = (word *)(((char *)p) + ALIGNMENT)) {
         q = *p;          q = *p;
Line 855  ptr_t bottom;
Line 1485  ptr_t bottom;
 ptr_t top;  ptr_t top;
 ptr_t cold_gc_frame;  ptr_t cold_gc_frame;
 {  {
 # ifdef ALL_INTERIOR_POINTERS    if (!NEED_FIXUP_POINTER && GC_all_interior_pointers) {
 #   define EAGER_BYTES 1024  #   define EAGER_BYTES 1024
     /* Push the hot end of the stack eagerly, so that register values   */      /* Push the hot end of the stack eagerly, so that register values   */
     /* saved inside GC frames are marked before they disappear.         */      /* saved inside GC frames are marked before they disappear.         */
Line 864  ptr_t cold_gc_frame;
Line 1494  ptr_t cold_gc_frame;
         GC_push_all_stack(bottom, top);          GC_push_all_stack(bottom, top);
         return;          return;
     }      }
       GC_ASSERT(bottom <= cold_gc_frame && cold_gc_frame <= top);
 #   ifdef STACK_GROWS_DOWN  #   ifdef STACK_GROWS_DOWN
         GC_push_all_eager(bottom, cold_gc_frame);  
         GC_push_all(cold_gc_frame - sizeof(ptr_t), top);          GC_push_all(cold_gc_frame - sizeof(ptr_t), top);
           GC_push_all_eager(bottom, cold_gc_frame);
 #   else /* STACK_GROWS_UP */  #   else /* STACK_GROWS_UP */
         GC_push_all_eager(cold_gc_frame, top);  
         GC_push_all(bottom, cold_gc_frame + sizeof(ptr_t));          GC_push_all(bottom, cold_gc_frame + sizeof(ptr_t));
           GC_push_all_eager(cold_gc_frame, top);
 #   endif /* STACK_GROWS_UP */  #   endif /* STACK_GROWS_UP */
 # else    } else {
     GC_push_all_eager(bottom, top);      GC_push_all_eager(bottom, top);
 # endif    }
 # ifdef TRACE_BUF  # ifdef TRACE_BUF
       GC_add_trace_entry("GC_push_all_stack", bottom, top);        GC_add_trace_entry("GC_push_all_stack", bottom, top);
 # endif  # endif
Line 884  void GC_push_all_stack(bottom, top)
Line 1515  void GC_push_all_stack(bottom, top)
 ptr_t bottom;  ptr_t bottom;
 ptr_t top;  ptr_t top;
 {  {
 # ifdef ALL_INTERIOR_POINTERS    if (!NEED_FIXUP_POINTER && GC_all_interior_pointers) {
     GC_push_all(bottom, top);      GC_push_all(bottom, top);
 # else    } else {
     GC_push_all_eager(bottom, top);      GC_push_all_eager(bottom, top);
 # endif    }
 }  }
   
 #ifndef SMALL_CONFIG  #if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
 /* Push all objects reachable from marked objects in the given block */  /* Push all objects reachable from marked objects in the given block */
 /* of size 1 objects.                                                */  /* of size 1 objects.                                                */
 void GC_push_marked1(h, hhdr)  void GC_push_marked1(h, hhdr)
 struct hblk *h;  struct hblk *h;
 register hdr * hhdr;  register hdr * hhdr;
 {  {
     word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);      word * mark_word_addr = &(hhdr->hb_marks[0]);
     register word *p;      register word *p;
     word *plim;      word *plim;
     register int i;      register int i;
Line 906  register hdr * hhdr;
Line 1537  register hdr * hhdr;
     register word mark_word;      register word mark_word;
     register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;      register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
     register ptr_t least_ha = GC_least_plausible_heap_addr;      register ptr_t least_ha = GC_least_plausible_heap_addr;
       register mse * mark_stack_top = GC_mark_stack_top;
       register mse * mark_stack_limit = GC_mark_stack_limit;
   #   define GC_mark_stack_top mark_stack_top
   #   define GC_mark_stack_limit mark_stack_limit
 #   define GC_greatest_plausible_heap_addr greatest_ha  #   define GC_greatest_plausible_heap_addr greatest_ha
 #   define GC_least_plausible_heap_addr least_ha  #   define GC_least_plausible_heap_addr least_ha
   
Line 928  register hdr * hhdr;
Line 1563  register hdr * hhdr;
         }          }
 #   undef GC_greatest_plausible_heap_addr  #   undef GC_greatest_plausible_heap_addr
 #   undef GC_least_plausible_heap_addr  #   undef GC_least_plausible_heap_addr
   #   undef GC_mark_stack_top
   #   undef GC_mark_stack_limit
       GC_mark_stack_top = mark_stack_top;
 }  }
   
   
Line 939  void GC_push_marked2(h, hhdr)
Line 1577  void GC_push_marked2(h, hhdr)
 struct hblk *h;  struct hblk *h;
 register hdr * hhdr;  register hdr * hhdr;
 {  {
     word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);      word * mark_word_addr = &(hhdr->hb_marks[0]);
     register word *p;      register word *p;
     word *plim;      word *plim;
     register int i;      register int i;
Line 947  register hdr * hhdr;
Line 1585  register hdr * hhdr;
     register word mark_word;      register word mark_word;
     register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;      register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
     register ptr_t least_ha = GC_least_plausible_heap_addr;      register ptr_t least_ha = GC_least_plausible_heap_addr;
       register mse * mark_stack_top = GC_mark_stack_top;
       register mse * mark_stack_limit = GC_mark_stack_limit;
   #   define GC_mark_stack_top mark_stack_top
   #   define GC_mark_stack_limit mark_stack_limit
 #   define GC_greatest_plausible_heap_addr greatest_ha  #   define GC_greatest_plausible_heap_addr greatest_ha
 #   define GC_least_plausible_heap_addr least_ha  #   define GC_least_plausible_heap_addr least_ha
   
Line 971  register hdr * hhdr;
Line 1613  register hdr * hhdr;
         }          }
 #   undef GC_greatest_plausible_heap_addr  #   undef GC_greatest_plausible_heap_addr
 #   undef GC_least_plausible_heap_addr  #   undef GC_least_plausible_heap_addr
   #   undef GC_mark_stack_top
   #   undef GC_mark_stack_limit
       GC_mark_stack_top = mark_stack_top;
 }  }
   
 /* Push all objects reachable from marked objects in the given block */  /* Push all objects reachable from marked objects in the given block */
Line 981  void GC_push_marked4(h, hhdr)
Line 1626  void GC_push_marked4(h, hhdr)
 struct hblk *h;  struct hblk *h;
 register hdr * hhdr;  register hdr * hhdr;
 {  {
     word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);      word * mark_word_addr = &(hhdr->hb_marks[0]);
     register word *p;      register word *p;
     word *plim;      word *plim;
     register int i;      register int i;
Line 989  register hdr * hhdr;
Line 1634  register hdr * hhdr;
     register word mark_word;      register word mark_word;
     register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;      register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
     register ptr_t least_ha = GC_least_plausible_heap_addr;      register ptr_t least_ha = GC_least_plausible_heap_addr;
       register mse * mark_stack_top = GC_mark_stack_top;
       register mse * mark_stack_limit = GC_mark_stack_limit;
   #   define GC_mark_stack_top mark_stack_top
   #   define GC_mark_stack_limit mark_stack_limit
 #   define GC_greatest_plausible_heap_addr greatest_ha  #   define GC_greatest_plausible_heap_addr greatest_ha
 #   define GC_least_plausible_heap_addr least_ha  #   define GC_least_plausible_heap_addr least_ha
   
Line 1017  register hdr * hhdr;
Line 1666  register hdr * hhdr;
         }          }
 #   undef GC_greatest_plausible_heap_addr  #   undef GC_greatest_plausible_heap_addr
 #   undef GC_least_plausible_heap_addr  #   undef GC_least_plausible_heap_addr
   #   undef GC_mark_stack_top
   #   undef GC_mark_stack_limit
       GC_mark_stack_top = mark_stack_top;
 }  }
   
 #endif /* UNALIGNED */  #endif /* UNALIGNED */
Line 1029  struct hblk *h;
Line 1681  struct hblk *h;
 register hdr * hhdr;  register hdr * hhdr;
 {  {
     register int sz = hhdr -> hb_sz;      register int sz = hhdr -> hb_sz;
       register int descr = hhdr -> hb_descr;
     register word * p;      register word * p;
     register int word_no;      register int word_no;
     register word * lim;      register word * lim;
     register mse * GC_mark_stack_top_reg;      register mse * GC_mark_stack_top_reg;
     register mse * mark_stack_limit = &(GC_mark_stack[GC_mark_stack_size]);      register mse * mark_stack_limit = GC_mark_stack_limit;
   
     /* Some quick shortcuts: */      /* Some quick shortcuts: */
         {          if ((0 | GC_DS_LENGTH) == descr) return;
             struct obj_kind *ok = &(GC_obj_kinds[hhdr -> hb_obj_kind]);  
             if ((0 | DS_LENGTH) == ok -> ok_descriptor  
                 && FALSE == ok -> ok_relocate_descr)  
                 return;  
         }  
         if (GC_block_empty(hhdr)/* nothing marked */) return;          if (GC_block_empty(hhdr)/* nothing marked */) return;
 #   ifdef GATHERSTATS      GC_n_rescuing_pages++;
         GC_n_rescuing_pages++;  
 #   endif  
     GC_objects_are_marked = TRUE;      GC_objects_are_marked = TRUE;
     if (sz > MAXOBJSZ) {      if (sz > MAXOBJSZ) {
         lim = (word *)(h + 1);          lim = (word *)h;
     } else {      } else {
         lim = (word *)(h + 1) - sz;          lim = (word *)(h + 1) - sz;
     }      }
   
     switch(sz) {      switch(sz) {
 #   if !defined(SMALL_CONFIG)  #   if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
      case 1:       case 1:
        GC_push_marked1(h, hhdr);         GC_push_marked1(h, hhdr);
        break;         break;
 #   endif  #   endif
 #   if !defined(SMALL_CONFIG) && !defined(UNALIGNED)  #   if !defined(SMALL_CONFIG) && !defined(UNALIGNED) && \
          !defined(USE_MARK_BYTES)
      case 2:       case 2:
        GC_push_marked2(h, hhdr);         GC_push_marked2(h, hhdr);
        break;         break;
Line 1069  register hdr * hhdr;
Line 1716  register hdr * hhdr;
 #   endif  #   endif
      default:       default:
       GC_mark_stack_top_reg = GC_mark_stack_top;        GC_mark_stack_top_reg = GC_mark_stack_top;
       for (p = (word *)h + HDR_WORDS, word_no = HDR_WORDS; p <= lim;        for (p = (word *)h, word_no = 0; p <= lim; p += sz, word_no += sz) {
          p += sz, word_no += sz) {  
          /* This ignores user specified mark procs.  This currently     */  
          /* doesn't matter, since marking from the whole object         */  
          /* is always sufficient, and we will eventually use the user   */  
          /* mark proc to avoid any bogus pointers.                      */  
          if (mark_bit_from_hdr(hhdr, word_no)) {           if (mark_bit_from_hdr(hhdr, word_no)) {
            /* Mark from fields inside the object */             /* Mark from fields inside the object */
              PUSH_OBJ((word *)p, hhdr, GC_mark_stack_top_reg, mark_stack_limit);               PUSH_OBJ((word *)p, hhdr, GC_mark_stack_top_reg, mark_stack_limit);
Line 1101  register hdr * hhdr;
Line 1743  register hdr * hhdr;
          return(GC_page_was_dirty(h));           return(GC_page_was_dirty(h));
     } else {      } else {
          register ptr_t p = (ptr_t)h;           register ptr_t p = (ptr_t)h;
          sz += HDR_WORDS;  
          sz = WORDS_TO_BYTES(sz);           sz = WORDS_TO_BYTES(sz);
          while (p < (ptr_t)h + sz) {           while (p < (ptr_t)h + sz) {
              if (GC_page_was_dirty((struct hblk *)p)) return(TRUE);               if (GC_page_was_dirty((struct hblk *)p)) return(TRUE);

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.7

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>