Annotation of OpenXM_contrib2/asir2000/gc/os_dep.c, Revision 1.4
1.1 noro 1: int ox_usr1_sent, ox_int_received, critical_when_signal;
2: static int inside_critical_section;
3:
4: /*
1.2 noro 5: * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
1.1 noro 6: * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
1.2 noro 7: * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
8: * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
1.1 noro 9: *
10: * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
11: * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
12: *
13: * Permission is hereby granted to use or copy this program
14: * for any purpose, provided the above notices are retained on all copies.
15: * Permission to modify the code and to distribute modified code is granted,
16: * provided the above notices are retained, and a notice that the code was
17: * modified is included with the above copyright notice.
18: */
19:
1.4 ! noro 20: # include "private/gc_priv.h"
1.1 noro 21:
22: # if defined(LINUX) && !defined(POWERPC)
23: # include <linux/version.h>
24: # if (LINUX_VERSION_CODE <= 0x10400)
25: /* Ugly hack to get struct sigcontext_struct definition. Required */
26: /* for some early 1.3.X releases. Will hopefully go away soon. */
27: /* in some later Linux releases, asm/sigcontext.h may have to */
28: /* be included instead. */
29: # define __KERNEL__
30: # include <asm/signal.h>
31: # undef __KERNEL__
32: # else
33: /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
34: /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
35: /* prototypes, so we have to include the top-level sigcontext.h to */
36: /* make sure the former gets defined to be the latter if appropriate. */
37: # include <features.h>
38: # if 2 <= __GLIBC__
1.2 noro 39: # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
1.1 noro 40: /* glibc 2.1 no longer has sigcontext.h. But signal.h */
41: /* has the right declaration for glibc 2.1. */
42: # include <sigcontext.h>
43: # endif /* 0 == __GLIBC_MINOR__ */
44: # else /* not 2 <= __GLIBC__ */
45: /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
46: /* one. Check LINUX_VERSION_CODE to see which we should reference. */
47: # include <asm/sigcontext.h>
48: # endif /* 2 <= __GLIBC__ */
49: # endif
50: # endif
1.4 ! noro 51: # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \
! 52: && !defined(MSWINCE)
1.1 noro 53: # include <sys/types.h>
54: # if !defined(MSWIN32) && !defined(SUNOS4)
55: # include <unistd.h>
56: # endif
57: # endif
58:
59: # include <stdio.h>
1.4 ! noro 60: # if defined(MSWINCE)
! 61: # define SIGSEGV 0 /* value is irrelevant */
! 62: # else
! 63: # include <signal.h>
! 64: # endif
1.1 noro 65:
66: /* Blatantly OS dependent routines, except for those that are related */
1.2 noro 67: /* to dynamic loading. */
1.1 noro 68:
69: # if !defined(THREADS) && !defined(STACKBOTTOM) && defined(HEURISTIC2)
70: # define NEED_FIND_LIMIT
71: # endif
72:
1.2 noro 73: # if defined(IRIX_THREADS) || defined(HPUX_THREADS)
1.1 noro 74: # define NEED_FIND_LIMIT
75: # endif
76:
1.3 noro 77: # if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
1.1 noro 78: # define NEED_FIND_LIMIT
79: # endif
80:
81: # if (defined(SVR4) || defined(AUX) || defined(DGUX)) && !defined(PCR)
82: # define NEED_FIND_LIMIT
83: # endif
84:
1.2 noro 85: # if defined(LINUX) && \
1.3 noro 86: (defined(POWERPC) || defined(SPARC) || defined(ALPHA) || defined(IA64) \
87: || defined(MIPS))
1.1 noro 88: # define NEED_FIND_LIMIT
89: # endif
90:
91: #ifdef NEED_FIND_LIMIT
92: # include <setjmp.h>
93: #endif
94:
95: #ifdef FREEBSD
96: # include <machine/trap.h>
97: #endif
98:
99: #ifdef AMIGA
1.4 ! noro 100: # define GC_AMIGA_DEF
! 101: # include "AmigaOS.c"
! 102: # undef GC_AMIGA_DEF
1.1 noro 103: #endif
104:
1.4 ! noro 105: #if defined(MSWIN32) || defined(MSWINCE)
1.1 noro 106: # define WIN32_LEAN_AND_MEAN
107: # define NOSERVICE
108: # include <windows.h>
109: #endif
110:
111: #ifdef MACOS
112: # include <Processes.h>
113: #endif
114:
115: #ifdef IRIX5
116: # include <sys/uio.h>
117: # include <malloc.h> /* for locking */
118: #endif
119: #ifdef USE_MMAP
120: # include <sys/types.h>
121: # include <sys/mman.h>
122: # include <sys/stat.h>
1.4 ! noro 123: #endif
! 124:
! 125: #ifdef UNIX_LIKE
1.1 noro 126: # include <fcntl.h>
127: #endif
128:
129: #ifdef SUNOS5SIGS
130: # include <sys/siginfo.h>
131: # undef setjmp
132: # undef longjmp
133: # define setjmp(env) sigsetjmp(env, 1)
134: # define longjmp(env, val) siglongjmp(env, val)
135: # define jmp_buf sigjmp_buf
136: #endif
137:
138: #ifdef DJGPP
1.4 ! noro 139: /* Apparently necessary for djgpp 2.01. May cause problems with */
1.1 noro 140: /* other versions. */
141: typedef long unsigned int caddr_t;
142: #endif
143:
144: #ifdef PCR
145: # include "il/PCR_IL.h"
146: # include "th/PCR_ThCtl.h"
147: # include "mm/PCR_MM.h"
148: #endif
149:
150: #if !defined(NO_EXECUTE_PERMISSION)
151: # define OPT_PROT_EXEC PROT_EXEC
152: #else
153: # define OPT_PROT_EXEC 0
154: #endif
155:
1.3 noro 156: #if defined(SEARCH_FOR_DATA_START)
1.1 noro 157: /* The I386 case can be handled without a search. The Alpha case */
158: /* used to be handled differently as well, but the rules changed */
159: /* for recent Linux versions. This seems to be the easiest way to */
160: /* cover all versions. */
1.4 ! noro 161:
! 162: # ifdef LINUX
! 163: # pragma weak __data_start
! 164: extern int __data_start;
! 165: # pragma weak data_start
! 166: extern int data_start;
! 167: # endif /* LINUX */
! 168: extern int _end;
! 169:
1.1 noro 170: ptr_t GC_data_start;
171:
172: void GC_init_linux_data_start()
173: {
174: extern ptr_t GC_find_limit();
175:
1.4 ! noro 176: # ifdef LINUX
! 177: /* Try the easy approaches first: */
! 178: if (&__data_start != 0) {
! 179: GC_data_start = (ptr_t)(&__data_start);
! 180: return;
! 181: }
! 182: if (&data_start != 0) {
! 183: GC_data_start = (ptr_t)(&data_start);
! 184: return;
! 185: }
! 186: # endif /* LINUX */
! 187: GC_data_start = GC_find_limit((ptr_t)(&_end), FALSE);
! 188: }
! 189: #endif
! 190:
! 191: #if defined(NETBSD) && defined(__ELF__)
! 192: ptr_t GC_data_start;
! 193:
! 194: void GC_init_netbsd_elf()
! 195: {
! 196: extern ptr_t GC_find_limit();
! 197: extern char **environ;
! 198: /* This may need to be environ, without the underscore, for */
! 199: /* some versions. */
! 200: GC_data_start = GC_find_limit((ptr_t)&environ, FALSE);
1.1 noro 201: }
202: #endif
203:
204: # ifdef OS2
205:
206: # include <stddef.h>
207:
208: # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
209:
210: struct exe_hdr {
211: unsigned short magic_number;
212: unsigned short padding[29];
213: long new_exe_offset;
214: };
215:
216: #define E_MAGIC(x) (x).magic_number
217: #define EMAGIC 0x5A4D
218: #define E_LFANEW(x) (x).new_exe_offset
219:
220: struct e32_exe {
221: unsigned char magic_number[2];
222: unsigned char byte_order;
223: unsigned char word_order;
224: unsigned long exe_format_level;
225: unsigned short cpu;
226: unsigned short os;
227: unsigned long padding1[13];
228: unsigned long object_table_offset;
229: unsigned long object_count;
230: unsigned long padding2[31];
231: };
232:
233: #define E32_MAGIC1(x) (x).magic_number[0]
234: #define E32MAGIC1 'L'
235: #define E32_MAGIC2(x) (x).magic_number[1]
236: #define E32MAGIC2 'X'
237: #define E32_BORDER(x) (x).byte_order
238: #define E32LEBO 0
239: #define E32_WORDER(x) (x).word_order
240: #define E32LEWO 0
241: #define E32_CPU(x) (x).cpu
242: #define E32CPU286 1
243: #define E32_OBJTAB(x) (x).object_table_offset
244: #define E32_OBJCNT(x) (x).object_count
245:
246: struct o32_obj {
247: unsigned long size;
248: unsigned long base;
249: unsigned long flags;
250: unsigned long pagemap;
251: unsigned long mapsize;
252: unsigned long reserved;
253: };
254:
255: #define O32_FLAGS(x) (x).flags
256: #define OBJREAD 0x0001L
257: #define OBJWRITE 0x0002L
258: #define OBJINVALID 0x0080L
259: #define O32_SIZE(x) (x).size
260: #define O32_BASE(x) (x).base
261:
262: # else /* IBM's compiler */
263:
264: /* A kludge to get around what appears to be a header file bug */
265: # ifndef WORD
266: # define WORD unsigned short
267: # endif
268: # ifndef DWORD
269: # define DWORD unsigned long
270: # endif
271:
272: # define EXE386 1
273: # include <newexe.h>
274: # include <exe386.h>
275:
276: # endif /* __IBMC__ */
277:
278: # define INCL_DOSEXCEPTIONS
279: # define INCL_DOSPROCESS
280: # define INCL_DOSERRORS
281: # define INCL_DOSMODULEMGR
282: # define INCL_DOSMEMMGR
283: # include <os2.h>
284:
285:
286: /* Disable and enable signals during nontrivial allocations */
287:
288: void GC_disable_signals(void)
289: {
290: ULONG nest;
291:
292: DosEnterMustComplete(&nest);
293: if (nest != 1) ABORT("nested GC_disable_signals");
294: }
295:
296: void GC_enable_signals(void)
297: {
298: ULONG nest;
299:
300: DosExitMustComplete(&nest);
301: if (nest != 0) ABORT("GC_enable_signals");
302: }
303:
304:
305: # else
306:
307: # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
1.4 ! noro 308: && !defined(MSWINCE) \
1.1 noro 309: && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW)
310:
311: # if defined(sigmask) && !defined(UTS4)
312: /* Use the traditional BSD interface */
313: # define SIGSET_T int
314: # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
315: # define SIG_FILL(set) (set) = 0x7fffffff
316: /* Setting the leading bit appears to provoke a bug in some */
317: /* longjmp implementations. Most systems appear not to have */
318: /* a signal 32. */
319: # define SIGSETMASK(old, new) (old) = sigsetmask(new)
320: # else
321: /* Use POSIX/SYSV interface */
322: # define SIGSET_T sigset_t
323: # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
324: # define SIG_FILL(set) sigfillset(&set)
325: # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
326: # endif
327:
328: static GC_bool mask_initialized = FALSE;
329:
330: static SIGSET_T new_mask;
331:
332: static SIGSET_T old_mask;
333:
334: static SIGSET_T dummy;
335:
336: #if defined(PRINTSTATS) && !defined(THREADS)
337: # define CHECK_SIGNALS
338: int GC_sig_disabled = 0;
339: #endif
340:
341: void GC_disable_signals()
342: {
343: if (!mask_initialized) {
344: SIG_FILL(new_mask);
345:
346: SIG_DEL(new_mask, SIGSEGV);
347: SIG_DEL(new_mask, SIGILL);
348: SIG_DEL(new_mask, SIGQUIT);
349: # ifdef SIGBUS
350: SIG_DEL(new_mask, SIGBUS);
351: # endif
352: # ifdef SIGIOT
353: SIG_DEL(new_mask, SIGIOT);
354: # endif
355: # ifdef SIGEMT
356: SIG_DEL(new_mask, SIGEMT);
357: # endif
358: # ifdef SIGTRAP
359: SIG_DEL(new_mask, SIGTRAP);
360: # endif
361: mask_initialized = TRUE;
362: }
363: # ifdef CHECK_SIGNALS
364: if (GC_sig_disabled != 0) ABORT("Nested disables");
365: GC_sig_disabled++;
366: # endif
367: SIGSETMASK(old_mask,new_mask);
368: if ( critical_when_signal )
369: inside_critical_section = 1;
370: else {
371: inside_critical_section = 0;
372: critical_when_signal = 1;
373: }
374: }
375:
376: void GC_enable_signals()
377: {
378: # ifdef CHECK_SIGNALS
379: if (GC_sig_disabled != 1) ABORT("Unmatched enable");
380: GC_sig_disabled--;
381: # endif
382: SIGSETMASK(dummy,old_mask);
383: if ( !inside_critical_section ) {
384: critical_when_signal = 0;
385: if ( ox_usr1_sent ) {
386: ox_usr1_sent = 0; ox_usr1_handler();
387: }
388: if ( ox_int_received ) {
389: ox_int_received = 0; int_handler();
390: }
391: } else
392: inside_critical_section = 0;
393: }
394:
395: # endif /* !PCR */
396:
397: # endif /*!OS/2 */
398:
399: /* Ivan Demakov: simplest way (to me) */
400: #ifdef DOS4GW
401: void GC_disable_signals() { }
402: void GC_enable_signals() { }
403: #endif
404:
405: /* Find the page size */
406: word GC_page_size;
407:
1.4 ! noro 408: # if defined(MSWIN32) || defined(MSWINCE)
1.1 noro 409: void GC_setpagesize()
410: {
1.4 ! noro 411: GetSystemInfo(&GC_sysinfo);
! 412: GC_page_size = GC_sysinfo.dwPageSize;
1.1 noro 413: }
414:
415: # else
416: # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
417: || defined(USE_MUNMAP)
418: void GC_setpagesize()
419: {
420: GC_page_size = GETPAGESIZE();
421: }
422: # else
423: /* It's acceptable to fake it. */
424: void GC_setpagesize()
425: {
426: GC_page_size = HBLKSIZE;
427: }
428: # endif
429: # endif
430:
431: /*
432: * Find the base of the stack.
433: * Used only in single-threaded environment.
434: * With threads, GC_mark_roots needs to know how to do this.
435: * Called with allocator lock held.
436: */
1.4 ! noro 437: # if defined(MSWIN32) || defined(MSWINCE)
1.1 noro 438: # define is_writable(prot) ((prot) == PAGE_READWRITE \
439: || (prot) == PAGE_WRITECOPY \
440: || (prot) == PAGE_EXECUTE_READWRITE \
441: || (prot) == PAGE_EXECUTE_WRITECOPY)
442: /* Return the number of bytes that are writable starting at p. */
443: /* The pointer p is assumed to be page aligned. */
444: /* If base is not 0, *base becomes the beginning of the */
445: /* allocation region containing p. */
446: word GC_get_writable_length(ptr_t p, ptr_t *base)
447: {
448: MEMORY_BASIC_INFORMATION buf;
449: word result;
450: word protect;
451:
452: result = VirtualQuery(p, &buf, sizeof(buf));
453: if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
454: if (base != 0) *base = (ptr_t)(buf.AllocationBase);
455: protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
456: if (!is_writable(protect)) {
457: return(0);
458: }
459: if (buf.State != MEM_COMMIT) return(0);
460: return(buf.RegionSize);
461: }
462:
463: ptr_t GC_get_stack_base()
464: {
465: int dummy;
466: ptr_t sp = (ptr_t)(&dummy);
467: ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
468: word size = GC_get_writable_length(trunc_sp, 0);
469:
470: return(trunc_sp + size);
471: }
472:
473:
1.4 ! noro 474: # endif /* MS Windows */
! 475:
! 476: # ifdef BEOS
! 477: # include <kernel/OS.h>
! 478: ptr_t GC_get_stack_base(){
! 479: thread_info th;
! 480: get_thread_info(find_thread(NULL),&th);
! 481: return th.stack_end;
! 482: }
! 483: # endif /* BEOS */
! 484:
1.1 noro 485:
486: # ifdef OS2
487:
488: ptr_t GC_get_stack_base()
489: {
490: PTIB ptib;
491: PPIB ppib;
492:
493: if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
494: GC_err_printf0("DosGetInfoBlocks failed\n");
495: ABORT("DosGetInfoBlocks failed\n");
496: }
497: return((ptr_t)(ptib -> tib_pstacklimit));
498: }
499:
1.4 ! noro 500: # endif /* OS2 */
1.1 noro 501:
502: # ifdef AMIGA
1.4 ! noro 503: # define GC_AMIGA_SB
! 504: # include "AmigaOS.c"
! 505: # undef GC_AMIGA_SB
! 506: # endif /* AMIGA */
1.1 noro 507:
1.4 ! noro 508: # if defined(NEED_FIND_LIMIT) || defined(UNIX_LIKE)
1.1 noro 509:
510: # ifdef __STDC__
511: typedef void (*handler)(int);
512: # else
513: typedef void (*handler)();
514: # endif
515:
516: # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
517: static struct sigaction old_segv_act;
1.2 noro 518: # if defined(_sigargs) || defined(HPUX) /* !Irix6.x */
1.1 noro 519: static struct sigaction old_bus_act;
520: # endif
521: # else
522: static handler old_segv_handler, old_bus_handler;
523: # endif
524:
1.4 ! noro 525: # ifdef __STDC__
! 526: void GC_set_and_save_fault_handler(handler h)
! 527: # else
! 528: void GC_set_and_save_fault_handler(h)
! 529: handler h;
! 530: # endif
1.1 noro 531: {
532: # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
533: struct sigaction act;
534:
1.4 ! noro 535: act.sa_handler = h;
1.1 noro 536: act.sa_flags = SA_RESTART | SA_NODEFER;
537: /* The presence of SA_NODEFER represents yet another gross */
538: /* hack. Under Solaris 2.3, siglongjmp doesn't appear to */
539: /* interact correctly with -lthread. We hide the confusion */
540: /* by making sure that signal handling doesn't affect the */
541: /* signal mask. */
542:
543: (void) sigemptyset(&act.sa_mask);
544: # ifdef IRIX_THREADS
545: /* Older versions have a bug related to retrieving and */
546: /* and setting a handler at the same time. */
547: (void) sigaction(SIGSEGV, 0, &old_segv_act);
548: (void) sigaction(SIGSEGV, &act, 0);
549: # else
550: (void) sigaction(SIGSEGV, &act, &old_segv_act);
1.2 noro 551: # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
552: || defined(HPUX)
553: /* Under Irix 5.x or HP/UX, we may get SIGBUS. */
554: /* Pthreads doesn't exist under Irix 5.x, so we */
555: /* don't have to worry in the threads case. */
1.1 noro 556: (void) sigaction(SIGBUS, &act, &old_bus_act);
557: # endif
558: # endif /* IRIX_THREADS */
559: # else
1.4 ! noro 560: old_segv_handler = signal(SIGSEGV, h);
1.1 noro 561: # ifdef SIGBUS
1.4 ! noro 562: old_bus_handler = signal(SIGBUS, h);
1.1 noro 563: # endif
564: # endif
565: }
1.4 ! noro 566: # endif /* NEED_FIND_LIMIT || UNIX_LIKE */
! 567:
! 568: # ifdef NEED_FIND_LIMIT
! 569: /* Some tools to implement HEURISTIC2 */
! 570: # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
! 571: /* static */ jmp_buf GC_jmp_buf;
! 572:
! 573: /*ARGSUSED*/
! 574: void GC_fault_handler(sig)
! 575: int sig;
! 576: {
! 577: longjmp(GC_jmp_buf, 1);
! 578: }
! 579:
! 580: void GC_setup_temporary_fault_handler()
! 581: {
! 582: GC_set_and_save_fault_handler(GC_fault_handler);
! 583: }
1.1 noro 584:
585: void GC_reset_fault_handler()
586: {
587: # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
588: (void) sigaction(SIGSEGV, &old_segv_act, 0);
1.2 noro 589: # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
590: || defined(HPUX)
1.1 noro 591: (void) sigaction(SIGBUS, &old_bus_act, 0);
592: # endif
593: # else
594: (void) signal(SIGSEGV, old_segv_handler);
595: # ifdef SIGBUS
596: (void) signal(SIGBUS, old_bus_handler);
597: # endif
598: # endif
599: }
600:
601: /* Return the first nonaddressible location > p (up) or */
602: /* the smallest location q s.t. [q,p] is addressible (!up). */
603: ptr_t GC_find_limit(p, up)
604: ptr_t p;
605: GC_bool up;
606: {
607: static VOLATILE ptr_t result;
608: /* Needs to be static, since otherwise it may not be */
609: /* preserved across the longjmp. Can safely be */
610: /* static since it's only called once, with the */
611: /* allocation lock held. */
612:
613:
614: GC_setup_temporary_fault_handler();
615: if (setjmp(GC_jmp_buf) == 0) {
616: result = (ptr_t)(((word)(p))
617: & ~(MIN_PAGE_SIZE-1));
618: for (;;) {
619: if (up) {
620: result += MIN_PAGE_SIZE;
621: } else {
622: result -= MIN_PAGE_SIZE;
623: }
624: GC_noop1((word)(*result));
625: }
626: }
627: GC_reset_fault_handler();
628: if (!up) {
629: result += MIN_PAGE_SIZE;
630: }
631: return(result);
632: }
633: # endif
634:
1.2 noro 635: #ifdef LINUX_STACKBOTTOM
636:
1.3 noro 637: #include <sys/types.h>
638: #include <sys/stat.h>
639:
1.2 noro 640: # define STAT_SKIP 27 /* Number of fields preceding startstack */
1.3 noro 641: /* field in /proc/self/stat */
1.2 noro 642:
1.4 ! noro 643: # pragma weak __libc_stack_end
! 644: extern ptr_t __libc_stack_end;
! 645:
! 646: # ifdef IA64
! 647: # pragma weak __libc_ia64_register_backing_store_base
! 648: extern ptr_t __libc_ia64_register_backing_store_base;
! 649:
! 650: ptr_t GC_get_register_stack_base(void)
! 651: {
! 652: if (0 != &__libc_ia64_register_backing_store_base) {
! 653: return __libc_ia64_register_backing_store_base;
! 654: } else {
! 655: word result = (word)GC_stackbottom - BACKING_STORE_DISPLACEMENT;
! 656: result += BACKING_STORE_ALIGNMENT - 1;
! 657: result &= ~(BACKING_STORE_ALIGNMENT - 1);
! 658: return (ptr_t)result;
! 659: }
! 660: }
! 661: # endif
! 662:
1.2 noro 663: ptr_t GC_linux_stack_base(void)
664: {
1.3 noro 665: /* We read the stack base value from /proc/self/stat. We do this */
666: /* using direct I/O system calls in order to avoid calling malloc */
667: /* in case REDIRECT_MALLOC is defined. */
668: # define STAT_BUF_SIZE 4096
1.4 ! noro 669: # if defined(GC_USE_LD_WRAP)
1.3 noro 670: # define STAT_READ __real_read
671: # else
672: # define STAT_READ read
673: # endif
674: char stat_buf[STAT_BUF_SIZE];
675: int f;
1.2 noro 676: char c;
677: word result = 0;
1.3 noro 678: size_t i, buf_offset = 0;
1.2 noro 679:
1.4 ! noro 680: /* First try the easy way. This should work for glibc 2.2 */
! 681: if (0 != &__libc_stack_end) {
! 682: return __libc_stack_end;
! 683: }
1.3 noro 684: f = open("/proc/self/stat", O_RDONLY);
685: if (f < 0 || STAT_READ(f, stat_buf, STAT_BUF_SIZE) < 2 * STAT_SKIP) {
686: ABORT("Couldn't read /proc/self/stat");
687: }
688: c = stat_buf[buf_offset++];
1.2 noro 689: /* Skip the required number of fields. This number is hopefully */
690: /* constant across all Linux implementations. */
691: for (i = 0; i < STAT_SKIP; ++i) {
1.3 noro 692: while (isspace(c)) c = stat_buf[buf_offset++];
693: while (!isspace(c)) c = stat_buf[buf_offset++];
1.2 noro 694: }
1.3 noro 695: while (isspace(c)) c = stat_buf[buf_offset++];
1.2 noro 696: while (isdigit(c)) {
697: result *= 10;
698: result += c - '0';
1.3 noro 699: c = stat_buf[buf_offset++];
1.2 noro 700: }
1.3 noro 701: close(f);
1.2 noro 702: if (result < 0x10000000) ABORT("Absurd stack bottom value");
703: return (ptr_t)result;
704: }
705:
706: #endif /* LINUX_STACKBOTTOM */
1.1 noro 707:
1.4 ! noro 708: #ifdef FREEBSD_STACKBOTTOM
! 709:
! 710: /* This uses an undocumented sysctl call, but at least one expert */
! 711: /* believes it will stay. */
! 712:
! 713: #include <unistd.h>
! 714: #include <sys/types.h>
! 715: #include <sys/sysctl.h>
! 716:
! 717: ptr_t GC_freebsd_stack_base(void)
! 718: {
! 719: int nm[2] = { CTL_KERN, KERN_USRSTACK}, base, len, r;
! 720:
! 721: len = sizeof(int);
! 722: r = sysctl(nm, 2, &base, &len, NULL, 0);
! 723:
! 724: if (r) ABORT("Error getting stack base");
! 725:
! 726: return (ptr_t)base;
! 727: }
! 728:
! 729: #endif /* FREEBSD_STACKBOTTOM */
! 730:
! 731: #if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \
! 732: && !defined(MSWINCE) && !defined(OS2)
! 733:
1.1 noro 734: ptr_t GC_get_stack_base()
735: {
736: word dummy;
737: ptr_t result;
738:
739: # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
740:
741: # ifdef STACKBOTTOM
742: return(STACKBOTTOM);
743: # else
744: # ifdef HEURISTIC1
745: # ifdef STACK_GROWS_DOWN
746: result = (ptr_t)((((word)(&dummy))
747: + STACKBOTTOM_ALIGNMENT_M1)
748: & ~STACKBOTTOM_ALIGNMENT_M1);
749: # else
750: result = (ptr_t)(((word)(&dummy))
751: & ~STACKBOTTOM_ALIGNMENT_M1);
752: # endif
753: # endif /* HEURISTIC1 */
1.2 noro 754: # ifdef LINUX_STACKBOTTOM
755: result = GC_linux_stack_base();
756: # endif
1.4 ! noro 757: # ifdef FREEBSD_STACKBOTTOM
! 758: result = GC_freebsd_stack_base();
! 759: # endif
1.1 noro 760: # ifdef HEURISTIC2
761: # ifdef STACK_GROWS_DOWN
762: result = GC_find_limit((ptr_t)(&dummy), TRUE);
763: # ifdef HEURISTIC2_LIMIT
764: if (result > HEURISTIC2_LIMIT
765: && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
766: result = HEURISTIC2_LIMIT;
767: }
768: # endif
769: # else
770: result = GC_find_limit((ptr_t)(&dummy), FALSE);
771: # ifdef HEURISTIC2_LIMIT
772: if (result < HEURISTIC2_LIMIT
773: && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
774: result = HEURISTIC2_LIMIT;
775: }
776: # endif
777: # endif
778:
779: # endif /* HEURISTIC2 */
780: # ifdef STACK_GROWS_DOWN
781: if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
782: # endif
783: return(result);
784: # endif /* STACKBOTTOM */
785: }
786:
1.4 ! noro 787: # endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS */
1.1 noro 788:
789: /*
790: * Register static data segment(s) as roots.
791: * If more data segments are added later then they need to be registered
792: * add that point (as we do with SunOS dynamic loading),
793: * or GC_mark_roots needs to check for them (as we do with PCR).
794: * Called with allocator lock held.
795: */
796:
797: # ifdef OS2
798:
799: void GC_register_data_segments()
800: {
801: PTIB ptib;
802: PPIB ppib;
803: HMODULE module_handle;
804: # define PBUFSIZ 512
805: UCHAR path[PBUFSIZ];
806: FILE * myexefile;
807: struct exe_hdr hdrdos; /* MSDOS header. */
808: struct e32_exe hdr386; /* Real header for my executable */
809: struct o32_obj seg; /* Currrent segment */
810: int nsegs;
811:
812:
813: if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
814: GC_err_printf0("DosGetInfoBlocks failed\n");
815: ABORT("DosGetInfoBlocks failed\n");
816: }
817: module_handle = ppib -> pib_hmte;
818: if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
819: GC_err_printf0("DosQueryModuleName failed\n");
820: ABORT("DosGetInfoBlocks failed\n");
821: }
822: myexefile = fopen(path, "rb");
823: if (myexefile == 0) {
824: GC_err_puts("Couldn't open executable ");
825: GC_err_puts(path); GC_err_puts("\n");
826: ABORT("Failed to open executable\n");
827: }
828: if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
829: GC_err_puts("Couldn't read MSDOS header from ");
830: GC_err_puts(path); GC_err_puts("\n");
831: ABORT("Couldn't read MSDOS header");
832: }
833: if (E_MAGIC(hdrdos) != EMAGIC) {
834: GC_err_puts("Executable has wrong DOS magic number: ");
835: GC_err_puts(path); GC_err_puts("\n");
836: ABORT("Bad DOS magic number");
837: }
838: if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
839: GC_err_puts("Seek to new header failed in ");
840: GC_err_puts(path); GC_err_puts("\n");
841: ABORT("Bad DOS magic number");
842: }
843: if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
844: GC_err_puts("Couldn't read MSDOS header from ");
845: GC_err_puts(path); GC_err_puts("\n");
846: ABORT("Couldn't read OS/2 header");
847: }
848: if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
849: GC_err_puts("Executable has wrong OS/2 magic number:");
850: GC_err_puts(path); GC_err_puts("\n");
851: ABORT("Bad OS/2 magic number");
852: }
853: if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
854: GC_err_puts("Executable %s has wrong byte order: ");
855: GC_err_puts(path); GC_err_puts("\n");
856: ABORT("Bad byte order");
857: }
858: if ( E32_CPU(hdr386) == E32CPU286) {
859: GC_err_puts("GC can't handle 80286 executables: ");
860: GC_err_puts(path); GC_err_puts("\n");
861: EXIT();
862: }
863: if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
864: SEEK_SET) != 0) {
865: GC_err_puts("Seek to object table failed: ");
866: GC_err_puts(path); GC_err_puts("\n");
867: ABORT("Seek to object table failed");
868: }
869: for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
870: int flags;
871: if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
872: GC_err_puts("Couldn't read obj table entry from ");
873: GC_err_puts(path); GC_err_puts("\n");
874: ABORT("Couldn't read obj table entry");
875: }
876: flags = O32_FLAGS(seg);
877: if (!(flags & OBJWRITE)) continue;
878: if (!(flags & OBJREAD)) continue;
879: if (flags & OBJINVALID) {
880: GC_err_printf0("Object with invalid pages?\n");
881: continue;
882: }
883: GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
884: }
885: }
886:
1.4 ! noro 887: # else /* !OS2 */
! 888:
! 889: # if defined(MSWIN32) || defined(MSWINCE)
1.1 noro 890:
891: # ifdef MSWIN32
892: /* Unfortunately, we have to handle win32s very differently from NT, */
893: /* Since VirtualQuery has very different semantics. In particular, */
894: /* under win32s a VirtualQuery call on an unmapped page returns an */
895: /* invalid result. Under GC_register_data_segments is a noop and */
896: /* all real work is done by GC_register_dynamic_libraries. Under */
897: /* win32s, we cannot find the data segments associated with dll's. */
898: /* We rgister the main data segment here. */
899: GC_bool GC_win32s = FALSE; /* We're running under win32s. */
900:
901: GC_bool GC_is_win32s()
902: {
903: DWORD v = GetVersion();
904:
905: /* Check that this is not NT, and Windows major version <= 3 */
906: return ((v & 0x80000000) && (v & 0xff) <= 3);
907: }
908:
909: void GC_init_win32()
910: {
911: GC_win32s = GC_is_win32s();
912: }
1.4 ! noro 913:
1.1 noro 914: /* Return the smallest address a such that VirtualQuery */
915: /* returns correct results for all addresses between a and start. */
916: /* Assumes VirtualQuery returns correct information for start. */
917: ptr_t GC_least_described_address(ptr_t start)
918: {
919: MEMORY_BASIC_INFORMATION buf;
920: DWORD result;
921: LPVOID limit;
922: ptr_t p;
923: LPVOID q;
924:
1.4 ! noro 925: limit = GC_sysinfo.lpMinimumApplicationAddress;
1.1 noro 926: p = (ptr_t)((word)start & ~(GC_page_size - 1));
927: for (;;) {
928: q = (LPVOID)(p - GC_page_size);
929: if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
930: result = VirtualQuery(q, &buf, sizeof(buf));
931: if (result != sizeof(buf) || buf.AllocationBase == 0) break;
932: p = (ptr_t)(buf.AllocationBase);
933: }
934: return(p);
935: }
1.4 ! noro 936: # endif
1.1 noro 937:
938: /* Is p the start of either the malloc heap, or of one of our */
939: /* heap sections? */
940: GC_bool GC_is_heap_base (ptr_t p)
941: {
942:
943: register unsigned i;
944:
945: # ifndef REDIRECT_MALLOC
946: static ptr_t malloc_heap_pointer = 0;
947:
948: if (0 == malloc_heap_pointer) {
949: MEMORY_BASIC_INFORMATION buf;
1.4 ! noro 950: void *pTemp = malloc( 1 );
! 951: register DWORD result = VirtualQuery(pTemp, &buf, sizeof(buf));
! 952:
! 953: free( pTemp );
! 954:
1.1 noro 955:
956: if (result != sizeof(buf)) {
957: ABORT("Weird VirtualQuery result");
958: }
959: malloc_heap_pointer = (ptr_t)(buf.AllocationBase);
960: }
961: if (p == malloc_heap_pointer) return(TRUE);
962: # endif
963: for (i = 0; i < GC_n_heap_bases; i++) {
964: if (GC_heap_bases[i] == p) return(TRUE);
965: }
966: return(FALSE);
967: }
1.4 ! noro 968:
! 969: # ifdef MSWIN32
1.1 noro 970: void GC_register_root_section(ptr_t static_root)
971: {
972: MEMORY_BASIC_INFORMATION buf;
973: DWORD result;
974: DWORD protect;
975: LPVOID p;
976: char * base;
977: char * limit, * new_limit;
978:
979: if (!GC_win32s) return;
980: p = base = limit = GC_least_described_address(static_root);
1.4 ! noro 981: while (p < GC_sysinfo.lpMaximumApplicationAddress) {
1.1 noro 982: result = VirtualQuery(p, &buf, sizeof(buf));
983: if (result != sizeof(buf) || buf.AllocationBase == 0
984: || GC_is_heap_base(buf.AllocationBase)) break;
985: new_limit = (char *)p + buf.RegionSize;
986: protect = buf.Protect;
987: if (buf.State == MEM_COMMIT
988: && is_writable(protect)) {
989: if ((char *)p == limit) {
990: limit = new_limit;
991: } else {
992: if (base != limit) GC_add_roots_inner(base, limit, FALSE);
993: base = p;
994: limit = new_limit;
995: }
996: }
997: if (p > (LPVOID)new_limit /* overflow */) break;
998: p = (LPVOID)new_limit;
999: }
1000: if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1001: }
1.4 ! noro 1002: #endif
1.1 noro 1003:
1004: void GC_register_data_segments()
1005: {
1.4 ! noro 1006: # ifdef MSWIN32
1.1 noro 1007: static char dummy;
1008: GC_register_root_section((ptr_t)(&dummy));
1009: # endif
1010: }
1011:
1.4 ! noro 1012: # else /* !OS2 && !Windows */
1.1 noro 1013:
1.4 ! noro 1014: # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
! 1015: || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
1.1 noro 1016: char * GC_SysVGetDataStart(max_page_size, etext_addr)
1017: int max_page_size;
1018: int * etext_addr;
1019: {
1020: word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1021: & ~(sizeof(word) - 1);
1022: /* etext rounded to word boundary */
1023: word next_page = ((text_end + (word)max_page_size - 1)
1024: & ~((word)max_page_size - 1));
1025: word page_offset = (text_end & ((word)max_page_size - 1));
1026: VOLATILE char * result = (char *)(next_page + page_offset);
1027: /* Note that this isnt equivalent to just adding */
1028: /* max_page_size to &etext if &etext is at a page boundary */
1029:
1030: GC_setup_temporary_fault_handler();
1031: if (setjmp(GC_jmp_buf) == 0) {
1032: /* Try writing to the address. */
1033: *result = *result;
1034: GC_reset_fault_handler();
1035: } else {
1036: GC_reset_fault_handler();
1037: /* We got here via a longjmp. The address is not readable. */
1038: /* This is known to happen under Solaris 2.4 + gcc, which place */
1039: /* string constants in the text segment, but after etext. */
1040: /* Use plan B. Note that we now know there is a gap between */
1041: /* text and data segments, so plan A bought us something. */
1042: result = (char *)GC_find_limit((ptr_t)(DATAEND) - MIN_PAGE_SIZE, FALSE);
1043: }
1044: return((char *)result);
1045: }
1046: # endif
1047:
1048:
1.4 ! noro 1049: #ifdef AMIGA
! 1050:
! 1051: # define GC_AMIGA_DS
! 1052: # include "AmigaOS.c"
! 1053: # undef GC_AMIGA_DS
! 1054:
! 1055: #else /* !OS2 && !Windows && !AMIGA */
! 1056:
1.1 noro 1057: void GC_register_data_segments()
1058: {
1059: # if !defined(PCR) && !defined(SRC_M3) && !defined(NEXT) && !defined(MACOS) \
1060: && !defined(MACOSX)
1061: # if defined(REDIRECT_MALLOC) && defined(SOLARIS_THREADS)
1062: /* As of Solaris 2.3, the Solaris threads implementation */
1063: /* allocates the data structure for the initial thread with */
1064: /* sbrk at process startup. It needs to be scanned, so that */
1065: /* we don't lose some malloc allocated data structures */
1066: /* hanging from it. We're on thin ice here ... */
1067: extern caddr_t sbrk();
1068:
1069: GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1070: # else
1071: GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1072: # endif
1073: # endif
1074: # if !defined(PCR) && (defined(NEXT) || defined(MACOSX))
1075: GC_add_roots_inner(DATASTART, (char *) get_end(), FALSE);
1076: # endif
1077: # if defined(MACOS)
1078: {
1079: # if defined(THINK_C)
1080: extern void* GC_MacGetDataStart(void);
1081: /* globals begin above stack and end at a5. */
1082: GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1083: (ptr_t)LMGetCurrentA5(), FALSE);
1084: # else
1085: # if defined(__MWERKS__)
1086: # if !__POWERPC__
1087: extern void* GC_MacGetDataStart(void);
1088: /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1089: # if __option(far_data)
1090: extern void* GC_MacGetDataEnd(void);
1091: # endif
1092: /* globals begin above stack and end at a5. */
1093: GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1094: (ptr_t)LMGetCurrentA5(), FALSE);
1095: /* MATTHEW: Handle Far Globals */
1096: # if __option(far_data)
1097: /* Far globals follow he QD globals: */
1098: GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1099: (ptr_t)GC_MacGetDataEnd(), FALSE);
1100: # endif
1101: # else
1102: extern char __data_start__[], __data_end__[];
1103: GC_add_roots_inner((ptr_t)&__data_start__,
1104: (ptr_t)&__data_end__, FALSE);
1105: # endif /* __POWERPC__ */
1106: # endif /* __MWERKS__ */
1107: # endif /* !THINK_C */
1108: }
1109: # endif /* MACOS */
1110:
1111: /* Dynamic libraries are added at every collection, since they may */
1112: /* change. */
1113: }
1114:
1115: # endif /* ! AMIGA */
1.4 ! noro 1116: # endif /* ! MSWIN32 && ! MSWINCE*/
1.1 noro 1117: # endif /* ! OS2 */
1118:
1119: /*
1120: * Auxiliary routines for obtaining memory from OS.
1121: */
1.4 ! noro 1122:
1.1 noro 1123: # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1.4 ! noro 1124: && !defined(MSWIN32) && !defined(MSWINCE) \
! 1125: && !defined(MACOS) && !defined(DOS4GW)
1.1 noro 1126:
1127: # ifdef SUNOS4
1128: extern caddr_t sbrk();
1129: # endif
1130: # ifdef __STDC__
1131: # define SBRK_ARG_T ptrdiff_t
1132: # else
1133: # define SBRK_ARG_T int
1134: # endif
1135:
1.4 ! noro 1136:
1.1 noro 1137: # ifdef RS6000
1138: /* The compiler seems to generate speculative reads one past the end of */
1139: /* an allocated object. Hence we need to make sure that the page */
1140: /* following the last heap page is also mapped. */
1141: ptr_t GC_unix_get_mem(bytes)
1142: word bytes;
1143: {
1144: caddr_t cur_brk = (caddr_t)sbrk(0);
1145: caddr_t result;
1146: SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1147: static caddr_t my_brk_val = 0;
1148:
1149: if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1150: if (lsbs != 0) {
1151: if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1152: }
1153: if (cur_brk == my_brk_val) {
1154: /* Use the extra block we allocated last time. */
1155: result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1156: if (result == (caddr_t)(-1)) return(0);
1157: result -= GC_page_size;
1158: } else {
1159: result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1160: if (result == (caddr_t)(-1)) return(0);
1161: }
1162: my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1163: return((ptr_t)result);
1164: }
1165:
1166: #else /* Not RS6000 */
1167:
1168: #if defined(USE_MMAP)
1.4 ! noro 1169: /* Tested only under Linux, IRIX5 and Solaris 2 */
1.1 noro 1170:
1171: #ifdef USE_MMAP_FIXED
1172: # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1173: /* Seems to yield better performance on Solaris 2, but can */
1174: /* be unreliable if something is already mapped at the address. */
1175: #else
1176: # define GC_MMAP_FLAGS MAP_PRIVATE
1177: #endif
1178:
1.4 ! noro 1179: #ifndef HEAP_START
! 1180: # define HEAP_START 0
! 1181: #endif
! 1182:
1.1 noro 1183: ptr_t GC_unix_get_mem(bytes)
1184: word bytes;
1185: {
1186: static GC_bool initialized = FALSE;
1187: static int fd;
1188: void *result;
1189: static ptr_t last_addr = HEAP_START;
1190:
1191: if (!initialized) {
1192: fd = open("/dev/zero", O_RDONLY);
1193: initialized = TRUE;
1194: }
1195: if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1196: result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1197: GC_MMAP_FLAGS, fd, 0/* offset */);
1198: if (result == MAP_FAILED) return(0);
1199: last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1200: last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1.4 ! noro 1201: # if !defined(LINUX)
! 1202: if (last_addr == 0) {
! 1203: /* Oops. We got the end of the address space. This isn't */
! 1204: /* usable by arbitrary C code, since one-past-end pointers */
! 1205: /* don't work, so we discard it and try again. */
! 1206: munmap(result, (size_t)(-GC_page_size) - (size_t)result);
! 1207: /* Leave last page mapped, so we can't repeat. */
! 1208: return GC_unix_get_mem(bytes);
! 1209: }
! 1210: # else
! 1211: GC_ASSERT(last_addr != 0);
! 1212: # endif
1.1 noro 1213: return((ptr_t)result);
1214: }
1215:
1216: #else /* Not RS6000, not USE_MMAP */
1217: ptr_t GC_unix_get_mem(bytes)
1218: word bytes;
1219: {
1220: ptr_t result;
1221: # ifdef IRIX5
1222: /* Bare sbrk isn't thread safe. Play by malloc rules. */
1223: /* The equivalent may be needed on other systems as well. */
1224: __LOCK_MALLOC();
1225: # endif
1226: {
1227: ptr_t cur_brk = (ptr_t)sbrk(0);
1228: SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1229:
1230: if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1231: if (lsbs != 0) {
1232: if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1233: }
1234: result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1235: if (result == (ptr_t)(-1)) result = 0;
1236: }
1237: # ifdef IRIX5
1238: __UNLOCK_MALLOC();
1239: # endif
1240: return(result);
1241: }
1242:
1243: #endif /* Not USE_MMAP */
1244: #endif /* Not RS6000 */
1245:
1246: # endif /* UN*X */
1247:
1248: # ifdef OS2
1249:
1250: void * os2_alloc(size_t bytes)
1251: {
1252: void * result;
1253:
1254: if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1255: PAG_WRITE | PAG_COMMIT)
1256: != NO_ERROR) {
1257: return(0);
1258: }
1259: if (result == 0) return(os2_alloc(bytes));
1260: return(result);
1261: }
1262:
1263: # endif /* OS2 */
1264:
1265:
1.4 ! noro 1266: # if defined(MSWIN32) || defined(MSWINCE)
! 1267: SYSTEM_INFO GC_sysinfo;
! 1268: # endif
! 1269:
! 1270:
1.1 noro 1271: # ifdef MSWIN32
1272: word GC_n_heap_bases = 0;
1273:
1274: ptr_t GC_win32_get_mem(bytes)
1275: word bytes;
1276: {
1277: ptr_t result;
1.4 ! noro 1278:
1.1 noro 1279: if (GC_win32s) {
1280: /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1281: /* There are also unconfirmed rumors of other */
1282: /* problems, so we dodge the issue. */
1283: result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1284: result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1285: } else {
1286: result = (ptr_t) VirtualAlloc(NULL, bytes,
1287: MEM_COMMIT | MEM_RESERVE,
1288: PAGE_EXECUTE_READWRITE);
1289: }
1290: if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1291: /* If I read the documentation correctly, this can */
1292: /* only happen if HBLKSIZE > 64k or not a power of 2. */
1293: if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1294: GC_heap_bases[GC_n_heap_bases++] = result;
1295: return(result);
1296: }
1297:
1298: void GC_win32_free_heap ()
1299: {
1300: if (GC_win32s) {
1301: while (GC_n_heap_bases > 0) {
1302: GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1303: GC_heap_bases[GC_n_heap_bases] = 0;
1304: }
1305: }
1306: }
1.4 ! noro 1307: # endif
! 1308:
! 1309: #ifdef AMIGA
! 1310: # define GC_AMIGA_AM
! 1311: # include "AmigaOS.c"
! 1312: # undef GC_AMIGA_AM
! 1313: #endif
1.1 noro 1314:
1315:
1.4 ! noro 1316: # ifdef MSWINCE
! 1317: word GC_n_heap_bases = 0;
! 1318:
! 1319: ptr_t GC_wince_get_mem(bytes)
! 1320: word bytes;
! 1321: {
! 1322: ptr_t result;
! 1323: word i;
! 1324:
! 1325: /* Round up allocation size to multiple of page size */
! 1326: bytes = (bytes + GC_page_size-1) & ~(GC_page_size-1);
! 1327:
! 1328: /* Try to find reserved, uncommitted pages */
! 1329: for (i = 0; i < GC_n_heap_bases; i++) {
! 1330: if (((word)(-(signed_word)GC_heap_lengths[i])
! 1331: & (GC_sysinfo.dwAllocationGranularity-1))
! 1332: >= bytes) {
! 1333: result = GC_heap_bases[i] + GC_heap_lengths[i];
! 1334: break;
! 1335: }
! 1336: }
! 1337:
! 1338: if (i == GC_n_heap_bases) {
! 1339: /* Reserve more pages */
! 1340: word res_bytes = (bytes + GC_sysinfo.dwAllocationGranularity-1)
! 1341: & ~(GC_sysinfo.dwAllocationGranularity-1);
! 1342: result = (ptr_t) VirtualAlloc(NULL, res_bytes,
! 1343: MEM_RESERVE | MEM_TOP_DOWN,
! 1344: PAGE_EXECUTE_READWRITE);
! 1345: if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
! 1346: /* If I read the documentation correctly, this can */
! 1347: /* only happen if HBLKSIZE > 64k or not a power of 2. */
! 1348: if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
! 1349: GC_heap_bases[GC_n_heap_bases] = result;
! 1350: GC_heap_lengths[GC_n_heap_bases] = 0;
! 1351: GC_n_heap_bases++;
! 1352: }
! 1353:
! 1354: /* Commit pages */
! 1355: result = (ptr_t) VirtualAlloc(result, bytes,
! 1356: MEM_COMMIT,
! 1357: PAGE_EXECUTE_READWRITE);
! 1358: if (result != NULL) {
! 1359: if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
! 1360: GC_heap_lengths[i] += bytes;
! 1361: }
! 1362:
! 1363: return(result);
! 1364: }
1.1 noro 1365: # endif
1366:
1367: #ifdef USE_MUNMAP
1368:
1.4 ! noro 1369: /* For now, this only works on Win32/WinCE and some Unix-like */
! 1370: /* systems. If you have something else, don't define */
! 1371: /* USE_MUNMAP. */
1.1 noro 1372: /* We assume ANSI C to support this feature. */
1.4 ! noro 1373:
! 1374: #if !defined(MSWIN32) && !defined(MSWINCE)
! 1375:
1.1 noro 1376: #include <unistd.h>
1377: #include <sys/mman.h>
1378: #include <sys/stat.h>
1379: #include <sys/types.h>
1.4 ! noro 1380:
! 1381: #endif
1.1 noro 1382:
1383: /* Compute a page aligned starting address for the unmap */
1384: /* operation on a block of size bytes starting at start. */
1385: /* Return 0 if the block is too small to make this feasible. */
1386: ptr_t GC_unmap_start(ptr_t start, word bytes)
1387: {
1388: ptr_t result = start;
1389: /* Round start to next page boundary. */
1390: result += GC_page_size - 1;
1391: result = (ptr_t)((word)result & ~(GC_page_size - 1));
1392: if (result + GC_page_size > start + bytes) return 0;
1393: return result;
1394: }
1395:
1396: /* Compute end address for an unmap operation on the indicated */
1397: /* block. */
1398: ptr_t GC_unmap_end(ptr_t start, word bytes)
1399: {
1400: ptr_t end_addr = start + bytes;
1401: end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1402: return end_addr;
1403: }
1404:
1.4 ! noro 1405: /* Under Win32/WinCE we commit (map) and decommit (unmap) */
! 1406: /* memory using VirtualAlloc and VirtualFree. These functions */
! 1407: /* work on individual allocations of virtual memory, made */
! 1408: /* previously using VirtualAlloc with the MEM_RESERVE flag. */
! 1409: /* The ranges we need to (de)commit may span several of these */
! 1410: /* allocations; therefore we use VirtualQuery to check */
! 1411: /* allocation lengths, and split up the range as necessary. */
! 1412:
1.1 noro 1413: /* We assume that GC_remap is called on exactly the same range */
1414: /* as a previous call to GC_unmap. It is safe to consistently */
1415: /* round the endpoints in both places. */
1416: void GC_unmap(ptr_t start, word bytes)
1417: {
1418: ptr_t start_addr = GC_unmap_start(start, bytes);
1419: ptr_t end_addr = GC_unmap_end(start, bytes);
1420: word len = end_addr - start_addr;
1421: if (0 == start_addr) return;
1.4 ! noro 1422: # if defined(MSWIN32) || defined(MSWINCE)
! 1423: while (len != 0) {
! 1424: MEMORY_BASIC_INFORMATION mem_info;
! 1425: GC_word free_len;
! 1426: if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
! 1427: != sizeof(mem_info))
! 1428: ABORT("Weird VirtualQuery result");
! 1429: free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
! 1430: if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
! 1431: ABORT("VirtualFree failed");
! 1432: GC_unmapped_bytes += free_len;
! 1433: start_addr += free_len;
! 1434: len -= free_len;
! 1435: }
! 1436: # else
! 1437: if (munmap(start_addr, len) != 0) ABORT("munmap failed");
! 1438: GC_unmapped_bytes += len;
! 1439: # endif
1.1 noro 1440: }
1441:
1442:
1443: void GC_remap(ptr_t start, word bytes)
1444: {
1445: static int zero_descr = -1;
1446: ptr_t start_addr = GC_unmap_start(start, bytes);
1447: ptr_t end_addr = GC_unmap_end(start, bytes);
1448: word len = end_addr - start_addr;
1449: ptr_t result;
1450:
1.4 ! noro 1451: # if defined(MSWIN32) || defined(MSWINCE)
! 1452: if (0 == start_addr) return;
! 1453: while (len != 0) {
! 1454: MEMORY_BASIC_INFORMATION mem_info;
! 1455: GC_word alloc_len;
! 1456: if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
! 1457: != sizeof(mem_info))
! 1458: ABORT("Weird VirtualQuery result");
! 1459: alloc_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
! 1460: result = VirtualAlloc(start_addr, alloc_len,
! 1461: MEM_COMMIT,
! 1462: PAGE_EXECUTE_READWRITE);
! 1463: if (result != start_addr) {
! 1464: ABORT("VirtualAlloc remapping failed");
! 1465: }
! 1466: GC_unmapped_bytes -= alloc_len;
! 1467: start_addr += alloc_len;
! 1468: len -= alloc_len;
! 1469: }
! 1470: # else
! 1471: if (-1 == zero_descr) zero_descr = open("/dev/zero", O_RDWR);
! 1472: if (0 == start_addr) return;
! 1473: result = mmap(start_addr, len, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
! 1474: MAP_FIXED | MAP_PRIVATE, zero_descr, 0);
! 1475: if (result != start_addr) {
! 1476: ABORT("mmap remapping failed");
! 1477: }
! 1478: GC_unmapped_bytes -= len;
! 1479: # endif
1.1 noro 1480: }
1481:
1482: /* Two adjacent blocks have already been unmapped and are about to */
1483: /* be merged. Unmap the whole block. This typically requires */
1484: /* that we unmap a small section in the middle that was not previously */
1485: /* unmapped due to alignment constraints. */
1486: void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
1487: {
1488: ptr_t start1_addr = GC_unmap_start(start1, bytes1);
1489: ptr_t end1_addr = GC_unmap_end(start1, bytes1);
1490: ptr_t start2_addr = GC_unmap_start(start2, bytes2);
1491: ptr_t end2_addr = GC_unmap_end(start2, bytes2);
1492: ptr_t start_addr = end1_addr;
1493: ptr_t end_addr = start2_addr;
1494: word len;
1495: GC_ASSERT(start1 + bytes1 == start2);
1496: if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
1497: if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
1498: if (0 == start_addr) return;
1499: len = end_addr - start_addr;
1.4 ! noro 1500: # if defined(MSWIN32) || defined(MSWINCE)
! 1501: while (len != 0) {
! 1502: MEMORY_BASIC_INFORMATION mem_info;
! 1503: GC_word free_len;
! 1504: if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
! 1505: != sizeof(mem_info))
! 1506: ABORT("Weird VirtualQuery result");
! 1507: free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
! 1508: if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
! 1509: ABORT("VirtualFree failed");
! 1510: GC_unmapped_bytes += free_len;
! 1511: start_addr += free_len;
! 1512: len -= free_len;
! 1513: }
! 1514: # else
! 1515: if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
! 1516: GC_unmapped_bytes += len;
! 1517: # endif
1.1 noro 1518: }
1519:
1520: #endif /* USE_MUNMAP */
1521:
1522: /* Routine for pushing any additional roots. In THREADS */
1523: /* environment, this is also responsible for marking from */
1.4 ! noro 1524: /* thread stacks. */
1.1 noro 1525: #ifndef THREADS
1526: void (*GC_push_other_roots)() = 0;
1527: #else /* THREADS */
1528:
1529: # ifdef PCR
1530: PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1531: {
1532: struct PCR_ThCtl_TInfoRep info;
1533: PCR_ERes result;
1534:
1535: info.ti_stkLow = info.ti_stkHi = 0;
1536: result = PCR_ThCtl_GetInfo(t, &info);
1537: GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1538: return(result);
1539: }
1540:
1541: /* Push the contents of an old object. We treat this as stack */
1542: /* data only becasue that makes it robust against mark stack */
1543: /* overflow. */
1544: PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
1545: {
1546: GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
1547: return(PCR_ERes_okay);
1548: }
1549:
1550:
1.4 ! noro 1551: void GC_default_push_other_roots GC_PROTO((void))
1.1 noro 1552: {
1553: /* Traverse data allocated by previous memory managers. */
1554: {
1555: extern struct PCR_MM_ProcsRep * GC_old_allocator;
1556:
1557: if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
1558: GC_push_old_obj, 0)
1559: != PCR_ERes_okay) {
1560: ABORT("Old object enumeration failed");
1561: }
1562: }
1563: /* Traverse all thread stacks. */
1564: if (PCR_ERes_IsErr(
1565: PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
1566: || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
1567: ABORT("Thread stack marking failed\n");
1568: }
1569: }
1570:
1571: # endif /* PCR */
1572:
1573: # ifdef SRC_M3
1574:
1575: # ifdef ALL_INTERIOR_POINTERS
1576: --> misconfigured
1577: # endif
1578:
1.4 ! noro 1579: void GC_push_thread_structures GC_PROTO((void))
! 1580: {
! 1581: /* Not our responsibibility. */
! 1582: }
1.1 noro 1583:
1584: extern void ThreadF__ProcessStacks();
1585:
1586: void GC_push_thread_stack(start, stop)
1587: word start, stop;
1588: {
1589: GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
1590: }
1591:
1592: /* Push routine with M3 specific calling convention. */
1593: GC_m3_push_root(dummy1, p, dummy2, dummy3)
1594: word *p;
1595: ptr_t dummy1, dummy2;
1596: int dummy3;
1597: {
1598: word q = *p;
1599:
1.4 ! noro 1600: GC_PUSH_ONE_STACK(q, p);
1.1 noro 1601: }
1602:
1603: /* M3 set equivalent to RTHeap.TracedRefTypes */
1604: typedef struct { int elts[1]; } RefTypeSet;
1605: RefTypeSet GC_TracedRefTypes = {{0x1}};
1606:
1.4 ! noro 1607: void GC_default_push_other_roots GC_PROTO((void))
1.1 noro 1608: {
1.4 ! noro 1609: /* Use the M3 provided routine for finding static roots. */
! 1610: /* This is a bit dubious, since it presumes no C roots. */
! 1611: /* We handle the collector roots explicitly in GC_push_roots */
! 1612: RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
1.1 noro 1613: if (GC_words_allocd > 0) {
1614: ThreadF__ProcessStacks(GC_push_thread_stack);
1615: }
1616: /* Otherwise this isn't absolutely necessary, and we have */
1617: /* startup ordering problems. */
1618: }
1619:
1620: # endif /* SRC_M3 */
1621:
1622: # if defined(SOLARIS_THREADS) || defined(WIN32_THREADS) \
1623: || defined(IRIX_THREADS) || defined(LINUX_THREADS) \
1.4 ! noro 1624: || defined(HPUX_THREADS)
1.1 noro 1625:
1626: extern void GC_push_all_stacks();
1627:
1.4 ! noro 1628: void GC_default_push_other_roots GC_PROTO((void))
1.1 noro 1629: {
1630: GC_push_all_stacks();
1631: }
1632:
1633: # endif /* SOLARIS_THREADS || ... */
1634:
1.4 ! noro 1635: void (*GC_push_other_roots) GC_PROTO((void)) = GC_default_push_other_roots;
1.1 noro 1636:
1637: #endif
1638:
1639: /*
1640: * Routines for accessing dirty bits on virtual pages.
1.4 ! noro 1641: * We plan to eventually implement four strategies for doing so:
1.1 noro 1642: * DEFAULT_VDB: A simple dummy implementation that treats every page
1643: * as possibly dirty. This makes incremental collection
1644: * useless, but the implementation is still correct.
1645: * PCR_VDB: Use PPCRs virtual dirty bit facility.
1646: * PROC_VDB: Use the /proc facility for reading dirty bits. Only
1647: * works under some SVR4 variants. Even then, it may be
1648: * too slow to be entirely satisfactory. Requires reading
1649: * dirty bits for entire address space. Implementations tend
1650: * to assume that the client is a (slow) debugger.
1651: * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
1652: * dirtied pages. The implementation (and implementability)
1653: * is highly system dependent. This usually fails when system
1654: * calls write to a protected page. We prevent the read system
1655: * call from doing so. It is the clients responsibility to
1656: * make sure that other system calls are similarly protected
1657: * or write only to the stack.
1658: */
1659:
1660: GC_bool GC_dirty_maintained = FALSE;
1661:
1662: # ifdef DEFAULT_VDB
1663:
1664: /* All of the following assume the allocation lock is held, and */
1665: /* signals are disabled. */
1666:
1667: /* The client asserts that unallocated pages in the heap are never */
1668: /* written. */
1669:
1670: /* Initialize virtual dirty bit implementation. */
1671: void GC_dirty_init()
1672: {
1673: GC_dirty_maintained = TRUE;
1674: }
1675:
1676: /* Retrieve system dirty bits for heap to a local buffer. */
1677: /* Restore the systems notion of which pages are dirty. */
1678: void GC_read_dirty()
1679: {}
1680:
1681: /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
1682: /* If the actual page size is different, this returns TRUE if any */
1683: /* of the pages overlapping h are dirty. This routine may err on the */
1684: /* side of labelling pages as dirty (and this implementation does). */
1685: /*ARGSUSED*/
1686: GC_bool GC_page_was_dirty(h)
1687: struct hblk *h;
1688: {
1689: return(TRUE);
1690: }
1691:
1692: /*
1693: * The following two routines are typically less crucial. They matter
1694: * most with large dynamic libraries, or if we can't accurately identify
1695: * stacks, e.g. under Solaris 2.X. Otherwise the following default
1696: * versions are adequate.
1697: */
1698:
1699: /* Could any valid GC heap pointer ever have been written to this page? */
1700: /*ARGSUSED*/
1701: GC_bool GC_page_was_ever_dirty(h)
1702: struct hblk *h;
1703: {
1704: return(TRUE);
1705: }
1706:
1707: /* Reset the n pages starting at h to "was never dirty" status. */
1708: void GC_is_fresh(h, n)
1709: struct hblk *h;
1710: word n;
1711: {
1712: }
1713:
1714: /* A call hints that h is about to be written. */
1715: /* May speed up some dirty bit implementations. */
1716: /*ARGSUSED*/
1717: void GC_write_hint(h)
1718: struct hblk *h;
1719: {
1720: }
1721:
1722: # endif /* DEFAULT_VDB */
1723:
1724:
1725: # ifdef MPROTECT_VDB
1726:
1727: /*
1728: * See DEFAULT_VDB for interface descriptions.
1729: */
1730:
1731: /*
1732: * This implementation maintains dirty bits itself by catching write
1733: * faults and keeping track of them. We assume nobody else catches
1734: * SIGBUS or SIGSEGV. We assume no write faults occur in system calls
1735: * except as a result of a read system call. This means clients must
1736: * either ensure that system calls do not touch the heap, or must
1737: * provide their own wrappers analogous to the one for read.
1738: * We assume the page size is a multiple of HBLKSIZE.
1739: * This implementation is currently SunOS 4.X and IRIX 5.X specific, though we
1740: * tried to use portable code where easily possible. It is known
1741: * not to work under a number of other systems.
1742: */
1743:
1.4 ! noro 1744: # if !defined(MSWIN32) && !defined(MSWINCE)
1.1 noro 1745:
1746: # include <sys/mman.h>
1747: # include <signal.h>
1748: # include <sys/syscall.h>
1749:
1750: # define PROTECT(addr, len) \
1.2 noro 1751: if (mprotect((caddr_t)(addr), (size_t)(len), \
1.1 noro 1752: PROT_READ | OPT_PROT_EXEC) < 0) { \
1753: ABORT("mprotect failed"); \
1754: }
1755: # define UNPROTECT(addr, len) \
1.2 noro 1756: if (mprotect((caddr_t)(addr), (size_t)(len), \
1.1 noro 1757: PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
1758: ABORT("un-mprotect failed"); \
1759: }
1760:
1761: # else
1762:
1.4 ! noro 1763: # ifndef MSWINCE
! 1764: # include <signal.h>
! 1765: # endif
1.1 noro 1766:
1767: static DWORD protect_junk;
1768: # define PROTECT(addr, len) \
1769: if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
1770: &protect_junk)) { \
1771: DWORD last_error = GetLastError(); \
1772: GC_printf1("Last error code: %lx\n", last_error); \
1773: ABORT("VirtualProtect failed"); \
1774: }
1775: # define UNPROTECT(addr, len) \
1776: if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
1777: &protect_junk)) { \
1778: ABORT("un-VirtualProtect failed"); \
1779: }
1780:
1781: # endif
1782:
1783: #if defined(SUNOS4) || defined(FREEBSD)
1784: typedef void (* SIG_PF)();
1785: #endif
1.4 ! noro 1786: #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) || defined(MACOSX)
1.2 noro 1787: # ifdef __STDC__
1.1 noro 1788: typedef void (* SIG_PF)(int);
1.2 noro 1789: # else
1790: typedef void (* SIG_PF)();
1791: # endif
1.1 noro 1792: #endif
1793: #if defined(MSWIN32)
1794: typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
1795: # undef SIG_DFL
1796: # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
1797: #endif
1.4 ! noro 1798: #if defined(MSWINCE)
! 1799: typedef LONG (WINAPI *SIG_PF)(struct _EXCEPTION_POINTERS *);
! 1800: # undef SIG_DFL
! 1801: # define SIG_DFL (SIG_PF) (-1)
! 1802: #endif
1.1 noro 1803:
1804: #if defined(IRIX5) || defined(OSF1)
1805: typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
1806: #endif
1807: #if defined(SUNOS5SIGS)
1.2 noro 1808: # ifdef HPUX
1809: # define SIGINFO __siginfo
1810: # else
1811: # define SIGINFO siginfo
1812: # endif
1813: # ifdef __STDC__
1814: typedef void (* REAL_SIG_PF)(int, struct SIGINFO *, void *);
1815: # else
1816: typedef void (* REAL_SIG_PF)();
1817: # endif
1.1 noro 1818: #endif
1819: #if defined(LINUX)
1820: # include <linux/version.h>
1.2 noro 1821: # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(IA64)
1.1 noro 1822: typedef struct sigcontext s_c;
1823: # else
1824: typedef struct sigcontext_struct s_c;
1825: # endif
1.2 noro 1826: # if defined(ALPHA) || defined(M68K)
1827: typedef void (* REAL_SIG_PF)(int, int, s_c *);
1828: # else
1.4 ! noro 1829: # if defined(IA64) || defined(HP_PA)
1.2 noro 1830: typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
1831: # else
1832: typedef void (* REAL_SIG_PF)(int, s_c);
1833: # endif
1834: # endif
1.1 noro 1835: # ifdef ALPHA
1836: /* Retrieve fault address from sigcontext structure by decoding */
1837: /* instruction. */
1838: char * get_fault_addr(s_c *sc) {
1839: unsigned instr;
1840: word faultaddr;
1841:
1842: instr = *((unsigned *)(sc->sc_pc));
1843: faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
1844: faultaddr += (word) (((int)instr << 16) >> 16);
1845: return (char *)faultaddr;
1846: }
1847: # endif /* !ALPHA */
1848: # endif
1849:
1.4 ! noro 1850: # if defined(MACOSX) /* Should also test for PowerPC? */
! 1851: typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
! 1852:
! 1853: /* Decodes the machine instruction which was responsible for the sending of the
! 1854: SIGBUS signal. Sadly this is the only way to find the faulting address because
! 1855: the signal handler doesn't get it directly from the kernel (although it is
! 1856: available on the Mach level, but droppped by the BSD personality before it
! 1857: calls our signal handler...)
! 1858: This code should be able to deal correctly with all PPCs starting from the
! 1859: 601 up to and including the G4s (including Velocity Engine). */
! 1860: #define EXTRACT_OP1(iw) (((iw) & 0xFC000000) >> 26)
! 1861: #define EXTRACT_OP2(iw) (((iw) & 0x000007FE) >> 1)
! 1862: #define EXTRACT_REGA(iw) (((iw) & 0x001F0000) >> 16)
! 1863: #define EXTRACT_REGB(iw) (((iw) & 0x03E00000) >> 21)
! 1864: #define EXTRACT_REGC(iw) (((iw) & 0x0000F800) >> 11)
! 1865: #define EXTRACT_DISP(iw) ((short *) &(iw))[1]
! 1866:
! 1867: static char *get_fault_addr(struct sigcontext *scp)
! 1868: {
! 1869: unsigned int instr = *((unsigned int *) scp->sc_ir);
! 1870: unsigned int * regs = &((unsigned int *) scp->sc_regs)[2];
! 1871: int disp = 0, tmp;
! 1872: unsigned int baseA = 0, baseB = 0;
! 1873: unsigned int addr, alignmask = 0xFFFFFFFF;
! 1874:
! 1875: #ifdef GC_DEBUG_DECODER
! 1876: GC_err_printf1("Instruction: 0x%lx\n", instr);
! 1877: GC_err_printf1("Opcode 1: d\n", (int)EXTRACT_OP1(instr));
! 1878: #endif
! 1879: switch(EXTRACT_OP1(instr)) {
! 1880: case 38: /* stb */
! 1881: case 39: /* stbu */
! 1882: case 54: /* stfd */
! 1883: case 55: /* stfdu */
! 1884: case 52: /* stfs */
! 1885: case 53: /* stfsu */
! 1886: case 44: /* sth */
! 1887: case 45: /* sthu */
! 1888: case 47: /* stmw */
! 1889: case 36: /* stw */
! 1890: case 37: /* stwu */
! 1891: tmp = EXTRACT_REGA(instr);
! 1892: if(tmp > 0)
! 1893: baseA = regs[tmp];
! 1894: disp = EXTRACT_DISP(instr);
! 1895: break;
! 1896: case 31:
! 1897: #ifdef GC_DEBUG_DECODER
! 1898: GC_err_printf1("Opcode 2: %d\n", (int)EXTRACT_OP2(instr));
! 1899: #endif
! 1900: switch(EXTRACT_OP2(instr)) {
! 1901: case 86: /* dcbf */
! 1902: case 54: /* dcbst */
! 1903: case 1014: /* dcbz */
! 1904: case 247: /* stbux */
! 1905: case 215: /* stbx */
! 1906: case 759: /* stfdux */
! 1907: case 727: /* stfdx */
! 1908: case 983: /* stfiwx */
! 1909: case 695: /* stfsux */
! 1910: case 663: /* stfsx */
! 1911: case 918: /* sthbrx */
! 1912: case 439: /* sthux */
! 1913: case 407: /* sthx */
! 1914: case 661: /* stswx */
! 1915: case 662: /* stwbrx */
! 1916: case 150: /* stwcx. */
! 1917: case 183: /* stwux */
! 1918: case 151: /* stwx */
! 1919: case 135: /* stvebx */
! 1920: case 167: /* stvehx */
! 1921: case 199: /* stvewx */
! 1922: case 231: /* stvx */
! 1923: case 487: /* stvxl */
! 1924: tmp = EXTRACT_REGA(instr);
! 1925: if(tmp > 0)
! 1926: baseA = regs[tmp];
! 1927: baseB = regs[EXTRACT_REGC(instr)];
! 1928: /* determine Altivec alignment mask */
! 1929: switch(EXTRACT_OP2(instr)) {
! 1930: case 167: /* stvehx */
! 1931: alignmask = 0xFFFFFFFE;
! 1932: break;
! 1933: case 199: /* stvewx */
! 1934: alignmask = 0xFFFFFFFC;
! 1935: break;
! 1936: case 231: /* stvx */
! 1937: alignmask = 0xFFFFFFF0;
! 1938: break;
! 1939: case 487: /* stvxl */
! 1940: alignmask = 0xFFFFFFF0;
! 1941: break;
! 1942: }
! 1943: break;
! 1944: case 725: /* stswi */
! 1945: tmp = EXTRACT_REGA(instr);
! 1946: if(tmp > 0)
! 1947: baseA = regs[tmp];
! 1948: break;
! 1949: default: /* ignore instruction */
! 1950: #ifdef GC_DEBUG_DECODER
! 1951: GC_err_printf("Ignored by inner handler\n");
! 1952: #endif
! 1953: return NULL;
! 1954: break;
! 1955: }
! 1956: break;
! 1957: default: /* ignore instruction */
! 1958: #ifdef GC_DEBUG_DECODER
! 1959: GC_err_printf("Ignored by main handler\n");
! 1960: #endif
! 1961: return NULL;
! 1962: break;
! 1963: }
! 1964:
! 1965: addr = (baseA + baseB) + disp;
! 1966: addr &= alignmask;
! 1967: #ifdef GC_DEBUG_DECODER
! 1968: GC_err_printf1("BaseA: %d\n", baseA);
! 1969: GC_err_printf1("BaseB: %d\n", baseB);
! 1970: GC_err_printf1("Disp: %d\n", disp);
! 1971: GC_err_printf1("Address: %d\n", addr);
! 1972: #endif
! 1973: return (char *)addr;
! 1974: }
! 1975: #endif /* MACOSX */
! 1976:
1.1 noro 1977: SIG_PF GC_old_bus_handler;
1978: SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */
1979:
1.4 ! noro 1980: #ifdef THREADS
! 1981: /* We need to lock around the bitmap update in the write fault handler */
! 1982: /* in order to avoid the risk of losing a bit. We do this with a */
! 1983: /* test-and-set spin lock if we know how to do that. Otherwise we */
! 1984: /* check whether we are already in the handler and use the dumb but */
! 1985: /* safe fallback algorithm of setting all bits in the word. */
! 1986: /* Contention should be very rare, so we do the minimum to handle it */
! 1987: /* correctly. */
! 1988: #ifdef GC_TEST_AND_SET_DEFINED
! 1989: static VOLATILE unsigned int fault_handler_lock = 0;
! 1990: void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
! 1991: while (GC_test_and_set(&fault_handler_lock));
! 1992: /* Could also revert to set_pht_entry_from_index_safe if initial */
! 1993: /* GC_test_and_set fails. */
! 1994: set_pht_entry_from_index(db, index);
! 1995: GC_clear(&fault_handler_lock);
! 1996: }
! 1997: #else /* !GC_TEST_AND_SET_DEFINED */
! 1998: /* THIS IS INCORRECT! The dirty bit vector may be temporarily wrong, */
! 1999: /* just before we notice the conflict and correct it. We may end up */
! 2000: /* looking at it while it's wrong. But this requires contention */
! 2001: /* exactly when a GC is triggered, which seems far less likely to */
! 2002: /* fail than the old code, which had no reported failures. Thus we */
! 2003: /* leave it this way while we think of something better, or support */
! 2004: /* GC_test_and_set on the remaining platforms. */
! 2005: static VOLATILE word currently_updating = 0;
! 2006: void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
! 2007: unsigned int update_dummy;
! 2008: currently_updating = (word)(&update_dummy);
! 2009: set_pht_entry_from_index(db, index);
! 2010: /* If we get contention in the 10 or so instruction window here, */
! 2011: /* and we get stopped by a GC between the two updates, we lose! */
! 2012: if (currently_updating != (word)(&update_dummy)) {
! 2013: set_pht_entry_from_index_safe(db, index);
! 2014: /* We claim that if two threads concurrently try to update the */
! 2015: /* dirty bit vector, the first one to execute UPDATE_START */
! 2016: /* will see it changed when UPDATE_END is executed. (Note that */
! 2017: /* &update_dummy must differ in two distinct threads.) It */
! 2018: /* will then execute set_pht_entry_from_index_safe, thus */
! 2019: /* returning us to a safe state, though not soon enough. */
! 2020: }
! 2021: }
! 2022: #endif /* !GC_TEST_AND_SET_DEFINED */
! 2023: #else /* !THREADS */
! 2024: # define async_set_pht_entry_from_index(db, index) \
! 2025: set_pht_entry_from_index(db, index)
! 2026: #endif /* !THREADS */
! 2027:
1.1 noro 2028: /*ARGSUSED*/
2029: # if defined (SUNOS4) || defined(FREEBSD)
2030: void GC_write_fault_handler(sig, code, scp, addr)
2031: int sig, code;
2032: struct sigcontext *scp;
2033: char * addr;
2034: # ifdef SUNOS4
2035: # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2036: # define CODE_OK (FC_CODE(code) == FC_PROT \
2037: || (FC_CODE(code) == FC_OBJERR \
2038: && FC_ERRNO(code) == FC_PROT))
2039: # endif
2040: # ifdef FREEBSD
2041: # define SIG_OK (sig == SIGBUS)
2042: # define CODE_OK (code == BUS_PAGE_FAULT)
2043: # endif
2044: # endif
2045: # if defined(IRIX5) || defined(OSF1)
2046: # include <errno.h>
2047: void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
2048: # define SIG_OK (sig == SIGSEGV)
2049: # ifdef OSF1
2050: # define CODE_OK (code == 2 /* experimentally determined */)
2051: # endif
2052: # ifdef IRIX5
2053: # define CODE_OK (code == EACCES)
2054: # endif
2055: # endif
2056: # if defined(LINUX)
1.2 noro 2057: # if defined(ALPHA) || defined(M68K)
1.1 noro 2058: void GC_write_fault_handler(int sig, int code, s_c * sc)
2059: # else
1.4 ! noro 2060: # if defined(IA64) || defined(HP_PA)
1.2 noro 2061: void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
2062: # else
2063: void GC_write_fault_handler(int sig, s_c sc)
2064: # endif
1.1 noro 2065: # endif
2066: # define SIG_OK (sig == SIGSEGV)
2067: # define CODE_OK TRUE
1.2 noro 2068: /* Empirically c.trapno == 14, on IA32, but is that useful? */
2069: /* Should probably consider alignment issues on other */
2070: /* architectures. */
1.1 noro 2071: # endif
2072: # if defined(SUNOS5SIGS)
1.2 noro 2073: # ifdef __STDC__
2074: void GC_write_fault_handler(int sig, struct SIGINFO *scp, void * context)
2075: # else
2076: void GC_write_fault_handler(sig, scp, context)
2077: int sig;
2078: struct SIGINFO *scp;
2079: void * context;
2080: # endif
2081: # ifdef HPUX
2082: # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2083: # define CODE_OK (scp -> si_code == SEGV_ACCERR) \
2084: || (scp -> si_code == BUS_ADRERR) \
2085: || (scp -> si_code == BUS_UNKNOWN) \
2086: || (scp -> si_code == SEGV_UNKNOWN) \
2087: || (scp -> si_code == BUS_OBJERR)
2088: # else
2089: # define SIG_OK (sig == SIGSEGV)
2090: # define CODE_OK (scp -> si_code == SEGV_ACCERR)
2091: # endif
1.1 noro 2092: # endif
1.4 ! noro 2093:
! 2094: # if defined(MACOSX)
! 2095: void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
! 2096: # define SIG_OK (sig == SIGBUS)
! 2097: # define CODE_OK (code == 0 /* experimentally determined */)
! 2098: # endif
! 2099:
! 2100: # if defined(MSWIN32) || defined(MSWINCE)
1.1 noro 2101: LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
2102: # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
1.4 ! noro 2103: STATUS_ACCESS_VIOLATION)
1.1 noro 2104: # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
2105: /* Write fault */
2106: # endif
2107: {
2108: register unsigned i;
2109: # ifdef IRIX5
2110: char * addr = (char *) (size_t) (scp -> sc_badvaddr);
2111: # endif
2112: # if defined(OSF1) && defined(ALPHA)
2113: char * addr = (char *) (scp -> sc_traparg_a0);
2114: # endif
2115: # ifdef SUNOS5SIGS
2116: char * addr = (char *) (scp -> si_addr);
2117: # endif
2118: # ifdef LINUX
2119: # ifdef I386
2120: char * addr = (char *) (sc.cr2);
2121: # else
2122: # if defined(M68K)
2123: char * addr = NULL;
2124:
1.4 ! noro 2125: struct sigcontext *scp = (struct sigcontext *)(sc);
1.1 noro 2126:
2127: int format = (scp->sc_formatvec >> 12) & 0xf;
2128: unsigned long *framedata = (unsigned long *)(scp + 1);
2129: unsigned long ea;
2130:
2131: if (format == 0xa || format == 0xb) {
2132: /* 68020/030 */
2133: ea = framedata[2];
2134: } else if (format == 7) {
2135: /* 68040 */
2136: ea = framedata[3];
1.4 ! noro 2137: if (framedata[1] & 0x08000000) {
! 2138: /* correct addr on misaligned access */
! 2139: ea = (ea+4095)&(~4095);
! 2140: }
1.1 noro 2141: } else if (format == 4) {
2142: /* 68060 */
2143: ea = framedata[0];
2144: if (framedata[1] & 0x08000000) {
2145: /* correct addr on misaligned access */
2146: ea = (ea+4095)&(~4095);
2147: }
2148: }
2149: addr = (char *)ea;
2150: # else
2151: # ifdef ALPHA
2152: char * addr = get_fault_addr(sc);
2153: # else
1.4 ! noro 2154: # if defined(IA64) || defined(HP_PA)
1.2 noro 2155: char * addr = si -> si_addr;
1.3 noro 2156: /* I believe this is claimed to work on all platforms for */
2157: /* Linux 2.3.47 and later. Hopefully we don't have to */
2158: /* worry about earlier kernels on IA64. */
1.2 noro 2159: # else
2160: # if defined(POWERPC)
2161: char * addr = (char *) (sc.regs->dar);
2162: # else
1.1 noro 2163: --> architecture not supported
1.2 noro 2164: # endif
2165: # endif
1.1 noro 2166: # endif
2167: # endif
2168: # endif
2169: # endif
1.4 ! noro 2170: # if defined(MACOSX)
! 2171: char * addr = get_fault_addr(scp);
! 2172: # endif
! 2173: # if defined(MSWIN32) || defined(MSWINCE)
1.1 noro 2174: char * addr = (char *) (exc_info -> ExceptionRecord
2175: -> ExceptionInformation[1]);
2176: # define sig SIGSEGV
2177: # endif
2178:
2179: if (SIG_OK && CODE_OK) {
2180: register struct hblk * h =
2181: (struct hblk *)((word)addr & ~(GC_page_size-1));
2182: GC_bool in_allocd_block;
2183:
2184: # ifdef SUNOS5SIGS
2185: /* Address is only within the correct physical page. */
2186: in_allocd_block = FALSE;
2187: for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2188: if (HDR(h+i) != 0) {
2189: in_allocd_block = TRUE;
2190: }
2191: }
2192: # else
2193: in_allocd_block = (HDR(addr) != 0);
2194: # endif
2195: if (!in_allocd_block) {
2196: /* Heap blocks now begin and end on page boundaries */
2197: SIG_PF old_handler;
2198:
2199: if (sig == SIGSEGV) {
2200: old_handler = GC_old_segv_handler;
2201: } else {
2202: old_handler = GC_old_bus_handler;
2203: }
2204: if (old_handler == SIG_DFL) {
1.4 ! noro 2205: # if !defined(MSWIN32) && !defined(MSWINCE)
1.1 noro 2206: GC_err_printf1("Segfault at 0x%lx\n", addr);
2207: ABORT("Unexpected bus error or segmentation fault");
2208: # else
2209: return(EXCEPTION_CONTINUE_SEARCH);
2210: # endif
2211: } else {
2212: # if defined (SUNOS4) || defined(FREEBSD)
2213: (*old_handler) (sig, code, scp, addr);
2214: return;
2215: # endif
2216: # if defined (SUNOS5SIGS)
2217: (*(REAL_SIG_PF)old_handler) (sig, scp, context);
2218: return;
2219: # endif
2220: # if defined (LINUX)
1.2 noro 2221: # if defined(ALPHA) || defined(M68K)
1.1 noro 2222: (*(REAL_SIG_PF)old_handler) (sig, code, sc);
2223: # else
1.4 ! noro 2224: # if defined(IA64) || defined(HP_PA)
1.2 noro 2225: (*(REAL_SIG_PF)old_handler) (sig, si, scp);
2226: # else
1.1 noro 2227: (*(REAL_SIG_PF)old_handler) (sig, sc);
1.2 noro 2228: # endif
1.1 noro 2229: # endif
2230: return;
2231: # endif
2232: # if defined (IRIX5) || defined(OSF1)
2233: (*(REAL_SIG_PF)old_handler) (sig, code, scp);
2234: return;
2235: # endif
1.4 ! noro 2236: # ifdef MACOSX
! 2237: (*(REAL_SIG_PF)old_handler) (sig, code, scp);
! 2238: # endif
1.1 noro 2239: # ifdef MSWIN32
2240: return((*old_handler)(exc_info));
2241: # endif
2242: }
2243: }
2244: for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2245: register int index = PHT_HASH(h+i);
2246:
1.4 ! noro 2247: async_set_pht_entry_from_index(GC_dirty_pages, index);
1.1 noro 2248: }
2249: UNPROTECT(h, GC_page_size);
2250: # if defined(OSF1) || defined(LINUX)
2251: /* These reset the signal handler each time by default. */
2252: signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
2253: # endif
2254: /* The write may not take place before dirty bits are read. */
2255: /* But then we'll fault again ... */
1.4 ! noro 2256: # if defined(MSWIN32) || defined(MSWINCE)
1.1 noro 2257: return(EXCEPTION_CONTINUE_EXECUTION);
2258: # else
2259: return;
2260: # endif
2261: }
1.4 ! noro 2262: #if defined(MSWIN32) || defined(MSWINCE)
1.1 noro 2263: return EXCEPTION_CONTINUE_SEARCH;
2264: #else
2265: GC_err_printf1("Segfault at 0x%lx\n", addr);
2266: ABORT("Unexpected bus error or segmentation fault");
2267: #endif
2268: }
2269:
2270: /*
2271: * We hold the allocation lock. We expect block h to be written
2272: * shortly.
2273: */
2274: void GC_write_hint(h)
2275: struct hblk *h;
2276: {
2277: register struct hblk * h_trunc;
2278: register unsigned i;
2279: register GC_bool found_clean;
2280:
2281: if (!GC_dirty_maintained) return;
2282: h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
2283: found_clean = FALSE;
2284: for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2285: register int index = PHT_HASH(h_trunc+i);
2286:
2287: if (!get_pht_entry_from_index(GC_dirty_pages, index)) {
2288: found_clean = TRUE;
1.4 ! noro 2289: async_set_pht_entry_from_index(GC_dirty_pages, index);
1.1 noro 2290: }
2291: }
2292: if (found_clean) {
2293: UNPROTECT(h_trunc, GC_page_size);
2294: }
2295: }
2296:
2297: void GC_dirty_init()
2298: {
1.4 ! noro 2299: # if defined(SUNOS5SIGS) || defined(IRIX5) /* || defined(OSF1) */
! 2300: struct sigaction act, oldact;
! 2301: # ifdef IRIX5
1.1 noro 2302: act.sa_flags = SA_RESTART;
2303: act.sa_handler = GC_write_fault_handler;
1.4 ! noro 2304: # else
1.1 noro 2305: act.sa_flags = SA_RESTART | SA_SIGINFO;
2306: act.sa_sigaction = GC_write_fault_handler;
1.4 ! noro 2307: # endif
! 2308: (void)sigemptyset(&act.sa_mask);
! 2309: # endif
! 2310: # if defined(MACOSX)
! 2311: struct sigaction act, oldact;
! 2312:
! 2313: act.sa_flags = SA_RESTART;
! 2314: act.sa_handler = GC_write_fault_handler;
! 2315: sigemptyset(&act.sa_mask);
1.1 noro 2316: # endif
2317: # ifdef PRINTSTATS
2318: GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2319: # endif
2320: GC_dirty_maintained = TRUE;
2321: if (GC_page_size % HBLKSIZE != 0) {
2322: GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2323: ABORT("Page size not multiple of HBLKSIZE");
2324: }
2325: # if defined(SUNOS4) || defined(FREEBSD)
2326: GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
2327: if (GC_old_bus_handler == SIG_IGN) {
2328: GC_err_printf0("Previously ignored bus error!?");
2329: GC_old_bus_handler = SIG_DFL;
2330: }
2331: if (GC_old_bus_handler != SIG_DFL) {
2332: # ifdef PRINTSTATS
2333: GC_err_printf0("Replaced other SIGBUS handler\n");
2334: # endif
2335: }
2336: # endif
2337: # if defined(OSF1) || defined(SUNOS4) || defined(LINUX)
2338: GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
2339: if (GC_old_segv_handler == SIG_IGN) {
2340: GC_err_printf0("Previously ignored segmentation violation!?");
2341: GC_old_segv_handler = SIG_DFL;
2342: }
2343: if (GC_old_segv_handler != SIG_DFL) {
2344: # ifdef PRINTSTATS
2345: GC_err_printf0("Replaced other SIGSEGV handler\n");
2346: # endif
2347: }
2348: # endif
2349: # if defined(SUNOS5SIGS) || defined(IRIX5)
1.4 ! noro 2350: # if defined(IRIX_THREADS)
1.1 noro 2351: sigaction(SIGSEGV, 0, &oldact);
2352: sigaction(SIGSEGV, &act, 0);
2353: # else
2354: sigaction(SIGSEGV, &act, &oldact);
2355: # endif
2356: # if defined(_sigargs)
2357: /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
2358: /* sa_sigaction. */
2359: GC_old_segv_handler = oldact.sa_handler;
2360: # else /* Irix 6.x or SUNOS5SIGS */
2361: if (oldact.sa_flags & SA_SIGINFO) {
2362: GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2363: } else {
2364: GC_old_segv_handler = oldact.sa_handler;
2365: }
2366: # endif
2367: if (GC_old_segv_handler == SIG_IGN) {
2368: GC_err_printf0("Previously ignored segmentation violation!?");
2369: GC_old_segv_handler = SIG_DFL;
2370: }
2371: if (GC_old_segv_handler != SIG_DFL) {
2372: # ifdef PRINTSTATS
2373: GC_err_printf0("Replaced other SIGSEGV handler\n");
2374: # endif
2375: }
1.4 ! noro 2376: # endif
! 2377: # if defined(MACOSX) || defined(HPUX)
! 2378: sigaction(SIGBUS, &act, &oldact);
! 2379: GC_old_bus_handler = oldact.sa_handler;
! 2380: if (GC_old_bus_handler == SIG_IGN) {
! 2381: GC_err_printf0("Previously ignored bus error!?");
! 2382: GC_old_bus_handler = SIG_DFL;
! 2383: }
! 2384: if (GC_old_bus_handler != SIG_DFL) {
! 2385: # ifdef PRINTSTATS
! 2386: GC_err_printf0("Replaced other SIGBUS handler\n");
! 2387: # endif
! 2388: }
! 2389: # endif /* MACOS || HPUX */
1.1 noro 2390: # if defined(MSWIN32)
2391: GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2392: if (GC_old_segv_handler != NULL) {
2393: # ifdef PRINTSTATS
2394: GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2395: # endif
2396: } else {
2397: GC_old_segv_handler = SIG_DFL;
2398: }
2399: # endif
2400: }
2401:
2402:
2403:
2404: void GC_protect_heap()
2405: {
2406: ptr_t start;
2407: word len;
2408: unsigned i;
2409:
2410: for (i = 0; i < GC_n_heap_sects; i++) {
2411: start = GC_heap_sects[i].hs_start;
2412: len = GC_heap_sects[i].hs_bytes;
2413: PROTECT(start, len);
2414: }
2415: }
2416:
2417: /* We assume that either the world is stopped or its OK to lose dirty */
2418: /* bits while this is happenning (as in GC_enable_incremental). */
2419: void GC_read_dirty()
2420: {
2421: BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
2422: (sizeof GC_dirty_pages));
2423: BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
2424: GC_protect_heap();
2425: }
2426:
2427: GC_bool GC_page_was_dirty(h)
2428: struct hblk * h;
2429: {
2430: register word index = PHT_HASH(h);
2431:
2432: return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2433: }
2434:
2435: /*
2436: * Acquiring the allocation lock here is dangerous, since this
2437: * can be called from within GC_call_with_alloc_lock, and the cord
2438: * package does so. On systems that allow nested lock acquisition, this
2439: * happens to work.
2440: * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2441: */
1.4 ! noro 2442:
! 2443: static GC_bool syscall_acquired_lock = FALSE; /* Protected by GC lock. */
1.1 noro 2444:
2445: void GC_begin_syscall()
2446: {
1.4 ! noro 2447: if (!I_HOLD_LOCK()) {
! 2448: LOCK();
! 2449: syscall_acquired_lock = TRUE;
! 2450: }
1.1 noro 2451: }
2452:
2453: void GC_end_syscall()
2454: {
1.4 ! noro 2455: if (syscall_acquired_lock) {
! 2456: syscall_acquired_lock = FALSE;
! 2457: UNLOCK();
! 2458: }
1.1 noro 2459: }
2460:
2461: void GC_unprotect_range(addr, len)
2462: ptr_t addr;
2463: word len;
2464: {
2465: struct hblk * start_block;
2466: struct hblk * end_block;
2467: register struct hblk *h;
2468: ptr_t obj_start;
2469:
2470: if (!GC_incremental) return;
2471: obj_start = GC_base(addr);
2472: if (obj_start == 0) return;
2473: if (GC_base(addr + len - 1) != obj_start) {
2474: ABORT("GC_unprotect_range(range bigger than object)");
2475: }
2476: start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
2477: end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
2478: end_block += GC_page_size/HBLKSIZE - 1;
2479: for (h = start_block; h <= end_block; h++) {
2480: register word index = PHT_HASH(h);
2481:
1.4 ! noro 2482: async_set_pht_entry_from_index(GC_dirty_pages, index);
1.1 noro 2483: }
2484: UNPROTECT(start_block,
2485: ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
2486: }
2487:
1.4 ! noro 2488: #if !defined(MSWIN32) && !defined(MSWINCE) && !defined(LINUX_THREADS) \
! 2489: && !defined(GC_USE_LD_WRAP)
1.1 noro 2490: /* Replacement for UNIX system call. */
2491: /* Other calls that write to the heap */
2492: /* should be handled similarly. */
2493: # if defined(__STDC__) && !defined(SUNOS4)
2494: # include <unistd.h>
1.3 noro 2495: # include <sys/uio.h>
1.1 noro 2496: ssize_t read(int fd, void *buf, size_t nbyte)
2497: # else
2498: # ifndef LINT
2499: int read(fd, buf, nbyte)
2500: # else
2501: int GC_read(fd, buf, nbyte)
2502: # endif
2503: int fd;
2504: char *buf;
2505: int nbyte;
2506: # endif
2507: {
2508: int result;
2509:
2510: GC_begin_syscall();
2511: GC_unprotect_range(buf, (word)nbyte);
1.3 noro 2512: # if defined(IRIX5) || defined(LINUX_THREADS)
1.1 noro 2513: /* Indirect system call may not always be easily available. */
2514: /* We could call _read, but that would interfere with the */
2515: /* libpthread interception of read. */
1.3 noro 2516: /* On Linux, we have to be careful with the linuxthreads */
2517: /* read interception. */
1.1 noro 2518: {
2519: struct iovec iov;
2520:
2521: iov.iov_base = buf;
2522: iov.iov_len = nbyte;
2523: result = readv(fd, &iov, 1);
2524: }
2525: # else
1.4 ! noro 2526: /* The two zero args at the end of this list are because one
! 2527: IA-64 syscall() implementation actually requires six args
! 2528: to be passed, even though they aren't always used. */
! 2529: result = syscall(SYS_read, fd, buf, nbyte, 0, 0);
1.1 noro 2530: # endif
2531: GC_end_syscall();
2532: return(result);
2533: }
1.4 ! noro 2534: #endif /* !MSWIN32 && !MSWINCE && !LINUX_THREADS */
1.3 noro 2535:
1.4 ! noro 2536: #ifdef GC_USE_LD_WRAP
1.3 noro 2537: /* We use the GNU ld call wrapping facility. */
2538: /* This requires that the linker be invoked with "--wrap read". */
2539: /* This can be done by passing -Wl,"--wrap read" to gcc. */
2540: /* I'm not sure that this actually wraps whatever version of read */
2541: /* is called by stdio. That code also mentions __read. */
2542: # include <unistd.h>
2543: ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
2544: {
2545: int result;
2546:
2547: GC_begin_syscall();
2548: GC_unprotect_range(buf, (word)nbyte);
2549: result = __real_read(fd, buf, nbyte);
2550: GC_end_syscall();
2551: return(result);
2552: }
2553:
2554: /* We should probably also do this for __read, or whatever stdio */
2555: /* actually calls. */
2556: #endif
1.1 noro 2557:
2558: /*ARGSUSED*/
2559: GC_bool GC_page_was_ever_dirty(h)
2560: struct hblk *h;
2561: {
2562: return(TRUE);
2563: }
2564:
2565: /* Reset the n pages starting at h to "was never dirty" status. */
2566: /*ARGSUSED*/
2567: void GC_is_fresh(h, n)
2568: struct hblk *h;
2569: word n;
2570: {
2571: }
2572:
1.4 ! noro 2573: # else /* !MPROTECT_VDB */
! 2574:
! 2575: # ifdef GC_USE_LD_WRAP
! 2576: ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
! 2577: { return __real_read(fd, buf, nbyte); }
! 2578: # endif
! 2579:
1.1 noro 2580: # endif /* MPROTECT_VDB */
2581:
2582: # ifdef PROC_VDB
2583:
2584: /*
2585: * See DEFAULT_VDB for interface descriptions.
2586: */
2587:
2588: /*
2589: * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
2590: * from which we can read page modified bits. This facility is far from
2591: * optimal (e.g. we would like to get the info for only some of the
2592: * address space), but it avoids intercepting system calls.
2593: */
2594:
2595: #include <errno.h>
2596: #include <sys/types.h>
2597: #include <sys/signal.h>
2598: #include <sys/fault.h>
2599: #include <sys/syscall.h>
2600: #include <sys/procfs.h>
2601: #include <sys/stat.h>
2602:
2603: #define INITIAL_BUF_SZ 4096
2604: word GC_proc_buf_size = INITIAL_BUF_SZ;
2605: char *GC_proc_buf;
2606:
2607: #ifdef SOLARIS_THREADS
2608: /* We don't have exact sp values for threads. So we count on */
2609: /* occasionally declaring stack pages to be fresh. Thus we */
2610: /* need a real implementation of GC_is_fresh. We can't clear */
2611: /* entries in GC_written_pages, since that would declare all */
2612: /* pages with the given hash address to be fresh. */
2613: # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
2614: struct hblk ** GC_fresh_pages; /* A direct mapped cache. */
2615: /* Collisions are dropped. */
2616:
2617: # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
2618: # define ADD_FRESH_PAGE(h) \
2619: GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
2620: # define PAGE_IS_FRESH(h) \
2621: (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
2622: #endif
2623:
2624: /* Add all pages in pht2 to pht1 */
2625: void GC_or_pages(pht1, pht2)
2626: page_hash_table pht1, pht2;
2627: {
2628: register int i;
2629:
2630: for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
2631: }
2632:
2633: int GC_proc_fd;
2634:
2635: void GC_dirty_init()
2636: {
2637: int fd;
2638: char buf[30];
2639:
2640: GC_dirty_maintained = TRUE;
2641: if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
2642: register int i;
2643:
2644: for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
2645: # ifdef PRINTSTATS
2646: GC_printf1("Allocated words:%lu:all pages may have been written\n",
2647: (unsigned long)
2648: (GC_words_allocd + GC_words_allocd_before_gc));
2649: # endif
2650: }
2651: sprintf(buf, "/proc/%d", getpid());
2652: fd = open(buf, O_RDONLY);
2653: if (fd < 0) {
2654: ABORT("/proc open failed");
2655: }
2656: GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
2657: close(fd);
2658: if (GC_proc_fd < 0) {
2659: ABORT("/proc ioctl failed");
2660: }
2661: GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
2662: # ifdef SOLARIS_THREADS
2663: GC_fresh_pages = (struct hblk **)
2664: GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
2665: if (GC_fresh_pages == 0) {
2666: GC_err_printf0("No space for fresh pages\n");
2667: EXIT();
2668: }
2669: BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
2670: # endif
2671: }
2672:
2673: /* Ignore write hints. They don't help us here. */
2674: /*ARGSUSED*/
2675: void GC_write_hint(h)
2676: struct hblk *h;
2677: {
2678: }
2679:
2680: #ifdef SOLARIS_THREADS
2681: # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
2682: #else
2683: # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
2684: #endif
2685:
2686: void GC_read_dirty()
2687: {
2688: unsigned long ps, np;
2689: int nmaps;
2690: ptr_t vaddr;
2691: struct prasmap * map;
2692: char * bufp;
2693: ptr_t current_addr, limit;
2694: int i;
2695: int dummy;
2696:
2697: BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
2698:
2699: bufp = GC_proc_buf;
2700: if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
2701: # ifdef PRINTSTATS
2702: GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
2703: GC_proc_buf_size);
2704: # endif
2705: {
2706: /* Retry with larger buffer. */
2707: word new_size = 2 * GC_proc_buf_size;
2708: char * new_buf = GC_scratch_alloc(new_size);
2709:
2710: if (new_buf != 0) {
2711: GC_proc_buf = bufp = new_buf;
2712: GC_proc_buf_size = new_size;
2713: }
2714: if (syscall(SYS_read, GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
2715: WARN("Insufficient space for /proc read\n", 0);
2716: /* Punt: */
2717: memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
2718: memset(GC_written_pages, 0xff, sizeof(page_hash_table));
2719: # ifdef SOLARIS_THREADS
2720: BZERO(GC_fresh_pages,
2721: MAX_FRESH_PAGES * sizeof (struct hblk *));
2722: # endif
2723: return;
2724: }
2725: }
2726: }
2727: /* Copy dirty bits into GC_grungy_pages */
2728: nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
2729: /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
2730: nmaps, PG_REFERENCED, PG_MODIFIED); */
2731: bufp = bufp + sizeof(struct prpageheader);
2732: for (i = 0; i < nmaps; i++) {
2733: map = (struct prasmap *)bufp;
2734: vaddr = (ptr_t)(map -> pr_vaddr);
2735: ps = map -> pr_pagesize;
2736: np = map -> pr_npage;
2737: /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
2738: limit = vaddr + ps * np;
2739: bufp += sizeof (struct prasmap);
2740: for (current_addr = vaddr;
2741: current_addr < limit; current_addr += ps){
2742: if ((*bufp++) & PG_MODIFIED) {
2743: register struct hblk * h = (struct hblk *) current_addr;
2744:
2745: while ((ptr_t)h < current_addr + ps) {
2746: register word index = PHT_HASH(h);
2747:
2748: set_pht_entry_from_index(GC_grungy_pages, index);
2749: # ifdef SOLARIS_THREADS
2750: {
2751: register int slot = FRESH_PAGE_SLOT(h);
2752:
2753: if (GC_fresh_pages[slot] == h) {
2754: GC_fresh_pages[slot] = 0;
2755: }
2756: }
2757: # endif
2758: h++;
2759: }
2760: }
2761: }
2762: bufp += sizeof(long) - 1;
2763: bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
2764: }
2765: /* Update GC_written_pages. */
2766: GC_or_pages(GC_written_pages, GC_grungy_pages);
2767: # ifdef SOLARIS_THREADS
2768: /* Make sure that old stacks are considered completely clean */
2769: /* unless written again. */
2770: GC_old_stacks_are_fresh();
2771: # endif
2772: }
2773:
2774: #undef READ
2775:
2776: GC_bool GC_page_was_dirty(h)
2777: struct hblk *h;
2778: {
2779: register word index = PHT_HASH(h);
2780: register GC_bool result;
2781:
2782: result = get_pht_entry_from_index(GC_grungy_pages, index);
2783: # ifdef SOLARIS_THREADS
2784: if (result && PAGE_IS_FRESH(h)) result = FALSE;
2785: /* This happens only if page was declared fresh since */
2786: /* the read_dirty call, e.g. because it's in an unused */
2787: /* thread stack. It's OK to treat it as clean, in */
2788: /* that case. And it's consistent with */
2789: /* GC_page_was_ever_dirty. */
2790: # endif
2791: return(result);
2792: }
2793:
2794: GC_bool GC_page_was_ever_dirty(h)
2795: struct hblk *h;
2796: {
2797: register word index = PHT_HASH(h);
2798: register GC_bool result;
2799:
2800: result = get_pht_entry_from_index(GC_written_pages, index);
2801: # ifdef SOLARIS_THREADS
2802: if (result && PAGE_IS_FRESH(h)) result = FALSE;
2803: # endif
2804: return(result);
2805: }
2806:
2807: /* Caller holds allocation lock. */
2808: void GC_is_fresh(h, n)
2809: struct hblk *h;
2810: word n;
2811: {
2812:
2813: register word index;
2814:
2815: # ifdef SOLARIS_THREADS
2816: register word i;
2817:
2818: if (GC_fresh_pages != 0) {
2819: for (i = 0; i < n; i++) {
2820: ADD_FRESH_PAGE(h + i);
2821: }
2822: }
2823: # endif
2824: }
2825:
2826: # endif /* PROC_VDB */
2827:
2828:
2829: # ifdef PCR_VDB
2830:
2831: # include "vd/PCR_VD.h"
2832:
2833: # define NPAGES (32*1024) /* 128 MB */
2834:
2835: PCR_VD_DB GC_grungy_bits[NPAGES];
2836:
2837: ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */
2838: /* HBLKSIZE aligned. */
2839:
2840: void GC_dirty_init()
2841: {
2842: GC_dirty_maintained = TRUE;
2843: /* For the time being, we assume the heap generally grows up */
2844: GC_vd_base = GC_heap_sects[0].hs_start;
2845: if (GC_vd_base == 0) {
2846: ABORT("Bad initial heap segment");
2847: }
2848: if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
2849: != PCR_ERes_okay) {
2850: ABORT("dirty bit initialization failed");
2851: }
2852: }
2853:
2854: void GC_read_dirty()
2855: {
2856: /* lazily enable dirty bits on newly added heap sects */
2857: {
2858: static int onhs = 0;
2859: int nhs = GC_n_heap_sects;
2860: for( ; onhs < nhs; onhs++ ) {
2861: PCR_VD_WriteProtectEnable(
2862: GC_heap_sects[onhs].hs_start,
2863: GC_heap_sects[onhs].hs_bytes );
2864: }
2865: }
2866:
2867:
2868: if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
2869: != PCR_ERes_okay) {
2870: ABORT("dirty bit read failed");
2871: }
2872: }
2873:
2874: GC_bool GC_page_was_dirty(h)
2875: struct hblk *h;
2876: {
2877: if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
2878: return(TRUE);
2879: }
2880: return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
2881: }
2882:
2883: /*ARGSUSED*/
2884: void GC_write_hint(h)
2885: struct hblk *h;
2886: {
2887: PCR_VD_WriteProtectDisable(h, HBLKSIZE);
2888: PCR_VD_WriteProtectEnable(h, HBLKSIZE);
2889: }
2890:
2891: # endif /* PCR_VDB */
2892:
2893: /*
2894: * Call stack save code for debugging.
2895: * Should probably be in mach_dep.c, but that requires reorganization.
2896: */
1.4 ! noro 2897:
! 2898: /* I suspect the following works for most X86 *nix variants, so */
! 2899: /* long as the frame pointer is explicitly stored. In the case of gcc, */
! 2900: /* compiler flags (e.g. -fomit-frame-pointer) determine whether it is. */
! 2901: #if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN)
! 2902: struct frame {
! 2903: struct frame *fr_savfp;
! 2904: long fr_savpc;
! 2905: long fr_arg[NARGS]; /* All the arguments go here. */
! 2906: };
! 2907: #endif
! 2908:
! 2909: #if defined(SPARC)
! 2910: # if defined(LINUX)
! 2911: struct frame {
! 2912: long fr_local[8];
! 2913: long fr_arg[6];
! 2914: struct frame *fr_savfp;
! 2915: long fr_savpc;
! 2916: # ifndef __arch64__
! 2917: char *fr_stret;
! 2918: # endif
! 2919: long fr_argd[6];
! 2920: long fr_argx[0];
! 2921: };
! 2922: # else
! 2923: # if defined(SUNOS4)
! 2924: # include <machine/frame.h>
! 2925: # else
! 2926: # if defined (DRSNX)
! 2927: # include <sys/sparc/frame.h>
! 2928: # else
! 2929: # if defined(OPENBSD) || defined(NETBSD)
! 2930: # include <frame.h>
! 2931: # else
! 2932: # include <sys/frame.h>
! 2933: # endif
! 2934: # endif
! 2935: # endif
! 2936: # endif
! 2937: # if NARGS > 6
1.1 noro 2938: --> We only know how to to get the first 6 arguments
1.4 ! noro 2939: # endif
! 2940: #endif /* SPARC */
1.1 noro 2941:
2942: #ifdef SAVE_CALL_CHAIN
2943: /* Fill in the pc and argument information for up to NFRAMES of my */
2944: /* callers. Ignore my frame and my callers frame. */
2945:
1.4 ! noro 2946: #if (defined(OPENBSD) || defined(NETBSD)) && defined(SPARC)
1.1 noro 2947: # define FR_SAVFP fr_fp
2948: # define FR_SAVPC fr_pc
2949: #else
2950: # define FR_SAVFP fr_savfp
2951: # define FR_SAVPC fr_savpc
2952: #endif
2953:
1.4 ! noro 2954: #if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
! 2955: # define BIAS 2047
! 2956: #else
! 2957: # define BIAS 0
! 2958: #endif
! 2959:
1.1 noro 2960: void GC_save_callers (info)
2961: struct callinfo info[NFRAMES];
2962: {
2963: struct frame *frame;
2964: struct frame *fp;
2965: int nframes = 0;
1.4 ! noro 2966: # ifdef I386
! 2967: /* We assume this is turned on only with gcc as the compiler. */
! 2968: asm("movl %%ebp,%0" : "=r"(frame));
! 2969: fp = frame;
! 2970: # else
! 2971: word GC_save_regs_in_stack();
1.1 noro 2972:
1.4 ! noro 2973: frame = (struct frame *) GC_save_regs_in_stack ();
! 2974: fp = (struct frame *)((long) frame -> FR_SAVFP + BIAS);
! 2975: #endif
1.1 noro 2976:
1.4 ! noro 2977: for (; (!(fp HOTTER_THAN frame) && !(GC_stackbottom HOTTER_THAN (ptr_t)fp)
! 2978: && (nframes < NFRAMES));
! 2979: fp = (struct frame *)((long) fp -> FR_SAVFP + BIAS), nframes++) {
1.1 noro 2980: register int i;
2981:
2982: info[nframes].ci_pc = fp->FR_SAVPC;
2983: for (i = 0; i < NARGS; i++) {
2984: info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
2985: }
2986: }
2987: if (nframes < NFRAMES) info[nframes].ci_pc = 0;
2988: }
2989:
2990: #endif /* SAVE_CALL_CHAIN */
2991:
1.4 ! noro 2992: #if defined(LINUX) && defined(__ELF__) && \
! 2993: (!defined(SMALL_CONFIG) || defined(USE_PROC_FOR_LIBRARIES))
! 2994: #ifdef GC_USE_LD_WRAP
! 2995: # define READ __real_read
! 2996: #else
! 2997: # define READ read
! 2998: #endif
! 2999:
! 3000:
! 3001: /* Repeatedly perform a read call until the buffer is filled or */
! 3002: /* we encounter EOF. */
! 3003: ssize_t GC_repeat_read(int fd, char *buf, size_t count)
! 3004: {
! 3005: ssize_t num_read = 0;
! 3006: ssize_t result;
! 3007:
! 3008: while (num_read < count) {
! 3009: result = READ(fd, buf + num_read, count - num_read);
! 3010: if (result < 0) return result;
! 3011: if (result == 0) break;
! 3012: num_read += result;
! 3013: }
! 3014: return num_read;
! 3015: }
! 3016: #endif /* LINUX && ... */
! 3017:
! 3018:
! 3019: #if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
! 3020:
! 3021: /* Dump /proc/self/maps to GC_stderr, to enable looking up names for
! 3022: addresses in FIND_LEAK output. */
! 3023:
! 3024: void GC_print_address_map()
! 3025: {
! 3026: int f;
! 3027: int result;
! 3028: char maps_temp[32768];
! 3029: GC_err_printf0("---------- Begin address map ----------\n");
! 3030: f = open("/proc/self/maps", O_RDONLY);
! 3031: if (-1 == f) ABORT("Couldn't open /proc/self/maps");
! 3032: do {
! 3033: result = GC_repeat_read(f, maps_temp, sizeof(maps_temp));
! 3034: if (result <= 0) ABORT("Couldn't read /proc/self/maps");
! 3035: GC_err_write(maps_temp, result);
! 3036: } while (result == sizeof(maps_temp));
! 3037:
! 3038: GC_err_printf0("---------- End address map ----------\n");
! 3039: }
! 3040:
! 3041: #endif
1.1 noro 3042:
3043:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>