Annotation of OpenXM_contrib2/asir2000/gc/os_dep.c, Revision 1.1.1.1
1.1 noro 1: int ox_usr1_sent, ox_int_received, critical_when_signal;
2: static int inside_critical_section;
3:
4: /*
5: * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
6: * Copyright (c) 1996-1997 by Silicon Graphics. All rights reserved.
7: *
8: * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
9: * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10: *
11: * Permission is hereby granted to use or copy this program
12: * for any purpose, provided the above notices are retained on all copies.
13: * Permission to modify the code and to distribute modified code is granted,
14: * provided the above notices are retained, and a notice that the code was
15: * modified is included with the above copyright notice.
16: */
17:
18: # include "gc_priv.h"
19:
20: # if defined(LINUX) && !defined(POWERPC)
21: # include <linux/version.h>
22: # if (LINUX_VERSION_CODE <= 0x10400)
23: /* Ugly hack to get struct sigcontext_struct definition. Required */
24: /* for some early 1.3.X releases. Will hopefully go away soon. */
25: /* in some later Linux releases, asm/sigcontext.h may have to */
26: /* be included instead. */
27: # define __KERNEL__
28: # include <asm/signal.h>
29: # undef __KERNEL__
30: # else
31: /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
32: /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
33: /* prototypes, so we have to include the top-level sigcontext.h to */
34: /* make sure the former gets defined to be the latter if appropriate. */
35: # include <features.h>
36: # if 2 <= __GLIBC__
37: # if 0 == __GLIBC_MINOR__
38: /* glibc 2.1 no longer has sigcontext.h. But signal.h */
39: /* has the right declaration for glibc 2.1. */
40: # include <sigcontext.h>
41: # endif /* 0 == __GLIBC_MINOR__ */
42: # else /* not 2 <= __GLIBC__ */
43: /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
44: /* one. Check LINUX_VERSION_CODE to see which we should reference. */
45: # include <asm/sigcontext.h>
46: # endif /* 2 <= __GLIBC__ */
47: # endif
48: # endif
49: # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS)
50: # include <sys/types.h>
51: # if !defined(MSWIN32) && !defined(SUNOS4)
52: # include <unistd.h>
53: # endif
54: # endif
55:
56: # include <stdio.h>
57: # include <signal.h>
58:
59: /* Blatantly OS dependent routines, except for those that are related */
60: /* dynamic loading. */
61:
62: # if !defined(THREADS) && !defined(STACKBOTTOM) && defined(HEURISTIC2)
63: # define NEED_FIND_LIMIT
64: # endif
65:
66: # if defined(IRIX_THREADS)
67: # define NEED_FIND_LIMIT
68: # endif
69:
70: # if (defined(SUNOS4) & defined(DYNAMIC_LOADING)) && !defined(PCR)
71: # define NEED_FIND_LIMIT
72: # endif
73:
74: # if (defined(SVR4) || defined(AUX) || defined(DGUX)) && !defined(PCR)
75: # define NEED_FIND_LIMIT
76: # endif
77:
78: # if defined(LINUX) && (defined(POWERPC) || defined(SPARC) || defined(ALPHA))
79: # define NEED_FIND_LIMIT
80: # endif
81:
82: #ifdef NEED_FIND_LIMIT
83: # include <setjmp.h>
84: #endif
85:
86: #ifdef FREEBSD
87: # include <machine/trap.h>
88: #endif
89:
90: #ifdef AMIGA
91: # include <proto/exec.h>
92: # include <proto/dos.h>
93: # include <dos/dosextens.h>
94: # include <workbench/startup.h>
95: #endif
96:
97: #ifdef MSWIN32
98: # define WIN32_LEAN_AND_MEAN
99: # define NOSERVICE
100: # include <windows.h>
101: #endif
102:
103: #ifdef MACOS
104: # include <Processes.h>
105: #endif
106:
107: #ifdef IRIX5
108: # include <sys/uio.h>
109: # include <malloc.h> /* for locking */
110: #endif
111: #ifdef USE_MMAP
112: # include <sys/types.h>
113: # include <sys/mman.h>
114: # include <sys/stat.h>
115: # include <fcntl.h>
116: #endif
117:
118: #ifdef SUNOS5SIGS
119: # include <sys/siginfo.h>
120: # undef setjmp
121: # undef longjmp
122: # define setjmp(env) sigsetjmp(env, 1)
123: # define longjmp(env, val) siglongjmp(env, val)
124: # define jmp_buf sigjmp_buf
125: #endif
126:
127: #ifdef DJGPP
128: /* Apparently necessary for djgpp 2.01. May casuse problems with */
129: /* other versions. */
130: typedef long unsigned int caddr_t;
131: #endif
132:
133: #ifdef PCR
134: # include "il/PCR_IL.h"
135: # include "th/PCR_ThCtl.h"
136: # include "mm/PCR_MM.h"
137: #endif
138:
139: #if !defined(NO_EXECUTE_PERMISSION)
140: # define OPT_PROT_EXEC PROT_EXEC
141: #else
142: # define OPT_PROT_EXEC 0
143: #endif
144:
145: #if defined(LINUX) && (defined(POWERPC) || defined(SPARC) || defined(ALPHA))
146: /* The I386 case can be handled without a search. The Alpha case */
147: /* used to be handled differently as well, but the rules changed */
148: /* for recent Linux versions. This seems to be the easiest way to */
149: /* cover all versions. */
150: ptr_t GC_data_start;
151:
152: extern char * GC_copyright[]; /* Any data symbol would do. */
153:
154: void GC_init_linux_data_start()
155: {
156: extern ptr_t GC_find_limit();
157:
158: GC_data_start = GC_find_limit((ptr_t)GC_copyright, FALSE);
159: }
160: #endif
161:
162: # ifdef OS2
163:
164: # include <stddef.h>
165:
166: # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
167:
168: struct exe_hdr {
169: unsigned short magic_number;
170: unsigned short padding[29];
171: long new_exe_offset;
172: };
173:
174: #define E_MAGIC(x) (x).magic_number
175: #define EMAGIC 0x5A4D
176: #define E_LFANEW(x) (x).new_exe_offset
177:
178: struct e32_exe {
179: unsigned char magic_number[2];
180: unsigned char byte_order;
181: unsigned char word_order;
182: unsigned long exe_format_level;
183: unsigned short cpu;
184: unsigned short os;
185: unsigned long padding1[13];
186: unsigned long object_table_offset;
187: unsigned long object_count;
188: unsigned long padding2[31];
189: };
190:
191: #define E32_MAGIC1(x) (x).magic_number[0]
192: #define E32MAGIC1 'L'
193: #define E32_MAGIC2(x) (x).magic_number[1]
194: #define E32MAGIC2 'X'
195: #define E32_BORDER(x) (x).byte_order
196: #define E32LEBO 0
197: #define E32_WORDER(x) (x).word_order
198: #define E32LEWO 0
199: #define E32_CPU(x) (x).cpu
200: #define E32CPU286 1
201: #define E32_OBJTAB(x) (x).object_table_offset
202: #define E32_OBJCNT(x) (x).object_count
203:
204: struct o32_obj {
205: unsigned long size;
206: unsigned long base;
207: unsigned long flags;
208: unsigned long pagemap;
209: unsigned long mapsize;
210: unsigned long reserved;
211: };
212:
213: #define O32_FLAGS(x) (x).flags
214: #define OBJREAD 0x0001L
215: #define OBJWRITE 0x0002L
216: #define OBJINVALID 0x0080L
217: #define O32_SIZE(x) (x).size
218: #define O32_BASE(x) (x).base
219:
220: # else /* IBM's compiler */
221:
222: /* A kludge to get around what appears to be a header file bug */
223: # ifndef WORD
224: # define WORD unsigned short
225: # endif
226: # ifndef DWORD
227: # define DWORD unsigned long
228: # endif
229:
230: # define EXE386 1
231: # include <newexe.h>
232: # include <exe386.h>
233:
234: # endif /* __IBMC__ */
235:
236: # define INCL_DOSEXCEPTIONS
237: # define INCL_DOSPROCESS
238: # define INCL_DOSERRORS
239: # define INCL_DOSMODULEMGR
240: # define INCL_DOSMEMMGR
241: # include <os2.h>
242:
243:
244: /* Disable and enable signals during nontrivial allocations */
245:
246: void GC_disable_signals(void)
247: {
248: ULONG nest;
249:
250: DosEnterMustComplete(&nest);
251: if (nest != 1) ABORT("nested GC_disable_signals");
252: }
253:
254: void GC_enable_signals(void)
255: {
256: ULONG nest;
257:
258: DosExitMustComplete(&nest);
259: if (nest != 0) ABORT("GC_enable_signals");
260: }
261:
262:
263: # else
264:
265: # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
266: && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW)
267:
268: # if defined(sigmask) && !defined(UTS4)
269: /* Use the traditional BSD interface */
270: # define SIGSET_T int
271: # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
272: # define SIG_FILL(set) (set) = 0x7fffffff
273: /* Setting the leading bit appears to provoke a bug in some */
274: /* longjmp implementations. Most systems appear not to have */
275: /* a signal 32. */
276: # define SIGSETMASK(old, new) (old) = sigsetmask(new)
277: # else
278: /* Use POSIX/SYSV interface */
279: # define SIGSET_T sigset_t
280: # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
281: # define SIG_FILL(set) sigfillset(&set)
282: # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
283: # endif
284:
285: static GC_bool mask_initialized = FALSE;
286:
287: static SIGSET_T new_mask;
288:
289: static SIGSET_T old_mask;
290:
291: static SIGSET_T dummy;
292:
293: #if defined(PRINTSTATS) && !defined(THREADS)
294: # define CHECK_SIGNALS
295: int GC_sig_disabled = 0;
296: #endif
297:
298: void GC_disable_signals()
299: {
300: if (!mask_initialized) {
301: SIG_FILL(new_mask);
302:
303: SIG_DEL(new_mask, SIGSEGV);
304: SIG_DEL(new_mask, SIGILL);
305: SIG_DEL(new_mask, SIGQUIT);
306: # ifdef SIGBUS
307: SIG_DEL(new_mask, SIGBUS);
308: # endif
309: # ifdef SIGIOT
310: SIG_DEL(new_mask, SIGIOT);
311: # endif
312: # ifdef SIGEMT
313: SIG_DEL(new_mask, SIGEMT);
314: # endif
315: # ifdef SIGTRAP
316: SIG_DEL(new_mask, SIGTRAP);
317: # endif
318: mask_initialized = TRUE;
319: }
320: # ifdef CHECK_SIGNALS
321: if (GC_sig_disabled != 0) ABORT("Nested disables");
322: GC_sig_disabled++;
323: # endif
324: SIGSETMASK(old_mask,new_mask);
325: if ( critical_when_signal )
326: inside_critical_section = 1;
327: else {
328: inside_critical_section = 0;
329: critical_when_signal = 1;
330: }
331: }
332:
333: void GC_enable_signals()
334: {
335: # ifdef CHECK_SIGNALS
336: if (GC_sig_disabled != 1) ABORT("Unmatched enable");
337: GC_sig_disabled--;
338: # endif
339: SIGSETMASK(dummy,old_mask);
340: if ( !inside_critical_section ) {
341: critical_when_signal = 0;
342: if ( ox_usr1_sent ) {
343: ox_usr1_sent = 0; ox_usr1_handler();
344: }
345: if ( ox_int_received ) {
346: ox_int_received = 0; int_handler();
347: }
348: } else
349: inside_critical_section = 0;
350: }
351:
352: # endif /* !PCR */
353:
354: # endif /*!OS/2 */
355:
356: /* Ivan Demakov: simplest way (to me) */
357: #ifdef DOS4GW
358: void GC_disable_signals() { }
359: void GC_enable_signals() { }
360: #endif
361:
362: /* Find the page size */
363: word GC_page_size;
364:
365: # ifdef MSWIN32
366: void GC_setpagesize()
367: {
368: SYSTEM_INFO sysinfo;
369:
370: GetSystemInfo(&sysinfo);
371: GC_page_size = sysinfo.dwPageSize;
372: }
373:
374: # else
375: # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
376: || defined(USE_MUNMAP)
377: void GC_setpagesize()
378: {
379: GC_page_size = GETPAGESIZE();
380: }
381: # else
382: /* It's acceptable to fake it. */
383: void GC_setpagesize()
384: {
385: GC_page_size = HBLKSIZE;
386: }
387: # endif
388: # endif
389:
390: /*
391: * Find the base of the stack.
392: * Used only in single-threaded environment.
393: * With threads, GC_mark_roots needs to know how to do this.
394: * Called with allocator lock held.
395: */
396: # ifdef MSWIN32
397: # define is_writable(prot) ((prot) == PAGE_READWRITE \
398: || (prot) == PAGE_WRITECOPY \
399: || (prot) == PAGE_EXECUTE_READWRITE \
400: || (prot) == PAGE_EXECUTE_WRITECOPY)
401: /* Return the number of bytes that are writable starting at p. */
402: /* The pointer p is assumed to be page aligned. */
403: /* If base is not 0, *base becomes the beginning of the */
404: /* allocation region containing p. */
405: word GC_get_writable_length(ptr_t p, ptr_t *base)
406: {
407: MEMORY_BASIC_INFORMATION buf;
408: word result;
409: word protect;
410:
411: result = VirtualQuery(p, &buf, sizeof(buf));
412: if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
413: if (base != 0) *base = (ptr_t)(buf.AllocationBase);
414: protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
415: if (!is_writable(protect)) {
416: return(0);
417: }
418: if (buf.State != MEM_COMMIT) return(0);
419: return(buf.RegionSize);
420: }
421:
422: ptr_t GC_get_stack_base()
423: {
424: int dummy;
425: ptr_t sp = (ptr_t)(&dummy);
426: ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
427: word size = GC_get_writable_length(trunc_sp, 0);
428:
429: return(trunc_sp + size);
430: }
431:
432:
433: # else
434:
435: # ifdef OS2
436:
437: ptr_t GC_get_stack_base()
438: {
439: PTIB ptib;
440: PPIB ppib;
441:
442: if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
443: GC_err_printf0("DosGetInfoBlocks failed\n");
444: ABORT("DosGetInfoBlocks failed\n");
445: }
446: return((ptr_t)(ptib -> tib_pstacklimit));
447: }
448:
449: # else
450:
451: # ifdef AMIGA
452:
453: ptr_t GC_get_stack_base()
454: {
455: struct Process *proc = (struct Process*)SysBase->ThisTask;
456:
457: /* Reference: Amiga Guru Book Pages: 42,567,574 */
458: if (proc->pr_Task.tc_Node.ln_Type==NT_PROCESS
459: && proc->pr_CLI != NULL) {
460: /* first ULONG is StackSize */
461: /*longPtr = proc->pr_ReturnAddr;
462: size = longPtr[0];*/
463:
464: return (char *)proc->pr_ReturnAddr + sizeof(ULONG);
465: } else {
466: return (char *)proc->pr_Task.tc_SPUpper;
467: }
468: }
469:
470: #if 0 /* old version */
471: ptr_t GC_get_stack_base()
472: {
473: extern struct WBStartup *_WBenchMsg;
474: extern long __base;
475: extern long __stack;
476: struct Task *task;
477: struct Process *proc;
478: struct CommandLineInterface *cli;
479: long size;
480:
481: if ((task = FindTask(0)) == 0) {
482: GC_err_puts("Cannot find own task structure\n");
483: ABORT("task missing");
484: }
485: proc = (struct Process *)task;
486: cli = BADDR(proc->pr_CLI);
487:
488: if (_WBenchMsg != 0 || cli == 0) {
489: size = (char *)task->tc_SPUpper - (char *)task->tc_SPLower;
490: } else {
491: size = cli->cli_DefaultStack * 4;
492: }
493: return (ptr_t)(__base + GC_max(size, __stack));
494: }
495: #endif /* 0 */
496:
497: # else /* !AMIGA, !OS2, ... */
498:
499: # ifdef NEED_FIND_LIMIT
500: /* Some tools to implement HEURISTIC2 */
501: # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
502: /* static */ jmp_buf GC_jmp_buf;
503:
504: /*ARGSUSED*/
505: void GC_fault_handler(sig)
506: int sig;
507: {
508: longjmp(GC_jmp_buf, 1);
509: }
510:
511: # ifdef __STDC__
512: typedef void (*handler)(int);
513: # else
514: typedef void (*handler)();
515: # endif
516:
517: # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
518: static struct sigaction old_segv_act;
519: # if defined(_sigargs) /* !Irix6.x */
520: static struct sigaction old_bus_act;
521: # endif
522: # else
523: static handler old_segv_handler, old_bus_handler;
524: # endif
525:
526: void GC_setup_temporary_fault_handler()
527: {
528: # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
529: struct sigaction act;
530:
531: act.sa_handler = GC_fault_handler;
532: act.sa_flags = SA_RESTART | SA_NODEFER;
533: /* The presence of SA_NODEFER represents yet another gross */
534: /* hack. Under Solaris 2.3, siglongjmp doesn't appear to */
535: /* interact correctly with -lthread. We hide the confusion */
536: /* by making sure that signal handling doesn't affect the */
537: /* signal mask. */
538:
539: (void) sigemptyset(&act.sa_mask);
540: # ifdef IRIX_THREADS
541: /* Older versions have a bug related to retrieving and */
542: /* and setting a handler at the same time. */
543: (void) sigaction(SIGSEGV, 0, &old_segv_act);
544: (void) sigaction(SIGSEGV, &act, 0);
545: # else
546: (void) sigaction(SIGSEGV, &act, &old_segv_act);
547: # ifdef _sigargs /* Irix 5.x, not 6.x */
548: /* Under 5.x, we may get SIGBUS. */
549: /* Pthreads doesn't exist under 5.x, so we don't */
550: /* have to worry in the threads case. */
551: (void) sigaction(SIGBUS, &act, &old_bus_act);
552: # endif
553: # endif /* IRIX_THREADS */
554: # else
555: old_segv_handler = signal(SIGSEGV, GC_fault_handler);
556: # ifdef SIGBUS
557: old_bus_handler = signal(SIGBUS, GC_fault_handler);
558: # endif
559: # endif
560: }
561:
562: void GC_reset_fault_handler()
563: {
564: # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
565: (void) sigaction(SIGSEGV, &old_segv_act, 0);
566: # ifdef _sigargs /* Irix 5.x, not 6.x */
567: (void) sigaction(SIGBUS, &old_bus_act, 0);
568: # endif
569: # else
570: (void) signal(SIGSEGV, old_segv_handler);
571: # ifdef SIGBUS
572: (void) signal(SIGBUS, old_bus_handler);
573: # endif
574: # endif
575: }
576:
577: /* Return the first nonaddressible location > p (up) or */
578: /* the smallest location q s.t. [q,p] is addressible (!up). */
579: ptr_t GC_find_limit(p, up)
580: ptr_t p;
581: GC_bool up;
582: {
583: static VOLATILE ptr_t result;
584: /* Needs to be static, since otherwise it may not be */
585: /* preserved across the longjmp. Can safely be */
586: /* static since it's only called once, with the */
587: /* allocation lock held. */
588:
589:
590: GC_setup_temporary_fault_handler();
591: if (setjmp(GC_jmp_buf) == 0) {
592: result = (ptr_t)(((word)(p))
593: & ~(MIN_PAGE_SIZE-1));
594: for (;;) {
595: if (up) {
596: result += MIN_PAGE_SIZE;
597: } else {
598: result -= MIN_PAGE_SIZE;
599: }
600: GC_noop1((word)(*result));
601: }
602: }
603: GC_reset_fault_handler();
604: if (!up) {
605: result += MIN_PAGE_SIZE;
606: }
607: return(result);
608: }
609: # endif
610:
611:
612: ptr_t GC_get_stack_base()
613: {
614: word dummy;
615: ptr_t result;
616:
617: # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
618:
619: # ifdef STACKBOTTOM
620: return(STACKBOTTOM);
621: # else
622: # ifdef HEURISTIC1
623: # ifdef STACK_GROWS_DOWN
624: result = (ptr_t)((((word)(&dummy))
625: + STACKBOTTOM_ALIGNMENT_M1)
626: & ~STACKBOTTOM_ALIGNMENT_M1);
627: # else
628: result = (ptr_t)(((word)(&dummy))
629: & ~STACKBOTTOM_ALIGNMENT_M1);
630: # endif
631: # endif /* HEURISTIC1 */
632: # ifdef HEURISTIC2
633: # ifdef STACK_GROWS_DOWN
634: result = GC_find_limit((ptr_t)(&dummy), TRUE);
635: # ifdef HEURISTIC2_LIMIT
636: if (result > HEURISTIC2_LIMIT
637: && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
638: result = HEURISTIC2_LIMIT;
639: }
640: # endif
641: # else
642: result = GC_find_limit((ptr_t)(&dummy), FALSE);
643: # ifdef HEURISTIC2_LIMIT
644: if (result < HEURISTIC2_LIMIT
645: && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
646: result = HEURISTIC2_LIMIT;
647: }
648: # endif
649: # endif
650:
651: # endif /* HEURISTIC2 */
652: # ifdef STACK_GROWS_DOWN
653: if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
654: # endif
655: return(result);
656: # endif /* STACKBOTTOM */
657: }
658:
659: # endif /* ! AMIGA */
660: # endif /* ! OS2 */
661: # endif /* ! MSWIN32 */
662:
663: /*
664: * Register static data segment(s) as roots.
665: * If more data segments are added later then they need to be registered
666: * add that point (as we do with SunOS dynamic loading),
667: * or GC_mark_roots needs to check for them (as we do with PCR).
668: * Called with allocator lock held.
669: */
670:
671: # ifdef OS2
672:
673: void GC_register_data_segments()
674: {
675: PTIB ptib;
676: PPIB ppib;
677: HMODULE module_handle;
678: # define PBUFSIZ 512
679: UCHAR path[PBUFSIZ];
680: FILE * myexefile;
681: struct exe_hdr hdrdos; /* MSDOS header. */
682: struct e32_exe hdr386; /* Real header for my executable */
683: struct o32_obj seg; /* Currrent segment */
684: int nsegs;
685:
686:
687: if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
688: GC_err_printf0("DosGetInfoBlocks failed\n");
689: ABORT("DosGetInfoBlocks failed\n");
690: }
691: module_handle = ppib -> pib_hmte;
692: if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
693: GC_err_printf0("DosQueryModuleName failed\n");
694: ABORT("DosGetInfoBlocks failed\n");
695: }
696: myexefile = fopen(path, "rb");
697: if (myexefile == 0) {
698: GC_err_puts("Couldn't open executable ");
699: GC_err_puts(path); GC_err_puts("\n");
700: ABORT("Failed to open executable\n");
701: }
702: if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
703: GC_err_puts("Couldn't read MSDOS header from ");
704: GC_err_puts(path); GC_err_puts("\n");
705: ABORT("Couldn't read MSDOS header");
706: }
707: if (E_MAGIC(hdrdos) != EMAGIC) {
708: GC_err_puts("Executable has wrong DOS magic number: ");
709: GC_err_puts(path); GC_err_puts("\n");
710: ABORT("Bad DOS magic number");
711: }
712: if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
713: GC_err_puts("Seek to new header failed in ");
714: GC_err_puts(path); GC_err_puts("\n");
715: ABORT("Bad DOS magic number");
716: }
717: if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
718: GC_err_puts("Couldn't read MSDOS header from ");
719: GC_err_puts(path); GC_err_puts("\n");
720: ABORT("Couldn't read OS/2 header");
721: }
722: if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
723: GC_err_puts("Executable has wrong OS/2 magic number:");
724: GC_err_puts(path); GC_err_puts("\n");
725: ABORT("Bad OS/2 magic number");
726: }
727: if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
728: GC_err_puts("Executable %s has wrong byte order: ");
729: GC_err_puts(path); GC_err_puts("\n");
730: ABORT("Bad byte order");
731: }
732: if ( E32_CPU(hdr386) == E32CPU286) {
733: GC_err_puts("GC can't handle 80286 executables: ");
734: GC_err_puts(path); GC_err_puts("\n");
735: EXIT();
736: }
737: if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
738: SEEK_SET) != 0) {
739: GC_err_puts("Seek to object table failed: ");
740: GC_err_puts(path); GC_err_puts("\n");
741: ABORT("Seek to object table failed");
742: }
743: for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
744: int flags;
745: if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
746: GC_err_puts("Couldn't read obj table entry from ");
747: GC_err_puts(path); GC_err_puts("\n");
748: ABORT("Couldn't read obj table entry");
749: }
750: flags = O32_FLAGS(seg);
751: if (!(flags & OBJWRITE)) continue;
752: if (!(flags & OBJREAD)) continue;
753: if (flags & OBJINVALID) {
754: GC_err_printf0("Object with invalid pages?\n");
755: continue;
756: }
757: GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
758: }
759: }
760:
761: # else
762:
763: # ifdef MSWIN32
764: /* Unfortunately, we have to handle win32s very differently from NT, */
765: /* Since VirtualQuery has very different semantics. In particular, */
766: /* under win32s a VirtualQuery call on an unmapped page returns an */
767: /* invalid result. Under GC_register_data_segments is a noop and */
768: /* all real work is done by GC_register_dynamic_libraries. Under */
769: /* win32s, we cannot find the data segments associated with dll's. */
770: /* We rgister the main data segment here. */
771: GC_bool GC_win32s = FALSE; /* We're running under win32s. */
772:
773: GC_bool GC_is_win32s()
774: {
775: DWORD v = GetVersion();
776:
777: /* Check that this is not NT, and Windows major version <= 3 */
778: return ((v & 0x80000000) && (v & 0xff) <= 3);
779: }
780:
781: void GC_init_win32()
782: {
783: GC_win32s = GC_is_win32s();
784: }
785:
786: /* Return the smallest address a such that VirtualQuery */
787: /* returns correct results for all addresses between a and start. */
788: /* Assumes VirtualQuery returns correct information for start. */
789: ptr_t GC_least_described_address(ptr_t start)
790: {
791: MEMORY_BASIC_INFORMATION buf;
792: SYSTEM_INFO sysinfo;
793: DWORD result;
794: LPVOID limit;
795: ptr_t p;
796: LPVOID q;
797:
798: GetSystemInfo(&sysinfo);
799: limit = sysinfo.lpMinimumApplicationAddress;
800: p = (ptr_t)((word)start & ~(GC_page_size - 1));
801: for (;;) {
802: q = (LPVOID)(p - GC_page_size);
803: if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
804: result = VirtualQuery(q, &buf, sizeof(buf));
805: if (result != sizeof(buf) || buf.AllocationBase == 0) break;
806: p = (ptr_t)(buf.AllocationBase);
807: }
808: return(p);
809: }
810:
811: /* Is p the start of either the malloc heap, or of one of our */
812: /* heap sections? */
813: GC_bool GC_is_heap_base (ptr_t p)
814: {
815:
816: register unsigned i;
817:
818: # ifndef REDIRECT_MALLOC
819: static ptr_t malloc_heap_pointer = 0;
820:
821: if (0 == malloc_heap_pointer) {
822: MEMORY_BASIC_INFORMATION buf;
823: register DWORD result = VirtualQuery(malloc(1), &buf, sizeof(buf));
824:
825: if (result != sizeof(buf)) {
826: ABORT("Weird VirtualQuery result");
827: }
828: malloc_heap_pointer = (ptr_t)(buf.AllocationBase);
829: }
830: if (p == malloc_heap_pointer) return(TRUE);
831: # endif
832: for (i = 0; i < GC_n_heap_bases; i++) {
833: if (GC_heap_bases[i] == p) return(TRUE);
834: }
835: return(FALSE);
836: }
837:
838: void GC_register_root_section(ptr_t static_root)
839: {
840: MEMORY_BASIC_INFORMATION buf;
841: SYSTEM_INFO sysinfo;
842: DWORD result;
843: DWORD protect;
844: LPVOID p;
845: char * base;
846: char * limit, * new_limit;
847:
848: if (!GC_win32s) return;
849: p = base = limit = GC_least_described_address(static_root);
850: GetSystemInfo(&sysinfo);
851: while (p < sysinfo.lpMaximumApplicationAddress) {
852: result = VirtualQuery(p, &buf, sizeof(buf));
853: if (result != sizeof(buf) || buf.AllocationBase == 0
854: || GC_is_heap_base(buf.AllocationBase)) break;
855: new_limit = (char *)p + buf.RegionSize;
856: protect = buf.Protect;
857: if (buf.State == MEM_COMMIT
858: && is_writable(protect)) {
859: if ((char *)p == limit) {
860: limit = new_limit;
861: } else {
862: if (base != limit) GC_add_roots_inner(base, limit, FALSE);
863: base = p;
864: limit = new_limit;
865: }
866: }
867: if (p > (LPVOID)new_limit /* overflow */) break;
868: p = (LPVOID)new_limit;
869: }
870: if (base != limit) GC_add_roots_inner(base, limit, FALSE);
871: }
872:
873: void GC_register_data_segments()
874: {
875: static char dummy;
876:
877: GC_register_root_section((ptr_t)(&dummy));
878: }
879: # else
880: # ifdef AMIGA
881:
882: void GC_register_data_segments()
883: {
884: struct Process *proc;
885: struct CommandLineInterface *cli;
886: BPTR myseglist;
887: ULONG *data;
888:
889: int num;
890:
891:
892: # ifdef __GNUC__
893: ULONG dataSegSize;
894: GC_bool found_segment = FALSE;
895: extern char __data_size[];
896:
897: dataSegSize=__data_size+8;
898: /* Can`t find the Location of __data_size, because
899: it`s possible that is it, inside the segment. */
900:
901: # endif
902:
903: proc= (struct Process*)SysBase->ThisTask;
904:
905: /* Reference: Amiga Guru Book Pages: 538ff,565,573
906: and XOper.asm */
907: if (proc->pr_Task.tc_Node.ln_Type==NT_PROCESS) {
908: if (proc->pr_CLI == NULL) {
909: myseglist = proc->pr_SegList;
910: } else {
911: /* ProcLoaded 'Loaded as a command: '*/
912: cli = BADDR(proc->pr_CLI);
913: myseglist = cli->cli_Module;
914: }
915: } else {
916: ABORT("Not a Process.");
917: }
918:
919: if (myseglist == NULL) {
920: ABORT("Arrrgh.. can't find segments, aborting");
921: }
922:
923: /* xoper hunks Shell Process */
924:
925: num=0;
926: for (data = (ULONG *)BADDR(myseglist); data != NULL;
927: data = (ULONG *)BADDR(data[0])) {
928: if (((ULONG) GC_register_data_segments < (ULONG) &data[1]) ||
929: ((ULONG) GC_register_data_segments > (ULONG) &data[1] + data[-1])) {
930: # ifdef __GNUC__
931: if (dataSegSize == data[-1]) {
932: found_segment = TRUE;
933: }
934: # endif
935: GC_add_roots_inner((char *)&data[1],
936: ((char *)&data[1]) + data[-1], FALSE);
937: }
938: ++num;
939: } /* for */
940: # ifdef __GNUC__
941: if (!found_segment) {
942: ABORT("Can`t find correct Segments.\nSolution: Use an newer version of ixemul.library");
943: }
944: # endif
945: }
946:
947: #if 0 /* old version */
948: void GC_register_data_segments()
949: {
950: extern struct WBStartup *_WBenchMsg;
951: struct Process *proc;
952: struct CommandLineInterface *cli;
953: BPTR myseglist;
954: ULONG *data;
955:
956: if ( _WBenchMsg != 0 ) {
957: if ((myseglist = _WBenchMsg->sm_Segment) == 0) {
958: GC_err_puts("No seglist from workbench\n");
959: return;
960: }
961: } else {
962: if ((proc = (struct Process *)FindTask(0)) == 0) {
963: GC_err_puts("Cannot find process structure\n");
964: return;
965: }
966: if ((cli = BADDR(proc->pr_CLI)) == 0) {
967: GC_err_puts("No CLI\n");
968: return;
969: }
970: if ((myseglist = cli->cli_Module) == 0) {
971: GC_err_puts("No seglist from CLI\n");
972: return;
973: }
974: }
975:
976: for (data = (ULONG *)BADDR(myseglist); data != 0;
977: data = (ULONG *)BADDR(data[0])) {
978: # ifdef AMIGA_SKIP_SEG
979: if (((ULONG) GC_register_data_segments < (ULONG) &data[1]) ||
980: ((ULONG) GC_register_data_segments > (ULONG) &data[1] + data[-1])) {
981: # else
982: {
983: # endif /* AMIGA_SKIP_SEG */
984: GC_add_roots_inner((char *)&data[1],
985: ((char *)&data[1]) + data[-1], FALSE);
986: }
987: }
988: }
989: #endif /* old version */
990:
991:
992: # else
993:
994: # if (defined(SVR4) || defined(AUX) || defined(DGUX)) && !defined(PCR)
995: char * GC_SysVGetDataStart(max_page_size, etext_addr)
996: int max_page_size;
997: int * etext_addr;
998: {
999: word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1000: & ~(sizeof(word) - 1);
1001: /* etext rounded to word boundary */
1002: word next_page = ((text_end + (word)max_page_size - 1)
1003: & ~((word)max_page_size - 1));
1004: word page_offset = (text_end & ((word)max_page_size - 1));
1005: VOLATILE char * result = (char *)(next_page + page_offset);
1006: /* Note that this isnt equivalent to just adding */
1007: /* max_page_size to &etext if &etext is at a page boundary */
1008:
1009: GC_setup_temporary_fault_handler();
1010: if (setjmp(GC_jmp_buf) == 0) {
1011: /* Try writing to the address. */
1012: *result = *result;
1013: GC_reset_fault_handler();
1014: } else {
1015: GC_reset_fault_handler();
1016: /* We got here via a longjmp. The address is not readable. */
1017: /* This is known to happen under Solaris 2.4 + gcc, which place */
1018: /* string constants in the text segment, but after etext. */
1019: /* Use plan B. Note that we now know there is a gap between */
1020: /* text and data segments, so plan A bought us something. */
1021: result = (char *)GC_find_limit((ptr_t)(DATAEND) - MIN_PAGE_SIZE, FALSE);
1022: }
1023: return((char *)result);
1024: }
1025: # endif
1026:
1027:
1028: void GC_register_data_segments()
1029: {
1030: # if !defined(PCR) && !defined(SRC_M3) && !defined(NEXT) && !defined(MACOS) \
1031: && !defined(MACOSX)
1032: # if defined(REDIRECT_MALLOC) && defined(SOLARIS_THREADS)
1033: /* As of Solaris 2.3, the Solaris threads implementation */
1034: /* allocates the data structure for the initial thread with */
1035: /* sbrk at process startup. It needs to be scanned, so that */
1036: /* we don't lose some malloc allocated data structures */
1037: /* hanging from it. We're on thin ice here ... */
1038: extern caddr_t sbrk();
1039:
1040: GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1041: # else
1042: GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1043: # endif
1044: # endif
1045: # if !defined(PCR) && (defined(NEXT) || defined(MACOSX))
1046: GC_add_roots_inner(DATASTART, (char *) get_end(), FALSE);
1047: # endif
1048: # if defined(MACOS)
1049: {
1050: # if defined(THINK_C)
1051: extern void* GC_MacGetDataStart(void);
1052: /* globals begin above stack and end at a5. */
1053: GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1054: (ptr_t)LMGetCurrentA5(), FALSE);
1055: # else
1056: # if defined(__MWERKS__)
1057: # if !__POWERPC__
1058: extern void* GC_MacGetDataStart(void);
1059: /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1060: # if __option(far_data)
1061: extern void* GC_MacGetDataEnd(void);
1062: # endif
1063: /* globals begin above stack and end at a5. */
1064: GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1065: (ptr_t)LMGetCurrentA5(), FALSE);
1066: /* MATTHEW: Handle Far Globals */
1067: # if __option(far_data)
1068: /* Far globals follow he QD globals: */
1069: GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1070: (ptr_t)GC_MacGetDataEnd(), FALSE);
1071: # endif
1072: # else
1073: extern char __data_start__[], __data_end__[];
1074: GC_add_roots_inner((ptr_t)&__data_start__,
1075: (ptr_t)&__data_end__, FALSE);
1076: # endif /* __POWERPC__ */
1077: # endif /* __MWERKS__ */
1078: # endif /* !THINK_C */
1079: }
1080: # endif /* MACOS */
1081:
1082: /* Dynamic libraries are added at every collection, since they may */
1083: /* change. */
1084: }
1085:
1086: # endif /* ! AMIGA */
1087: # endif /* ! MSWIN32 */
1088: # endif /* ! OS2 */
1089:
1090: /*
1091: * Auxiliary routines for obtaining memory from OS.
1092: */
1093:
1094: # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1095: && !defined(MSWIN32) && !defined(MACOS) && !defined(DOS4GW)
1096:
1097: # ifdef SUNOS4
1098: extern caddr_t sbrk();
1099: # endif
1100: # ifdef __STDC__
1101: # define SBRK_ARG_T ptrdiff_t
1102: # else
1103: # define SBRK_ARG_T int
1104: # endif
1105:
1106: # ifdef RS6000
1107: /* The compiler seems to generate speculative reads one past the end of */
1108: /* an allocated object. Hence we need to make sure that the page */
1109: /* following the last heap page is also mapped. */
1110: ptr_t GC_unix_get_mem(bytes)
1111: word bytes;
1112: {
1113: caddr_t cur_brk = (caddr_t)sbrk(0);
1114: caddr_t result;
1115: SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1116: static caddr_t my_brk_val = 0;
1117:
1118: if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1119: if (lsbs != 0) {
1120: if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1121: }
1122: if (cur_brk == my_brk_val) {
1123: /* Use the extra block we allocated last time. */
1124: result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1125: if (result == (caddr_t)(-1)) return(0);
1126: result -= GC_page_size;
1127: } else {
1128: result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1129: if (result == (caddr_t)(-1)) return(0);
1130: }
1131: my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1132: return((ptr_t)result);
1133: }
1134:
1135: #else /* Not RS6000 */
1136:
1137: #if defined(USE_MMAP)
1138: /* Tested only under IRIX5 and Solaris 2 */
1139:
1140: #ifdef USE_MMAP_FIXED
1141: # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1142: /* Seems to yield better performance on Solaris 2, but can */
1143: /* be unreliable if something is already mapped at the address. */
1144: #else
1145: # define GC_MMAP_FLAGS MAP_PRIVATE
1146: #endif
1147:
1148: ptr_t GC_unix_get_mem(bytes)
1149: word bytes;
1150: {
1151: static GC_bool initialized = FALSE;
1152: static int fd;
1153: void *result;
1154: static ptr_t last_addr = HEAP_START;
1155:
1156: if (!initialized) {
1157: fd = open("/dev/zero", O_RDONLY);
1158: initialized = TRUE;
1159: }
1160: if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1161: result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1162: GC_MMAP_FLAGS, fd, 0/* offset */);
1163: if (result == MAP_FAILED) return(0);
1164: last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1165: last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1166: return((ptr_t)result);
1167: }
1168:
1169: #else /* Not RS6000, not USE_MMAP */
1170: ptr_t GC_unix_get_mem(bytes)
1171: word bytes;
1172: {
1173: ptr_t result;
1174: # ifdef IRIX5
1175: /* Bare sbrk isn't thread safe. Play by malloc rules. */
1176: /* The equivalent may be needed on other systems as well. */
1177: __LOCK_MALLOC();
1178: # endif
1179: {
1180: ptr_t cur_brk = (ptr_t)sbrk(0);
1181: SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1182:
1183: if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1184: if (lsbs != 0) {
1185: if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1186: }
1187: result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1188: if (result == (ptr_t)(-1)) result = 0;
1189: }
1190: # ifdef IRIX5
1191: __UNLOCK_MALLOC();
1192: # endif
1193: return(result);
1194: }
1195:
1196: #endif /* Not USE_MMAP */
1197: #endif /* Not RS6000 */
1198:
1199: # endif /* UN*X */
1200:
1201: # ifdef OS2
1202:
1203: void * os2_alloc(size_t bytes)
1204: {
1205: void * result;
1206:
1207: if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1208: PAG_WRITE | PAG_COMMIT)
1209: != NO_ERROR) {
1210: return(0);
1211: }
1212: if (result == 0) return(os2_alloc(bytes));
1213: return(result);
1214: }
1215:
1216: # endif /* OS2 */
1217:
1218:
1219: # ifdef MSWIN32
1220: word GC_n_heap_bases = 0;
1221:
1222: ptr_t GC_win32_get_mem(bytes)
1223: word bytes;
1224: {
1225: ptr_t result;
1226:
1227: if (GC_win32s) {
1228: /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1229: /* There are also unconfirmed rumors of other */
1230: /* problems, so we dodge the issue. */
1231: result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1232: result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1233: } else {
1234: result = (ptr_t) VirtualAlloc(NULL, bytes,
1235: MEM_COMMIT | MEM_RESERVE,
1236: PAGE_EXECUTE_READWRITE);
1237: }
1238: if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1239: /* If I read the documentation correctly, this can */
1240: /* only happen if HBLKSIZE > 64k or not a power of 2. */
1241: if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1242: GC_heap_bases[GC_n_heap_bases++] = result;
1243: return(result);
1244: }
1245:
1246: void GC_win32_free_heap ()
1247: {
1248: if (GC_win32s) {
1249: while (GC_n_heap_bases > 0) {
1250: GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1251: GC_heap_bases[GC_n_heap_bases] = 0;
1252: }
1253: }
1254: }
1255:
1256:
1257: # endif
1258:
1259: #ifdef USE_MUNMAP
1260:
1261: /* For now, this only works on some Unix-like systems. If you */
1262: /* have something else, don't define USE_MUNMAP. */
1263: /* We assume ANSI C to support this feature. */
1264: #include <unistd.h>
1265: #include <sys/mman.h>
1266: #include <sys/stat.h>
1267: #include <sys/types.h>
1268: #include <fcntl.h>
1269:
1270: /* Compute a page aligned starting address for the unmap */
1271: /* operation on a block of size bytes starting at start. */
1272: /* Return 0 if the block is too small to make this feasible. */
1273: ptr_t GC_unmap_start(ptr_t start, word bytes)
1274: {
1275: ptr_t result = start;
1276: /* Round start to next page boundary. */
1277: result += GC_page_size - 1;
1278: result = (ptr_t)((word)result & ~(GC_page_size - 1));
1279: if (result + GC_page_size > start + bytes) return 0;
1280: return result;
1281: }
1282:
1283: /* Compute end address for an unmap operation on the indicated */
1284: /* block. */
1285: ptr_t GC_unmap_end(ptr_t start, word bytes)
1286: {
1287: ptr_t end_addr = start + bytes;
1288: end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1289: return end_addr;
1290: }
1291:
1292: /* We assume that GC_remap is called on exactly the same range */
1293: /* as a previous call to GC_unmap. It is safe to consistently */
1294: /* round the endpoints in both places. */
1295: void GC_unmap(ptr_t start, word bytes)
1296: {
1297: ptr_t start_addr = GC_unmap_start(start, bytes);
1298: ptr_t end_addr = GC_unmap_end(start, bytes);
1299: word len = end_addr - start_addr;
1300: if (0 == start_addr) return;
1301: if (munmap(start_addr, len) != 0) ABORT("munmap failed");
1302: GC_unmapped_bytes += len;
1303: }
1304:
1305:
1306: void GC_remap(ptr_t start, word bytes)
1307: {
1308: static int zero_descr = -1;
1309: ptr_t start_addr = GC_unmap_start(start, bytes);
1310: ptr_t end_addr = GC_unmap_end(start, bytes);
1311: word len = end_addr - start_addr;
1312: ptr_t result;
1313:
1314: if (-1 == zero_descr) zero_descr = open("/dev/zero", O_RDWR);
1315: if (0 == start_addr) return;
1316: result = mmap(start_addr, len, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1317: MAP_FIXED | MAP_PRIVATE, zero_descr, 0);
1318: if (result != start_addr) {
1319: ABORT("mmap remapping failed");
1320: }
1321: GC_unmapped_bytes -= len;
1322: }
1323:
1324: /* Two adjacent blocks have already been unmapped and are about to */
1325: /* be merged. Unmap the whole block. This typically requires */
1326: /* that we unmap a small section in the middle that was not previously */
1327: /* unmapped due to alignment constraints. */
1328: void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
1329: {
1330: ptr_t start1_addr = GC_unmap_start(start1, bytes1);
1331: ptr_t end1_addr = GC_unmap_end(start1, bytes1);
1332: ptr_t start2_addr = GC_unmap_start(start2, bytes2);
1333: ptr_t end2_addr = GC_unmap_end(start2, bytes2);
1334: ptr_t start_addr = end1_addr;
1335: ptr_t end_addr = start2_addr;
1336: word len;
1337: GC_ASSERT(start1 + bytes1 == start2);
1338: if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
1339: if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
1340: if (0 == start_addr) return;
1341: len = end_addr - start_addr;
1342: if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
1343: GC_unmapped_bytes += len;
1344: }
1345:
1346: #endif /* USE_MUNMAP */
1347:
1348: /* Routine for pushing any additional roots. In THREADS */
1349: /* environment, this is also responsible for marking from */
1350: /* thread stacks. In the SRC_M3 case, it also handles */
1351: /* global variables. */
1352: #ifndef THREADS
1353: void (*GC_push_other_roots)() = 0;
1354: #else /* THREADS */
1355:
1356: # ifdef PCR
1357: PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1358: {
1359: struct PCR_ThCtl_TInfoRep info;
1360: PCR_ERes result;
1361:
1362: info.ti_stkLow = info.ti_stkHi = 0;
1363: result = PCR_ThCtl_GetInfo(t, &info);
1364: GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1365: return(result);
1366: }
1367:
1368: /* Push the contents of an old object. We treat this as stack */
1369: /* data only becasue that makes it robust against mark stack */
1370: /* overflow. */
1371: PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
1372: {
1373: GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
1374: return(PCR_ERes_okay);
1375: }
1376:
1377:
1378: void GC_default_push_other_roots()
1379: {
1380: /* Traverse data allocated by previous memory managers. */
1381: {
1382: extern struct PCR_MM_ProcsRep * GC_old_allocator;
1383:
1384: if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
1385: GC_push_old_obj, 0)
1386: != PCR_ERes_okay) {
1387: ABORT("Old object enumeration failed");
1388: }
1389: }
1390: /* Traverse all thread stacks. */
1391: if (PCR_ERes_IsErr(
1392: PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
1393: || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
1394: ABORT("Thread stack marking failed\n");
1395: }
1396: }
1397:
1398: # endif /* PCR */
1399:
1400: # ifdef SRC_M3
1401:
1402: # ifdef ALL_INTERIOR_POINTERS
1403: --> misconfigured
1404: # endif
1405:
1406:
1407: extern void ThreadF__ProcessStacks();
1408:
1409: void GC_push_thread_stack(start, stop)
1410: word start, stop;
1411: {
1412: GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
1413: }
1414:
1415: /* Push routine with M3 specific calling convention. */
1416: GC_m3_push_root(dummy1, p, dummy2, dummy3)
1417: word *p;
1418: ptr_t dummy1, dummy2;
1419: int dummy3;
1420: {
1421: word q = *p;
1422:
1423: if ((ptr_t)(q) >= GC_least_plausible_heap_addr
1424: && (ptr_t)(q) < GC_greatest_plausible_heap_addr) {
1425: GC_push_one_checked(q,FALSE);
1426: }
1427: }
1428:
1429: /* M3 set equivalent to RTHeap.TracedRefTypes */
1430: typedef struct { int elts[1]; } RefTypeSet;
1431: RefTypeSet GC_TracedRefTypes = {{0x1}};
1432:
1433: /* From finalize.c */
1434: extern void GC_push_finalizer_structures();
1435:
1436: /* From stubborn.c: */
1437: # ifdef STUBBORN_ALLOC
1438: extern GC_PTR * GC_changing_list_start;
1439: # endif
1440:
1441:
1442: void GC_default_push_other_roots()
1443: {
1444: /* Use the M3 provided routine for finding static roots. */
1445: /* This is a bit dubious, since it presumes no C roots. */
1446: /* We handle the collector roots explicitly. */
1447: {
1448: # ifdef STUBBORN_ALLOC
1449: GC_push_one(GC_changing_list_start);
1450: # endif
1451: GC_push_finalizer_structures();
1452: RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
1453: }
1454: if (GC_words_allocd > 0) {
1455: ThreadF__ProcessStacks(GC_push_thread_stack);
1456: }
1457: /* Otherwise this isn't absolutely necessary, and we have */
1458: /* startup ordering problems. */
1459: }
1460:
1461: # endif /* SRC_M3 */
1462:
1463: # if defined(SOLARIS_THREADS) || defined(WIN32_THREADS) \
1464: || defined(IRIX_THREADS) || defined(LINUX_THREADS) \
1465: || defined(IRIX_PCR_THREADS)
1466:
1467: extern void GC_push_all_stacks();
1468:
1469: void GC_default_push_other_roots()
1470: {
1471: GC_push_all_stacks();
1472: }
1473:
1474: # endif /* SOLARIS_THREADS || ... */
1475:
1476: void (*GC_push_other_roots)() = GC_default_push_other_roots;
1477:
1478: #endif
1479:
1480: /*
1481: * Routines for accessing dirty bits on virtual pages.
1482: * We plan to eventaually implement four strategies for doing so:
1483: * DEFAULT_VDB: A simple dummy implementation that treats every page
1484: * as possibly dirty. This makes incremental collection
1485: * useless, but the implementation is still correct.
1486: * PCR_VDB: Use PPCRs virtual dirty bit facility.
1487: * PROC_VDB: Use the /proc facility for reading dirty bits. Only
1488: * works under some SVR4 variants. Even then, it may be
1489: * too slow to be entirely satisfactory. Requires reading
1490: * dirty bits for entire address space. Implementations tend
1491: * to assume that the client is a (slow) debugger.
1492: * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
1493: * dirtied pages. The implementation (and implementability)
1494: * is highly system dependent. This usually fails when system
1495: * calls write to a protected page. We prevent the read system
1496: * call from doing so. It is the clients responsibility to
1497: * make sure that other system calls are similarly protected
1498: * or write only to the stack.
1499: */
1500:
1501: GC_bool GC_dirty_maintained = FALSE;
1502:
1503: # ifdef DEFAULT_VDB
1504:
1505: /* All of the following assume the allocation lock is held, and */
1506: /* signals are disabled. */
1507:
1508: /* The client asserts that unallocated pages in the heap are never */
1509: /* written. */
1510:
1511: /* Initialize virtual dirty bit implementation. */
1512: void GC_dirty_init()
1513: {
1514: GC_dirty_maintained = TRUE;
1515: }
1516:
1517: /* Retrieve system dirty bits for heap to a local buffer. */
1518: /* Restore the systems notion of which pages are dirty. */
1519: void GC_read_dirty()
1520: {}
1521:
1522: /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
1523: /* If the actual page size is different, this returns TRUE if any */
1524: /* of the pages overlapping h are dirty. This routine may err on the */
1525: /* side of labelling pages as dirty (and this implementation does). */
1526: /*ARGSUSED*/
1527: GC_bool GC_page_was_dirty(h)
1528: struct hblk *h;
1529: {
1530: return(TRUE);
1531: }
1532:
1533: /*
1534: * The following two routines are typically less crucial. They matter
1535: * most with large dynamic libraries, or if we can't accurately identify
1536: * stacks, e.g. under Solaris 2.X. Otherwise the following default
1537: * versions are adequate.
1538: */
1539:
1540: /* Could any valid GC heap pointer ever have been written to this page? */
1541: /*ARGSUSED*/
1542: GC_bool GC_page_was_ever_dirty(h)
1543: struct hblk *h;
1544: {
1545: return(TRUE);
1546: }
1547:
1548: /* Reset the n pages starting at h to "was never dirty" status. */
1549: void GC_is_fresh(h, n)
1550: struct hblk *h;
1551: word n;
1552: {
1553: }
1554:
1555: /* A call hints that h is about to be written. */
1556: /* May speed up some dirty bit implementations. */
1557: /*ARGSUSED*/
1558: void GC_write_hint(h)
1559: struct hblk *h;
1560: {
1561: }
1562:
1563: # endif /* DEFAULT_VDB */
1564:
1565:
1566: # ifdef MPROTECT_VDB
1567:
1568: /*
1569: * See DEFAULT_VDB for interface descriptions.
1570: */
1571:
1572: /*
1573: * This implementation maintains dirty bits itself by catching write
1574: * faults and keeping track of them. We assume nobody else catches
1575: * SIGBUS or SIGSEGV. We assume no write faults occur in system calls
1576: * except as a result of a read system call. This means clients must
1577: * either ensure that system calls do not touch the heap, or must
1578: * provide their own wrappers analogous to the one for read.
1579: * We assume the page size is a multiple of HBLKSIZE.
1580: * This implementation is currently SunOS 4.X and IRIX 5.X specific, though we
1581: * tried to use portable code where easily possible. It is known
1582: * not to work under a number of other systems.
1583: */
1584:
1585: # ifndef MSWIN32
1586:
1587: # include <sys/mman.h>
1588: # include <signal.h>
1589: # include <sys/syscall.h>
1590:
1591: # define PROTECT(addr, len) \
1592: if (mprotect((caddr_t)(addr), (int)(len), \
1593: PROT_READ | OPT_PROT_EXEC) < 0) { \
1594: ABORT("mprotect failed"); \
1595: }
1596: # define UNPROTECT(addr, len) \
1597: if (mprotect((caddr_t)(addr), (int)(len), \
1598: PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
1599: ABORT("un-mprotect failed"); \
1600: }
1601:
1602: # else
1603:
1604: # include <signal.h>
1605:
1606: static DWORD protect_junk;
1607: # define PROTECT(addr, len) \
1608: if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
1609: &protect_junk)) { \
1610: DWORD last_error = GetLastError(); \
1611: GC_printf1("Last error code: %lx\n", last_error); \
1612: ABORT("VirtualProtect failed"); \
1613: }
1614: # define UNPROTECT(addr, len) \
1615: if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
1616: &protect_junk)) { \
1617: ABORT("un-VirtualProtect failed"); \
1618: }
1619:
1620: # endif
1621:
1622: #if defined(SUNOS4) || defined(FREEBSD)
1623: typedef void (* SIG_PF)();
1624: #endif
1625: #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX)
1626: typedef void (* SIG_PF)(int);
1627: #endif
1628: #if defined(MSWIN32)
1629: typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
1630: # undef SIG_DFL
1631: # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
1632: #endif
1633:
1634: #if defined(IRIX5) || defined(OSF1)
1635: typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
1636: #endif
1637: #if defined(SUNOS5SIGS)
1638: typedef void (* REAL_SIG_PF)(int, struct siginfo *, void *);
1639: #endif
1640: #if defined(LINUX)
1641: # include <linux/version.h>
1642: # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA)
1643: typedef struct sigcontext s_c;
1644: # else
1645: typedef struct sigcontext_struct s_c;
1646: # endif
1647: # ifdef ALPHA
1648: typedef void (* REAL_SIG_PF)(int, int, s_c *);
1649: /* Retrieve fault address from sigcontext structure by decoding */
1650: /* instruction. */
1651: char * get_fault_addr(s_c *sc) {
1652: unsigned instr;
1653: word faultaddr;
1654:
1655: instr = *((unsigned *)(sc->sc_pc));
1656: faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
1657: faultaddr += (word) (((int)instr << 16) >> 16);
1658: return (char *)faultaddr;
1659: }
1660: # else /* !ALPHA */
1661: typedef void (* REAL_SIG_PF)(int, s_c);
1662: # endif /* !ALPHA */
1663: # endif
1664:
1665: SIG_PF GC_old_bus_handler;
1666: SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */
1667:
1668: /*ARGSUSED*/
1669: # if defined (SUNOS4) || defined(FREEBSD)
1670: void GC_write_fault_handler(sig, code, scp, addr)
1671: int sig, code;
1672: struct sigcontext *scp;
1673: char * addr;
1674: # ifdef SUNOS4
1675: # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
1676: # define CODE_OK (FC_CODE(code) == FC_PROT \
1677: || (FC_CODE(code) == FC_OBJERR \
1678: && FC_ERRNO(code) == FC_PROT))
1679: # endif
1680: # ifdef FREEBSD
1681: # define SIG_OK (sig == SIGBUS)
1682: # define CODE_OK (code == BUS_PAGE_FAULT)
1683: # endif
1684: # endif
1685: # if defined(IRIX5) || defined(OSF1)
1686: # include <errno.h>
1687: void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
1688: # define SIG_OK (sig == SIGSEGV)
1689: # ifdef OSF1
1690: # define CODE_OK (code == 2 /* experimentally determined */)
1691: # endif
1692: # ifdef IRIX5
1693: # define CODE_OK (code == EACCES)
1694: # endif
1695: # endif
1696: # if defined(LINUX)
1697: # ifdef ALPHA
1698: void GC_write_fault_handler(int sig, int code, s_c * sc)
1699: # else
1700: void GC_write_fault_handler(int sig, s_c sc)
1701: # endif
1702: # define SIG_OK (sig == SIGSEGV)
1703: # define CODE_OK TRUE
1704: /* Empirically c.trapno == 14, but is that useful? */
1705: /* We assume Intel architecture, so alignment */
1706: /* faults are not possible. */
1707: # endif
1708: # if defined(SUNOS5SIGS)
1709: void GC_write_fault_handler(int sig, struct siginfo *scp, void * context)
1710: # define SIG_OK (sig == SIGSEGV)
1711: # define CODE_OK (scp -> si_code == SEGV_ACCERR)
1712: # endif
1713: # if defined(MSWIN32)
1714: LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
1715: # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
1716: EXCEPTION_ACCESS_VIOLATION)
1717: # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
1718: /* Write fault */
1719: # endif
1720: {
1721: register unsigned i;
1722: # ifdef IRIX5
1723: char * addr = (char *) (size_t) (scp -> sc_badvaddr);
1724: # endif
1725: # if defined(OSF1) && defined(ALPHA)
1726: char * addr = (char *) (scp -> sc_traparg_a0);
1727: # endif
1728: # ifdef SUNOS5SIGS
1729: char * addr = (char *) (scp -> si_addr);
1730: # endif
1731: # ifdef LINUX
1732: # ifdef I386
1733: char * addr = (char *) (sc.cr2);
1734: # else
1735: # if defined(M68K)
1736: char * addr = NULL;
1737:
1738: struct sigcontext *scp = (struct sigcontext *)(&sc);
1739:
1740: int format = (scp->sc_formatvec >> 12) & 0xf;
1741: unsigned long *framedata = (unsigned long *)(scp + 1);
1742: unsigned long ea;
1743:
1744: if (format == 0xa || format == 0xb) {
1745: /* 68020/030 */
1746: ea = framedata[2];
1747: } else if (format == 7) {
1748: /* 68040 */
1749: ea = framedata[3];
1750: } else if (format == 4) {
1751: /* 68060 */
1752: ea = framedata[0];
1753: if (framedata[1] & 0x08000000) {
1754: /* correct addr on misaligned access */
1755: ea = (ea+4095)&(~4095);
1756: }
1757: }
1758: addr = (char *)ea;
1759: # else
1760: # ifdef ALPHA
1761: char * addr = get_fault_addr(sc);
1762: # else
1763: --> architecture not supported
1764: # endif
1765: # endif
1766: # endif
1767: # endif
1768: # if defined(MSWIN32)
1769: char * addr = (char *) (exc_info -> ExceptionRecord
1770: -> ExceptionInformation[1]);
1771: # define sig SIGSEGV
1772: # endif
1773:
1774: if (SIG_OK && CODE_OK) {
1775: register struct hblk * h =
1776: (struct hblk *)((word)addr & ~(GC_page_size-1));
1777: GC_bool in_allocd_block;
1778:
1779: # ifdef SUNOS5SIGS
1780: /* Address is only within the correct physical page. */
1781: in_allocd_block = FALSE;
1782: for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1783: if (HDR(h+i) != 0) {
1784: in_allocd_block = TRUE;
1785: }
1786: }
1787: # else
1788: in_allocd_block = (HDR(addr) != 0);
1789: # endif
1790: if (!in_allocd_block) {
1791: /* Heap blocks now begin and end on page boundaries */
1792: SIG_PF old_handler;
1793:
1794: if (sig == SIGSEGV) {
1795: old_handler = GC_old_segv_handler;
1796: } else {
1797: old_handler = GC_old_bus_handler;
1798: }
1799: if (old_handler == SIG_DFL) {
1800: # ifndef MSWIN32
1801: GC_err_printf1("Segfault at 0x%lx\n", addr);
1802: ABORT("Unexpected bus error or segmentation fault");
1803: # else
1804: return(EXCEPTION_CONTINUE_SEARCH);
1805: # endif
1806: } else {
1807: # if defined (SUNOS4) || defined(FREEBSD)
1808: (*old_handler) (sig, code, scp, addr);
1809: return;
1810: # endif
1811: # if defined (SUNOS5SIGS)
1812: (*(REAL_SIG_PF)old_handler) (sig, scp, context);
1813: return;
1814: # endif
1815: # if defined (LINUX)
1816: # ifdef ALPHA
1817: (*(REAL_SIG_PF)old_handler) (sig, code, sc);
1818: # else
1819: (*(REAL_SIG_PF)old_handler) (sig, sc);
1820: # endif
1821: return;
1822: # endif
1823: # if defined (IRIX5) || defined(OSF1)
1824: (*(REAL_SIG_PF)old_handler) (sig, code, scp);
1825: return;
1826: # endif
1827: # ifdef MSWIN32
1828: return((*old_handler)(exc_info));
1829: # endif
1830: }
1831: }
1832: for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1833: register int index = PHT_HASH(h+i);
1834:
1835: set_pht_entry_from_index(GC_dirty_pages, index);
1836: }
1837: UNPROTECT(h, GC_page_size);
1838: # if defined(OSF1) || defined(LINUX)
1839: /* These reset the signal handler each time by default. */
1840: signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
1841: # endif
1842: /* The write may not take place before dirty bits are read. */
1843: /* But then we'll fault again ... */
1844: # ifdef MSWIN32
1845: return(EXCEPTION_CONTINUE_EXECUTION);
1846: # else
1847: return;
1848: # endif
1849: }
1850: #ifdef MSWIN32
1851: return EXCEPTION_CONTINUE_SEARCH;
1852: #else
1853: GC_err_printf1("Segfault at 0x%lx\n", addr);
1854: ABORT("Unexpected bus error or segmentation fault");
1855: #endif
1856: }
1857:
1858: /*
1859: * We hold the allocation lock. We expect block h to be written
1860: * shortly.
1861: */
1862: void GC_write_hint(h)
1863: struct hblk *h;
1864: {
1865: register struct hblk * h_trunc;
1866: register unsigned i;
1867: register GC_bool found_clean;
1868:
1869: if (!GC_dirty_maintained) return;
1870: h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
1871: found_clean = FALSE;
1872: for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1873: register int index = PHT_HASH(h_trunc+i);
1874:
1875: if (!get_pht_entry_from_index(GC_dirty_pages, index)) {
1876: found_clean = TRUE;
1877: set_pht_entry_from_index(GC_dirty_pages, index);
1878: }
1879: }
1880: if (found_clean) {
1881: UNPROTECT(h_trunc, GC_page_size);
1882: }
1883: }
1884:
1885: void GC_dirty_init()
1886: {
1887: #if defined(SUNOS5SIGS) || defined(IRIX5) /* || defined(OSF1) */
1888: struct sigaction act, oldact;
1889: # ifdef IRIX5
1890: act.sa_flags = SA_RESTART;
1891: act.sa_handler = GC_write_fault_handler;
1892: # else
1893: act.sa_flags = SA_RESTART | SA_SIGINFO;
1894: act.sa_sigaction = GC_write_fault_handler;
1895: # endif
1896: (void)sigemptyset(&act.sa_mask);
1897: #endif
1898: # ifdef PRINTSTATS
1899: GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
1900: # endif
1901: GC_dirty_maintained = TRUE;
1902: if (GC_page_size % HBLKSIZE != 0) {
1903: GC_err_printf0("Page size not multiple of HBLKSIZE\n");
1904: ABORT("Page size not multiple of HBLKSIZE");
1905: }
1906: # if defined(SUNOS4) || defined(FREEBSD)
1907: GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
1908: if (GC_old_bus_handler == SIG_IGN) {
1909: GC_err_printf0("Previously ignored bus error!?");
1910: GC_old_bus_handler = SIG_DFL;
1911: }
1912: if (GC_old_bus_handler != SIG_DFL) {
1913: # ifdef PRINTSTATS
1914: GC_err_printf0("Replaced other SIGBUS handler\n");
1915: # endif
1916: }
1917: # endif
1918: # if defined(OSF1) || defined(SUNOS4) || defined(LINUX)
1919: GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
1920: if (GC_old_segv_handler == SIG_IGN) {
1921: GC_err_printf0("Previously ignored segmentation violation!?");
1922: GC_old_segv_handler = SIG_DFL;
1923: }
1924: if (GC_old_segv_handler != SIG_DFL) {
1925: # ifdef PRINTSTATS
1926: GC_err_printf0("Replaced other SIGSEGV handler\n");
1927: # endif
1928: }
1929: # endif
1930: # if defined(SUNOS5SIGS) || defined(IRIX5)
1931: # if defined(IRIX_THREADS) || defined(IRIX_PCR_THREADS)
1932: sigaction(SIGSEGV, 0, &oldact);
1933: sigaction(SIGSEGV, &act, 0);
1934: # else
1935: sigaction(SIGSEGV, &act, &oldact);
1936: # endif
1937: # if defined(_sigargs)
1938: /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
1939: /* sa_sigaction. */
1940: GC_old_segv_handler = oldact.sa_handler;
1941: # else /* Irix 6.x or SUNOS5SIGS */
1942: if (oldact.sa_flags & SA_SIGINFO) {
1943: GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
1944: } else {
1945: GC_old_segv_handler = oldact.sa_handler;
1946: }
1947: # endif
1948: if (GC_old_segv_handler == SIG_IGN) {
1949: GC_err_printf0("Previously ignored segmentation violation!?");
1950: GC_old_segv_handler = SIG_DFL;
1951: }
1952: if (GC_old_segv_handler != SIG_DFL) {
1953: # ifdef PRINTSTATS
1954: GC_err_printf0("Replaced other SIGSEGV handler\n");
1955: # endif
1956: }
1957: # endif
1958: # if defined(MSWIN32)
1959: GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
1960: if (GC_old_segv_handler != NULL) {
1961: # ifdef PRINTSTATS
1962: GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
1963: # endif
1964: } else {
1965: GC_old_segv_handler = SIG_DFL;
1966: }
1967: # endif
1968: }
1969:
1970:
1971:
1972: void GC_protect_heap()
1973: {
1974: ptr_t start;
1975: word len;
1976: unsigned i;
1977:
1978: for (i = 0; i < GC_n_heap_sects; i++) {
1979: start = GC_heap_sects[i].hs_start;
1980: len = GC_heap_sects[i].hs_bytes;
1981: PROTECT(start, len);
1982: }
1983: }
1984:
1985: /* We assume that either the world is stopped or its OK to lose dirty */
1986: /* bits while this is happenning (as in GC_enable_incremental). */
1987: void GC_read_dirty()
1988: {
1989: BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
1990: (sizeof GC_dirty_pages));
1991: BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
1992: GC_protect_heap();
1993: }
1994:
1995: GC_bool GC_page_was_dirty(h)
1996: struct hblk * h;
1997: {
1998: register word index = PHT_HASH(h);
1999:
2000: return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2001: }
2002:
2003: /*
2004: * Acquiring the allocation lock here is dangerous, since this
2005: * can be called from within GC_call_with_alloc_lock, and the cord
2006: * package does so. On systems that allow nested lock acquisition, this
2007: * happens to work.
2008: * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2009: */
2010:
2011: void GC_begin_syscall()
2012: {
2013: if (!I_HOLD_LOCK()) LOCK();
2014: }
2015:
2016: void GC_end_syscall()
2017: {
2018: if (!I_HOLD_LOCK()) UNLOCK();
2019: }
2020:
2021: void GC_unprotect_range(addr, len)
2022: ptr_t addr;
2023: word len;
2024: {
2025: struct hblk * start_block;
2026: struct hblk * end_block;
2027: register struct hblk *h;
2028: ptr_t obj_start;
2029:
2030: if (!GC_incremental) return;
2031: obj_start = GC_base(addr);
2032: if (obj_start == 0) return;
2033: if (GC_base(addr + len - 1) != obj_start) {
2034: ABORT("GC_unprotect_range(range bigger than object)");
2035: }
2036: start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
2037: end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
2038: end_block += GC_page_size/HBLKSIZE - 1;
2039: for (h = start_block; h <= end_block; h++) {
2040: register word index = PHT_HASH(h);
2041:
2042: set_pht_entry_from_index(GC_dirty_pages, index);
2043: }
2044: UNPROTECT(start_block,
2045: ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
2046: }
2047:
2048: #ifndef MSWIN32
2049: /* Replacement for UNIX system call. */
2050: /* Other calls that write to the heap */
2051: /* should be handled similarly. */
2052: # if defined(__STDC__) && !defined(SUNOS4)
2053: # include <unistd.h>
2054: ssize_t read(int fd, void *buf, size_t nbyte)
2055: # else
2056: # ifndef LINT
2057: int read(fd, buf, nbyte)
2058: # else
2059: int GC_read(fd, buf, nbyte)
2060: # endif
2061: int fd;
2062: char *buf;
2063: int nbyte;
2064: # endif
2065: {
2066: int result;
2067:
2068: GC_begin_syscall();
2069: GC_unprotect_range(buf, (word)nbyte);
2070: # ifdef IRIX5
2071: /* Indirect system call may not always be easily available. */
2072: /* We could call _read, but that would interfere with the */
2073: /* libpthread interception of read. */
2074: {
2075: struct iovec iov;
2076:
2077: iov.iov_base = buf;
2078: iov.iov_len = nbyte;
2079: result = readv(fd, &iov, 1);
2080: }
2081: # else
2082: result = syscall(SYS_read, fd, buf, nbyte);
2083: # endif
2084: GC_end_syscall();
2085: return(result);
2086: }
2087: #endif /* !MSWIN32 */
2088:
2089: /*ARGSUSED*/
2090: GC_bool GC_page_was_ever_dirty(h)
2091: struct hblk *h;
2092: {
2093: return(TRUE);
2094: }
2095:
2096: /* Reset the n pages starting at h to "was never dirty" status. */
2097: /*ARGSUSED*/
2098: void GC_is_fresh(h, n)
2099: struct hblk *h;
2100: word n;
2101: {
2102: }
2103:
2104: # endif /* MPROTECT_VDB */
2105:
2106: # ifdef PROC_VDB
2107:
2108: /*
2109: * See DEFAULT_VDB for interface descriptions.
2110: */
2111:
2112: /*
2113: * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
2114: * from which we can read page modified bits. This facility is far from
2115: * optimal (e.g. we would like to get the info for only some of the
2116: * address space), but it avoids intercepting system calls.
2117: */
2118:
2119: #include <errno.h>
2120: #include <sys/types.h>
2121: #include <sys/signal.h>
2122: #include <sys/fault.h>
2123: #include <sys/syscall.h>
2124: #include <sys/procfs.h>
2125: #include <sys/stat.h>
2126: #include <fcntl.h>
2127:
2128: #define INITIAL_BUF_SZ 4096
2129: word GC_proc_buf_size = INITIAL_BUF_SZ;
2130: char *GC_proc_buf;
2131:
2132: #ifdef SOLARIS_THREADS
2133: /* We don't have exact sp values for threads. So we count on */
2134: /* occasionally declaring stack pages to be fresh. Thus we */
2135: /* need a real implementation of GC_is_fresh. We can't clear */
2136: /* entries in GC_written_pages, since that would declare all */
2137: /* pages with the given hash address to be fresh. */
2138: # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
2139: struct hblk ** GC_fresh_pages; /* A direct mapped cache. */
2140: /* Collisions are dropped. */
2141:
2142: # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
2143: # define ADD_FRESH_PAGE(h) \
2144: GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
2145: # define PAGE_IS_FRESH(h) \
2146: (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
2147: #endif
2148:
2149: /* Add all pages in pht2 to pht1 */
2150: void GC_or_pages(pht1, pht2)
2151: page_hash_table pht1, pht2;
2152: {
2153: register int i;
2154:
2155: for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
2156: }
2157:
2158: int GC_proc_fd;
2159:
2160: void GC_dirty_init()
2161: {
2162: int fd;
2163: char buf[30];
2164:
2165: GC_dirty_maintained = TRUE;
2166: if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
2167: register int i;
2168:
2169: for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
2170: # ifdef PRINTSTATS
2171: GC_printf1("Allocated words:%lu:all pages may have been written\n",
2172: (unsigned long)
2173: (GC_words_allocd + GC_words_allocd_before_gc));
2174: # endif
2175: }
2176: sprintf(buf, "/proc/%d", getpid());
2177: fd = open(buf, O_RDONLY);
2178: if (fd < 0) {
2179: ABORT("/proc open failed");
2180: }
2181: GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
2182: close(fd);
2183: if (GC_proc_fd < 0) {
2184: ABORT("/proc ioctl failed");
2185: }
2186: GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
2187: # ifdef SOLARIS_THREADS
2188: GC_fresh_pages = (struct hblk **)
2189: GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
2190: if (GC_fresh_pages == 0) {
2191: GC_err_printf0("No space for fresh pages\n");
2192: EXIT();
2193: }
2194: BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
2195: # endif
2196: }
2197:
2198: /* Ignore write hints. They don't help us here. */
2199: /*ARGSUSED*/
2200: void GC_write_hint(h)
2201: struct hblk *h;
2202: {
2203: }
2204:
2205: #ifdef SOLARIS_THREADS
2206: # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
2207: #else
2208: # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
2209: #endif
2210:
2211: void GC_read_dirty()
2212: {
2213: unsigned long ps, np;
2214: int nmaps;
2215: ptr_t vaddr;
2216: struct prasmap * map;
2217: char * bufp;
2218: ptr_t current_addr, limit;
2219: int i;
2220: int dummy;
2221:
2222: BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
2223:
2224: bufp = GC_proc_buf;
2225: if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
2226: # ifdef PRINTSTATS
2227: GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
2228: GC_proc_buf_size);
2229: # endif
2230: {
2231: /* Retry with larger buffer. */
2232: word new_size = 2 * GC_proc_buf_size;
2233: char * new_buf = GC_scratch_alloc(new_size);
2234:
2235: if (new_buf != 0) {
2236: GC_proc_buf = bufp = new_buf;
2237: GC_proc_buf_size = new_size;
2238: }
2239: if (syscall(SYS_read, GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
2240: WARN("Insufficient space for /proc read\n", 0);
2241: /* Punt: */
2242: memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
2243: memset(GC_written_pages, 0xff, sizeof(page_hash_table));
2244: # ifdef SOLARIS_THREADS
2245: BZERO(GC_fresh_pages,
2246: MAX_FRESH_PAGES * sizeof (struct hblk *));
2247: # endif
2248: return;
2249: }
2250: }
2251: }
2252: /* Copy dirty bits into GC_grungy_pages */
2253: nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
2254: /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
2255: nmaps, PG_REFERENCED, PG_MODIFIED); */
2256: bufp = bufp + sizeof(struct prpageheader);
2257: for (i = 0; i < nmaps; i++) {
2258: map = (struct prasmap *)bufp;
2259: vaddr = (ptr_t)(map -> pr_vaddr);
2260: ps = map -> pr_pagesize;
2261: np = map -> pr_npage;
2262: /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
2263: limit = vaddr + ps * np;
2264: bufp += sizeof (struct prasmap);
2265: for (current_addr = vaddr;
2266: current_addr < limit; current_addr += ps){
2267: if ((*bufp++) & PG_MODIFIED) {
2268: register struct hblk * h = (struct hblk *) current_addr;
2269:
2270: while ((ptr_t)h < current_addr + ps) {
2271: register word index = PHT_HASH(h);
2272:
2273: set_pht_entry_from_index(GC_grungy_pages, index);
2274: # ifdef SOLARIS_THREADS
2275: {
2276: register int slot = FRESH_PAGE_SLOT(h);
2277:
2278: if (GC_fresh_pages[slot] == h) {
2279: GC_fresh_pages[slot] = 0;
2280: }
2281: }
2282: # endif
2283: h++;
2284: }
2285: }
2286: }
2287: bufp += sizeof(long) - 1;
2288: bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
2289: }
2290: /* Update GC_written_pages. */
2291: GC_or_pages(GC_written_pages, GC_grungy_pages);
2292: # ifdef SOLARIS_THREADS
2293: /* Make sure that old stacks are considered completely clean */
2294: /* unless written again. */
2295: GC_old_stacks_are_fresh();
2296: # endif
2297: }
2298:
2299: #undef READ
2300:
2301: GC_bool GC_page_was_dirty(h)
2302: struct hblk *h;
2303: {
2304: register word index = PHT_HASH(h);
2305: register GC_bool result;
2306:
2307: result = get_pht_entry_from_index(GC_grungy_pages, index);
2308: # ifdef SOLARIS_THREADS
2309: if (result && PAGE_IS_FRESH(h)) result = FALSE;
2310: /* This happens only if page was declared fresh since */
2311: /* the read_dirty call, e.g. because it's in an unused */
2312: /* thread stack. It's OK to treat it as clean, in */
2313: /* that case. And it's consistent with */
2314: /* GC_page_was_ever_dirty. */
2315: # endif
2316: return(result);
2317: }
2318:
2319: GC_bool GC_page_was_ever_dirty(h)
2320: struct hblk *h;
2321: {
2322: register word index = PHT_HASH(h);
2323: register GC_bool result;
2324:
2325: result = get_pht_entry_from_index(GC_written_pages, index);
2326: # ifdef SOLARIS_THREADS
2327: if (result && PAGE_IS_FRESH(h)) result = FALSE;
2328: # endif
2329: return(result);
2330: }
2331:
2332: /* Caller holds allocation lock. */
2333: void GC_is_fresh(h, n)
2334: struct hblk *h;
2335: word n;
2336: {
2337:
2338: register word index;
2339:
2340: # ifdef SOLARIS_THREADS
2341: register word i;
2342:
2343: if (GC_fresh_pages != 0) {
2344: for (i = 0; i < n; i++) {
2345: ADD_FRESH_PAGE(h + i);
2346: }
2347: }
2348: # endif
2349: }
2350:
2351: # endif /* PROC_VDB */
2352:
2353:
2354: # ifdef PCR_VDB
2355:
2356: # include "vd/PCR_VD.h"
2357:
2358: # define NPAGES (32*1024) /* 128 MB */
2359:
2360: PCR_VD_DB GC_grungy_bits[NPAGES];
2361:
2362: ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */
2363: /* HBLKSIZE aligned. */
2364:
2365: void GC_dirty_init()
2366: {
2367: GC_dirty_maintained = TRUE;
2368: /* For the time being, we assume the heap generally grows up */
2369: GC_vd_base = GC_heap_sects[0].hs_start;
2370: if (GC_vd_base == 0) {
2371: ABORT("Bad initial heap segment");
2372: }
2373: if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
2374: != PCR_ERes_okay) {
2375: ABORT("dirty bit initialization failed");
2376: }
2377: }
2378:
2379: void GC_read_dirty()
2380: {
2381: /* lazily enable dirty bits on newly added heap sects */
2382: {
2383: static int onhs = 0;
2384: int nhs = GC_n_heap_sects;
2385: for( ; onhs < nhs; onhs++ ) {
2386: PCR_VD_WriteProtectEnable(
2387: GC_heap_sects[onhs].hs_start,
2388: GC_heap_sects[onhs].hs_bytes );
2389: }
2390: }
2391:
2392:
2393: if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
2394: != PCR_ERes_okay) {
2395: ABORT("dirty bit read failed");
2396: }
2397: }
2398:
2399: GC_bool GC_page_was_dirty(h)
2400: struct hblk *h;
2401: {
2402: if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
2403: return(TRUE);
2404: }
2405: return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
2406: }
2407:
2408: /*ARGSUSED*/
2409: void GC_write_hint(h)
2410: struct hblk *h;
2411: {
2412: PCR_VD_WriteProtectDisable(h, HBLKSIZE);
2413: PCR_VD_WriteProtectEnable(h, HBLKSIZE);
2414: }
2415:
2416: # endif /* PCR_VDB */
2417:
2418: /*
2419: * Call stack save code for debugging.
2420: * Should probably be in mach_dep.c, but that requires reorganization.
2421: */
2422: #if defined(SPARC) && !defined(LINUX)
2423: # if defined(SUNOS4)
2424: # include <machine/frame.h>
2425: # else
2426: # if defined (DRSNX)
2427: # include <sys/sparc/frame.h>
2428: # else
2429: # if defined(OPENBSD)
2430: # include <frame.h>
2431: # else
2432: # include <sys/frame.h>
2433: # endif
2434: # endif
2435: # endif
2436: # if NARGS > 6
2437: --> We only know how to to get the first 6 arguments
2438: # endif
2439:
2440: #ifdef SAVE_CALL_CHAIN
2441: /* Fill in the pc and argument information for up to NFRAMES of my */
2442: /* callers. Ignore my frame and my callers frame. */
2443:
2444: #ifdef OPENBSD
2445: # define FR_SAVFP fr_fp
2446: # define FR_SAVPC fr_pc
2447: #else
2448: # define FR_SAVFP fr_savfp
2449: # define FR_SAVPC fr_savpc
2450: #endif
2451:
2452: void GC_save_callers (info)
2453: struct callinfo info[NFRAMES];
2454: {
2455: struct frame *frame;
2456: struct frame *fp;
2457: int nframes = 0;
2458: word GC_save_regs_in_stack();
2459:
2460: frame = (struct frame *) GC_save_regs_in_stack ();
2461:
2462: for (fp = frame -> FR_SAVFP; fp != 0 && nframes < NFRAMES;
2463: fp = fp -> FR_SAVFP, nframes++) {
2464: register int i;
2465:
2466: info[nframes].ci_pc = fp->FR_SAVPC;
2467: for (i = 0; i < NARGS; i++) {
2468: info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
2469: }
2470: }
2471: if (nframes < NFRAMES) info[nframes].ci_pc = 0;
2472: }
2473:
2474: #endif /* SAVE_CALL_CHAIN */
2475: #endif /* SPARC */
2476:
2477:
2478:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>