Annotation of OpenXM_contrib2/asir2000/gc/os_dep.c, Revision 1.7
1.1 noro 1: /*
1.2 noro 2: * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
1.1 noro 3: * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
1.2 noro 4: * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
5: * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
1.1 noro 6: *
7: * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8: * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
9: *
10: * Permission is hereby granted to use or copy this program
11: * for any purpose, provided the above notices are retained on all copies.
12: * Permission to modify the code and to distribute modified code is granted,
13: * provided the above notices are retained, and a notice that the code was
14: * modified is included with the above copyright notice.
15: */
16:
1.4 noro 17: # include "private/gc_priv.h"
1.1 noro 18:
19: # if defined(LINUX) && !defined(POWERPC)
20: # include <linux/version.h>
21: # if (LINUX_VERSION_CODE <= 0x10400)
22: /* Ugly hack to get struct sigcontext_struct definition. Required */
23: /* for some early 1.3.X releases. Will hopefully go away soon. */
24: /* in some later Linux releases, asm/sigcontext.h may have to */
25: /* be included instead. */
26: # define __KERNEL__
27: # include <asm/signal.h>
28: # undef __KERNEL__
29: # else
30: /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31: /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
32: /* prototypes, so we have to include the top-level sigcontext.h to */
33: /* make sure the former gets defined to be the latter if appropriate. */
34: # include <features.h>
35: # if 2 <= __GLIBC__
1.2 noro 36: # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
1.1 noro 37: /* glibc 2.1 no longer has sigcontext.h. But signal.h */
38: /* has the right declaration for glibc 2.1. */
39: # include <sigcontext.h>
40: # endif /* 0 == __GLIBC_MINOR__ */
41: # else /* not 2 <= __GLIBC__ */
42: /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
43: /* one. Check LINUX_VERSION_CODE to see which we should reference. */
44: # include <asm/sigcontext.h>
45: # endif /* 2 <= __GLIBC__ */
46: # endif
47: # endif
1.4 noro 48: # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \
49: && !defined(MSWINCE)
1.1 noro 50: # include <sys/types.h>
51: # if !defined(MSWIN32) && !defined(SUNOS4)
52: # include <unistd.h>
53: # endif
54: # endif
55:
56: # include <stdio.h>
1.4 noro 57: # if defined(MSWINCE)
58: # define SIGSEGV 0 /* value is irrelevant */
59: # else
60: # include <signal.h>
61: # endif
1.1 noro 62:
63: /* Blatantly OS dependent routines, except for those that are related */
1.2 noro 64: /* to dynamic loading. */
1.1 noro 65:
1.6 noro 66: # if defined(HEURISTIC2) || defined(SEARCH_FOR_DATA_START)
1.1 noro 67: # define NEED_FIND_LIMIT
68: # endif
69:
1.6 noro 70: # if !defined(STACKBOTTOM) && defined(HEURISTIC2)
1.1 noro 71: # define NEED_FIND_LIMIT
72: # endif
73:
1.3 noro 74: # if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
1.1 noro 75: # define NEED_FIND_LIMIT
76: # endif
77:
1.6 noro 78: # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
79: || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
1.1 noro 80: # define NEED_FIND_LIMIT
81: # endif
82:
1.7 ! noro 83: #if defined(FREEBSD) && defined(I386)
! 84: # include <machine/trap.h>
! 85: # if !defined(PCR)
! 86: # define NEED_FIND_LIMIT
! 87: # endif
! 88: #endif
! 89:
1.1 noro 90: #ifdef NEED_FIND_LIMIT
91: # include <setjmp.h>
92: #endif
93:
94: #ifdef AMIGA
1.4 noro 95: # define GC_AMIGA_DEF
96: # include "AmigaOS.c"
97: # undef GC_AMIGA_DEF
1.1 noro 98: #endif
99:
1.4 noro 100: #if defined(MSWIN32) || defined(MSWINCE)
1.1 noro 101: # define WIN32_LEAN_AND_MEAN
102: # define NOSERVICE
103: # include <windows.h>
104: #endif
105:
106: #ifdef MACOS
107: # include <Processes.h>
108: #endif
109:
110: #ifdef IRIX5
111: # include <sys/uio.h>
112: # include <malloc.h> /* for locking */
113: #endif
114: #ifdef USE_MMAP
115: # include <sys/types.h>
116: # include <sys/mman.h>
117: # include <sys/stat.h>
1.4 noro 118: #endif
119:
120: #ifdef UNIX_LIKE
1.1 noro 121: # include <fcntl.h>
122: #endif
123:
1.6 noro 124: #if defined(SUNOS5SIGS) || defined (HURD) || defined(LINUX)
125: # ifdef SUNOS5SIGS
126: # include <sys/siginfo.h>
127: # endif
1.1 noro 128: # undef setjmp
129: # undef longjmp
130: # define setjmp(env) sigsetjmp(env, 1)
131: # define longjmp(env, val) siglongjmp(env, val)
132: # define jmp_buf sigjmp_buf
133: #endif
134:
1.7 ! noro 135: #ifdef DARWIN
! 136: /* for get_etext and friends */
! 137: #include <mach-o/getsect.h>
! 138: #endif
! 139:
1.1 noro 140: #ifdef DJGPP
1.4 noro 141: /* Apparently necessary for djgpp 2.01. May cause problems with */
1.1 noro 142: /* other versions. */
143: typedef long unsigned int caddr_t;
144: #endif
145:
146: #ifdef PCR
147: # include "il/PCR_IL.h"
148: # include "th/PCR_ThCtl.h"
149: # include "mm/PCR_MM.h"
150: #endif
151:
152: #if !defined(NO_EXECUTE_PERMISSION)
153: # define OPT_PROT_EXEC PROT_EXEC
154: #else
155: # define OPT_PROT_EXEC 0
156: #endif
157:
1.7 ! noro 158: #if defined(LINUX) && \
! 159: (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64) || !defined(SMALL_CONFIG))
! 160:
! 161: /* We need to parse /proc/self/maps, either to find dynamic libraries, */
! 162: /* and/or to find the register backing store base (IA64). Do it once */
! 163: /* here. */
! 164:
! 165: #define READ read
! 166:
! 167: /* Repeatedly perform a read call until the buffer is filled or */
! 168: /* we encounter EOF. */
! 169: ssize_t GC_repeat_read(int fd, char *buf, size_t count)
! 170: {
! 171: ssize_t num_read = 0;
! 172: ssize_t result;
! 173:
! 174: while (num_read < count) {
! 175: result = READ(fd, buf + num_read, count - num_read);
! 176: if (result < 0) return result;
! 177: if (result == 0) break;
! 178: num_read += result;
! 179: }
! 180: return num_read;
! 181: }
! 182:
! 183: /*
! 184: * Apply fn to a buffer containing the contents of /proc/self/maps.
! 185: * Return the result of fn or, if we failed, 0.
! 186: */
! 187:
! 188: word GC_apply_to_maps(word (*fn)(char *))
! 189: {
! 190: int f;
! 191: int result;
! 192: int maps_size;
! 193: char maps_temp[32768];
! 194: char *maps_buf;
! 195:
! 196: /* Read /proc/self/maps */
! 197: /* Note that we may not allocate, and thus can't use stdio. */
! 198: f = open("/proc/self/maps", O_RDONLY);
! 199: if (-1 == f) return 0;
! 200: /* stat() doesn't work for /proc/self/maps, so we have to
! 201: read it to find out how large it is... */
! 202: maps_size = 0;
! 203: do {
! 204: result = GC_repeat_read(f, maps_temp, sizeof(maps_temp));
! 205: if (result <= 0) return 0;
! 206: maps_size += result;
! 207: } while (result == sizeof(maps_temp));
! 208:
! 209: if (maps_size > sizeof(maps_temp)) {
! 210: /* If larger than our buffer, close and re-read it. */
! 211: close(f);
! 212: f = open("/proc/self/maps", O_RDONLY);
! 213: if (-1 == f) return 0;
! 214: maps_buf = alloca(maps_size);
! 215: if (NULL == maps_buf) return 0;
! 216: result = GC_repeat_read(f, maps_buf, maps_size);
! 217: if (result <= 0) return 0;
! 218: } else {
! 219: /* Otherwise use the fixed size buffer */
! 220: maps_buf = maps_temp;
! 221: }
! 222:
! 223: close(f);
! 224: maps_buf[result] = '\0';
! 225:
! 226: /* Apply fn to result. */
! 227: return fn(maps_buf);
! 228: }
! 229:
! 230: #endif /* Need GC_apply_to_maps */
! 231:
! 232: #if defined(LINUX) && (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64))
! 233: //
! 234: // GC_parse_map_entry parses an entry from /proc/self/maps so we can
! 235: // locate all writable data segments that belong to shared libraries.
! 236: // The format of one of these entries and the fields we care about
! 237: // is as follows:
! 238: // XXXXXXXX-XXXXXXXX r-xp 00000000 30:05 260537 name of mapping...\n
! 239: // ^^^^^^^^ ^^^^^^^^ ^^^^ ^^
! 240: // start end prot maj_dev
! 241: // 0 9 18 32
! 242: //
! 243: // For 64 bit ABIs:
! 244: // 0 17 34 56
! 245: //
! 246: // The parser is called with a pointer to the entry and the return value
! 247: // is either NULL or is advanced to the next entry(the byte after the
! 248: // trailing '\n'.)
! 249: //
! 250: #if CPP_WORDSZ == 32
! 251: # define OFFSET_MAP_START 0
! 252: # define OFFSET_MAP_END 9
! 253: # define OFFSET_MAP_PROT 18
! 254: # define OFFSET_MAP_MAJDEV 32
! 255: # define ADDR_WIDTH 8
! 256: #endif
! 257:
! 258: #if CPP_WORDSZ == 64
! 259: # define OFFSET_MAP_START 0
! 260: # define OFFSET_MAP_END 17
! 261: # define OFFSET_MAP_PROT 34
! 262: # define OFFSET_MAP_MAJDEV 56
! 263: # define ADDR_WIDTH 16
! 264: #endif
! 265:
! 266: /*
! 267: * Assign various fields of the first line in buf_ptr to *start, *end,
! 268: * *prot_buf and *maj_dev. Only *prot_buf may be set for unwritable maps.
! 269: */
! 270: char *GC_parse_map_entry(char *buf_ptr, word *start, word *end,
! 271: char *prot_buf, unsigned int *maj_dev)
! 272: {
! 273: int i;
! 274: char *tok;
! 275:
! 276: if (buf_ptr == NULL || *buf_ptr == '\0') {
! 277: return NULL;
! 278: }
! 279:
! 280: memcpy(prot_buf, buf_ptr+OFFSET_MAP_PROT, 4);
! 281: /* do the protections first. */
! 282: prot_buf[4] = '\0';
! 283:
! 284: if (prot_buf[1] == 'w') {/* we can skip all of this if it's not writable. */
! 285:
! 286: tok = buf_ptr;
! 287: buf_ptr[OFFSET_MAP_START+ADDR_WIDTH] = '\0';
! 288: *start = strtoul(tok, NULL, 16);
! 289:
! 290: tok = buf_ptr+OFFSET_MAP_END;
! 291: buf_ptr[OFFSET_MAP_END+ADDR_WIDTH] = '\0';
! 292: *end = strtoul(tok, NULL, 16);
! 293:
! 294: buf_ptr += OFFSET_MAP_MAJDEV;
! 295: tok = buf_ptr;
! 296: while (*buf_ptr != ':') buf_ptr++;
! 297: *buf_ptr++ = '\0';
! 298: *maj_dev = strtoul(tok, NULL, 16);
! 299: }
! 300:
! 301: while (*buf_ptr && *buf_ptr++ != '\n');
! 302:
! 303: return buf_ptr;
! 304: }
! 305:
! 306: #endif /* Need to parse /proc/self/maps. */
! 307:
1.3 noro 308: #if defined(SEARCH_FOR_DATA_START)
1.1 noro 309: /* The I386 case can be handled without a search. The Alpha case */
310: /* used to be handled differently as well, but the rules changed */
311: /* for recent Linux versions. This seems to be the easiest way to */
312: /* cover all versions. */
1.4 noro 313:
314: # ifdef LINUX
1.7 ! noro 315: /* Some Linux distributions arrange to define __data_start. Some */
! 316: /* define data_start as a weak symbol. The latter is technically */
! 317: /* broken, since the user program may define data_start, in which */
! 318: /* case we lose. Nonetheless, we try both, prefering __data_start. */
! 319: /* We assume gcc-compatible pragmas. */
1.4 noro 320: # pragma weak __data_start
1.6 noro 321: extern int __data_start[];
1.4 noro 322: # pragma weak data_start
1.6 noro 323: extern int data_start[];
1.4 noro 324: # endif /* LINUX */
1.6 noro 325: extern int _end[];
1.4 noro 326:
1.1 noro 327: ptr_t GC_data_start;
328:
329: void GC_init_linux_data_start()
330: {
331: extern ptr_t GC_find_limit();
332:
1.4 noro 333: # ifdef LINUX
334: /* Try the easy approaches first: */
1.6 noro 335: if ((ptr_t)__data_start != 0) {
336: GC_data_start = (ptr_t)(__data_start);
1.4 noro 337: return;
338: }
1.6 noro 339: if ((ptr_t)data_start != 0) {
340: GC_data_start = (ptr_t)(data_start);
1.4 noro 341: return;
342: }
343: # endif /* LINUX */
1.6 noro 344: GC_data_start = GC_find_limit((ptr_t)(_end), FALSE);
1.4 noro 345: }
346: #endif
347:
1.6 noro 348: # ifdef ECOS
349:
350: # ifndef ECOS_GC_MEMORY_SIZE
351: # define ECOS_GC_MEMORY_SIZE (448 * 1024)
352: # endif /* ECOS_GC_MEMORY_SIZE */
353:
354: // setjmp() function, as described in ANSI para 7.6.1.1
355: #define setjmp( __env__ ) hal_setjmp( __env__ )
356:
357: // FIXME: This is a simple way of allocating memory which is
358: // compatible with ECOS early releases. Later releases use a more
359: // sophisticated means of allocating memory than this simple static
360: // allocator, but this method is at least bound to work.
361: static char memory[ECOS_GC_MEMORY_SIZE];
362: static char *brk = memory;
363:
364: static void *tiny_sbrk(ptrdiff_t increment)
365: {
366: void *p = brk;
367:
368: brk += increment;
369:
370: if (brk > memory + sizeof memory)
371: {
372: brk -= increment;
373: return NULL;
374: }
375:
376: return p;
377: }
378: #define sbrk tiny_sbrk
379: # endif /* ECOS */
380:
381: #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__)
1.4 noro 382: ptr_t GC_data_start;
383:
384: void GC_init_netbsd_elf()
385: {
386: extern ptr_t GC_find_limit();
387: extern char **environ;
388: /* This may need to be environ, without the underscore, for */
389: /* some versions. */
390: GC_data_start = GC_find_limit((ptr_t)&environ, FALSE);
1.1 noro 391: }
392: #endif
393:
394: # ifdef OS2
395:
396: # include <stddef.h>
397:
398: # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
399:
400: struct exe_hdr {
401: unsigned short magic_number;
402: unsigned short padding[29];
403: long new_exe_offset;
404: };
405:
406: #define E_MAGIC(x) (x).magic_number
407: #define EMAGIC 0x5A4D
408: #define E_LFANEW(x) (x).new_exe_offset
409:
410: struct e32_exe {
411: unsigned char magic_number[2];
412: unsigned char byte_order;
413: unsigned char word_order;
414: unsigned long exe_format_level;
415: unsigned short cpu;
416: unsigned short os;
417: unsigned long padding1[13];
418: unsigned long object_table_offset;
419: unsigned long object_count;
420: unsigned long padding2[31];
421: };
422:
423: #define E32_MAGIC1(x) (x).magic_number[0]
424: #define E32MAGIC1 'L'
425: #define E32_MAGIC2(x) (x).magic_number[1]
426: #define E32MAGIC2 'X'
427: #define E32_BORDER(x) (x).byte_order
428: #define E32LEBO 0
429: #define E32_WORDER(x) (x).word_order
430: #define E32LEWO 0
431: #define E32_CPU(x) (x).cpu
432: #define E32CPU286 1
433: #define E32_OBJTAB(x) (x).object_table_offset
434: #define E32_OBJCNT(x) (x).object_count
435:
436: struct o32_obj {
437: unsigned long size;
438: unsigned long base;
439: unsigned long flags;
440: unsigned long pagemap;
441: unsigned long mapsize;
442: unsigned long reserved;
443: };
444:
445: #define O32_FLAGS(x) (x).flags
446: #define OBJREAD 0x0001L
447: #define OBJWRITE 0x0002L
448: #define OBJINVALID 0x0080L
449: #define O32_SIZE(x) (x).size
450: #define O32_BASE(x) (x).base
451:
452: # else /* IBM's compiler */
453:
454: /* A kludge to get around what appears to be a header file bug */
455: # ifndef WORD
456: # define WORD unsigned short
457: # endif
458: # ifndef DWORD
459: # define DWORD unsigned long
460: # endif
461:
462: # define EXE386 1
463: # include <newexe.h>
464: # include <exe386.h>
465:
466: # endif /* __IBMC__ */
467:
468: # define INCL_DOSEXCEPTIONS
469: # define INCL_DOSPROCESS
470: # define INCL_DOSERRORS
471: # define INCL_DOSMODULEMGR
472: # define INCL_DOSMEMMGR
473: # include <os2.h>
474:
475:
476: /* Disable and enable signals during nontrivial allocations */
477:
478: void GC_disable_signals(void)
479: {
480: ULONG nest;
481:
482: DosEnterMustComplete(&nest);
483: if (nest != 1) ABORT("nested GC_disable_signals");
484: }
485:
486: void GC_enable_signals(void)
487: {
488: ULONG nest;
489:
490: DosExitMustComplete(&nest);
491: if (nest != 0) ABORT("GC_enable_signals");
492: }
493:
494:
495: # else
496:
497: # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
1.4 noro 498: && !defined(MSWINCE) \
1.6 noro 499: && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
500: && !defined(NOSYS) && !defined(ECOS)
1.1 noro 501:
1.6 noro 502: # if defined(sigmask) && !defined(UTS4) && !defined(HURD)
1.1 noro 503: /* Use the traditional BSD interface */
504: # define SIGSET_T int
505: # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
506: # define SIG_FILL(set) (set) = 0x7fffffff
507: /* Setting the leading bit appears to provoke a bug in some */
508: /* longjmp implementations. Most systems appear not to have */
509: /* a signal 32. */
510: # define SIGSETMASK(old, new) (old) = sigsetmask(new)
511: # else
512: /* Use POSIX/SYSV interface */
513: # define SIGSET_T sigset_t
514: # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
515: # define SIG_FILL(set) sigfillset(&set)
516: # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
517: # endif
518:
519: static GC_bool mask_initialized = FALSE;
520:
521: static SIGSET_T new_mask;
522:
523: static SIGSET_T old_mask;
524:
525: static SIGSET_T dummy;
526:
527: #if defined(PRINTSTATS) && !defined(THREADS)
528: # define CHECK_SIGNALS
529: int GC_sig_disabled = 0;
530: #endif
531:
532: void GC_disable_signals()
533: {
534: if (!mask_initialized) {
535: SIG_FILL(new_mask);
536:
537: SIG_DEL(new_mask, SIGSEGV);
538: SIG_DEL(new_mask, SIGILL);
539: SIG_DEL(new_mask, SIGQUIT);
540: # ifdef SIGBUS
541: SIG_DEL(new_mask, SIGBUS);
542: # endif
543: # ifdef SIGIOT
544: SIG_DEL(new_mask, SIGIOT);
545: # endif
546: # ifdef SIGEMT
547: SIG_DEL(new_mask, SIGEMT);
548: # endif
549: # ifdef SIGTRAP
550: SIG_DEL(new_mask, SIGTRAP);
551: # endif
552: mask_initialized = TRUE;
553: }
554: # ifdef CHECK_SIGNALS
555: if (GC_sig_disabled != 0) ABORT("Nested disables");
556: GC_sig_disabled++;
557: # endif
558: SIGSETMASK(old_mask,new_mask);
559: }
560:
561: void GC_enable_signals()
562: {
563: # ifdef CHECK_SIGNALS
564: if (GC_sig_disabled != 1) ABORT("Unmatched enable");
565: GC_sig_disabled--;
566: # endif
567: SIGSETMASK(dummy,old_mask);
568: }
569:
570: # endif /* !PCR */
571:
572: # endif /*!OS/2 */
573:
574: /* Ivan Demakov: simplest way (to me) */
1.6 noro 575: #if defined (DOS4GW)
1.1 noro 576: void GC_disable_signals() { }
577: void GC_enable_signals() { }
578: #endif
579:
580: /* Find the page size */
581: word GC_page_size;
582:
1.4 noro 583: # if defined(MSWIN32) || defined(MSWINCE)
1.1 noro 584: void GC_setpagesize()
585: {
1.4 noro 586: GetSystemInfo(&GC_sysinfo);
587: GC_page_size = GC_sysinfo.dwPageSize;
1.1 noro 588: }
589:
590: # else
591: # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
592: || defined(USE_MUNMAP)
593: void GC_setpagesize()
594: {
595: GC_page_size = GETPAGESIZE();
596: }
597: # else
598: /* It's acceptable to fake it. */
599: void GC_setpagesize()
600: {
601: GC_page_size = HBLKSIZE;
602: }
603: # endif
604: # endif
605:
606: /*
607: * Find the base of the stack.
608: * Used only in single-threaded environment.
609: * With threads, GC_mark_roots needs to know how to do this.
610: * Called with allocator lock held.
611: */
1.4 noro 612: # if defined(MSWIN32) || defined(MSWINCE)
1.1 noro 613: # define is_writable(prot) ((prot) == PAGE_READWRITE \
614: || (prot) == PAGE_WRITECOPY \
615: || (prot) == PAGE_EXECUTE_READWRITE \
616: || (prot) == PAGE_EXECUTE_WRITECOPY)
617: /* Return the number of bytes that are writable starting at p. */
618: /* The pointer p is assumed to be page aligned. */
619: /* If base is not 0, *base becomes the beginning of the */
620: /* allocation region containing p. */
621: word GC_get_writable_length(ptr_t p, ptr_t *base)
622: {
623: MEMORY_BASIC_INFORMATION buf;
624: word result;
625: word protect;
626:
627: result = VirtualQuery(p, &buf, sizeof(buf));
628: if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
629: if (base != 0) *base = (ptr_t)(buf.AllocationBase);
630: protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
631: if (!is_writable(protect)) {
632: return(0);
633: }
634: if (buf.State != MEM_COMMIT) return(0);
635: return(buf.RegionSize);
636: }
637:
638: ptr_t GC_get_stack_base()
639: {
640: int dummy;
641: ptr_t sp = (ptr_t)(&dummy);
642: ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
643: word size = GC_get_writable_length(trunc_sp, 0);
644:
645: return(trunc_sp + size);
646: }
647:
648:
1.4 noro 649: # endif /* MS Windows */
650:
651: # ifdef BEOS
652: # include <kernel/OS.h>
653: ptr_t GC_get_stack_base(){
654: thread_info th;
655: get_thread_info(find_thread(NULL),&th);
656: return th.stack_end;
657: }
658: # endif /* BEOS */
659:
1.1 noro 660:
661: # ifdef OS2
662:
663: ptr_t GC_get_stack_base()
664: {
665: PTIB ptib;
666: PPIB ppib;
667:
668: if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
669: GC_err_printf0("DosGetInfoBlocks failed\n");
670: ABORT("DosGetInfoBlocks failed\n");
671: }
672: return((ptr_t)(ptib -> tib_pstacklimit));
673: }
674:
1.4 noro 675: # endif /* OS2 */
1.1 noro 676:
677: # ifdef AMIGA
1.4 noro 678: # define GC_AMIGA_SB
679: # include "AmigaOS.c"
680: # undef GC_AMIGA_SB
681: # endif /* AMIGA */
1.1 noro 682:
1.4 noro 683: # if defined(NEED_FIND_LIMIT) || defined(UNIX_LIKE)
1.1 noro 684:
685: # ifdef __STDC__
686: typedef void (*handler)(int);
687: # else
688: typedef void (*handler)();
689: # endif
690:
1.6 noro 691: # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) || defined(HURD)
1.1 noro 692: static struct sigaction old_segv_act;
1.6 noro 693: # if defined(_sigargs) /* !Irix6.x */ || defined(HPUX) || defined(HURD)
1.1 noro 694: static struct sigaction old_bus_act;
695: # endif
696: # else
697: static handler old_segv_handler, old_bus_handler;
698: # endif
699:
1.4 noro 700: # ifdef __STDC__
701: void GC_set_and_save_fault_handler(handler h)
702: # else
703: void GC_set_and_save_fault_handler(h)
704: handler h;
705: # endif
1.1 noro 706: {
1.6 noro 707: # if defined(SUNOS5SIGS) || defined(IRIX5) \
708: || defined(OSF1) || defined(HURD)
1.1 noro 709: struct sigaction act;
710:
1.4 noro 711: act.sa_handler = h;
1.6 noro 712: # ifdef SUNOS5SIGS
713: act.sa_flags = SA_RESTART | SA_NODEFER;
714: # else
715: act.sa_flags = SA_RESTART;
716: # endif
1.1 noro 717: /* The presence of SA_NODEFER represents yet another gross */
718: /* hack. Under Solaris 2.3, siglongjmp doesn't appear to */
719: /* interact correctly with -lthread. We hide the confusion */
720: /* by making sure that signal handling doesn't affect the */
721: /* signal mask. */
722:
723: (void) sigemptyset(&act.sa_mask);
1.6 noro 724: # ifdef GC_IRIX_THREADS
1.1 noro 725: /* Older versions have a bug related to retrieving and */
726: /* and setting a handler at the same time. */
727: (void) sigaction(SIGSEGV, 0, &old_segv_act);
728: (void) sigaction(SIGSEGV, &act, 0);
729: # else
730: (void) sigaction(SIGSEGV, &act, &old_segv_act);
1.2 noro 731: # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
1.6 noro 732: || defined(HPUX) || defined(HURD)
1.2 noro 733: /* Under Irix 5.x or HP/UX, we may get SIGBUS. */
734: /* Pthreads doesn't exist under Irix 5.x, so we */
735: /* don't have to worry in the threads case. */
1.1 noro 736: (void) sigaction(SIGBUS, &act, &old_bus_act);
737: # endif
1.6 noro 738: # endif /* GC_IRIX_THREADS */
1.1 noro 739: # else
1.4 noro 740: old_segv_handler = signal(SIGSEGV, h);
1.1 noro 741: # ifdef SIGBUS
1.4 noro 742: old_bus_handler = signal(SIGBUS, h);
1.1 noro 743: # endif
744: # endif
745: }
1.4 noro 746: # endif /* NEED_FIND_LIMIT || UNIX_LIKE */
747:
748: # ifdef NEED_FIND_LIMIT
749: /* Some tools to implement HEURISTIC2 */
750: # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
751: /* static */ jmp_buf GC_jmp_buf;
752:
753: /*ARGSUSED*/
754: void GC_fault_handler(sig)
755: int sig;
756: {
757: longjmp(GC_jmp_buf, 1);
758: }
759:
760: void GC_setup_temporary_fault_handler()
761: {
762: GC_set_and_save_fault_handler(GC_fault_handler);
763: }
1.1 noro 764:
765: void GC_reset_fault_handler()
766: {
1.6 noro 767: # if defined(SUNOS5SIGS) || defined(IRIX5) \
768: || defined(OSF1) || defined(HURD)
1.1 noro 769: (void) sigaction(SIGSEGV, &old_segv_act, 0);
1.2 noro 770: # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
1.6 noro 771: || defined(HPUX) || defined(HURD)
1.1 noro 772: (void) sigaction(SIGBUS, &old_bus_act, 0);
773: # endif
774: # else
775: (void) signal(SIGSEGV, old_segv_handler);
776: # ifdef SIGBUS
777: (void) signal(SIGBUS, old_bus_handler);
778: # endif
779: # endif
780: }
781:
782: /* Return the first nonaddressible location > p (up) or */
1.7 ! noro 783: /* the smallest location q s.t. [q,p) is addressable (!up). */
! 784: /* We assume that p (up) or p-1 (!up) is addressable. */
1.1 noro 785: ptr_t GC_find_limit(p, up)
786: ptr_t p;
787: GC_bool up;
788: {
789: static VOLATILE ptr_t result;
790: /* Needs to be static, since otherwise it may not be */
791: /* preserved across the longjmp. Can safely be */
792: /* static since it's only called once, with the */
793: /* allocation lock held. */
794:
795:
796: GC_setup_temporary_fault_handler();
797: if (setjmp(GC_jmp_buf) == 0) {
798: result = (ptr_t)(((word)(p))
799: & ~(MIN_PAGE_SIZE-1));
800: for (;;) {
801: if (up) {
802: result += MIN_PAGE_SIZE;
803: } else {
804: result -= MIN_PAGE_SIZE;
805: }
806: GC_noop1((word)(*result));
807: }
808: }
809: GC_reset_fault_handler();
810: if (!up) {
811: result += MIN_PAGE_SIZE;
812: }
813: return(result);
814: }
815: # endif
816:
1.6 noro 817: #if defined(ECOS) || defined(NOSYS)
818: ptr_t GC_get_stack_base()
819: {
820: return STACKBOTTOM;
821: }
822: #endif
823:
1.2 noro 824: #ifdef LINUX_STACKBOTTOM
825:
1.3 noro 826: #include <sys/types.h>
827: #include <sys/stat.h>
1.7 ! noro 828: #include <ctype.h>
1.3 noro 829:
1.2 noro 830: # define STAT_SKIP 27 /* Number of fields preceding startstack */
1.3 noro 831: /* field in /proc/self/stat */
1.2 noro 832:
1.4 noro 833: # pragma weak __libc_stack_end
834: extern ptr_t __libc_stack_end;
835:
836: # ifdef IA64
1.7 ! noro 837: /* Try to read the backing store base from /proc/self/maps. */
! 838: /* We look for the writable mapping with a 0 major device, */
! 839: /* which is as close to our frame as possible, but below it.*/
! 840: static word backing_store_base_from_maps(char *maps)
! 841: {
! 842: char prot_buf[5];
! 843: char *buf_ptr = maps;
! 844: word start, end;
! 845: unsigned int maj_dev;
! 846: word current_best = 0;
! 847: word dummy;
! 848:
! 849: for (;;) {
! 850: buf_ptr = GC_parse_map_entry(buf_ptr, &start, &end, prot_buf, &maj_dev);
! 851: if (buf_ptr == NULL) return current_best;
! 852: if (prot_buf[1] == 'w' && maj_dev == 0) {
! 853: if (end < (word)(&dummy) && start > current_best) current_best = start;
! 854: }
! 855: }
! 856: return current_best;
! 857: }
! 858:
! 859: static word backing_store_base_from_proc(void)
! 860: {
! 861: return GC_apply_to_maps(backing_store_base_from_maps);
! 862: }
! 863:
1.4 noro 864: # pragma weak __libc_ia64_register_backing_store_base
865: extern ptr_t __libc_ia64_register_backing_store_base;
866:
867: ptr_t GC_get_register_stack_base(void)
868: {
1.6 noro 869: if (0 != &__libc_ia64_register_backing_store_base
870: && 0 != __libc_ia64_register_backing_store_base) {
871: /* Glibc 2.2.4 has a bug such that for dynamically linked */
872: /* executables __libc_ia64_register_backing_store_base is */
1.7 ! noro 873: /* defined but uninitialized during constructor calls. */
1.6 noro 874: /* Hence we check for both nonzero address and value. */
1.4 noro 875: return __libc_ia64_register_backing_store_base;
876: } else {
1.7 ! noro 877: word result = backing_store_base_from_proc();
! 878: if (0 == result) {
! 879: /* Use dumb heuristics. Works only for default configuration. */
! 880: result = (word)GC_stackbottom - BACKING_STORE_DISPLACEMENT;
! 881: result += BACKING_STORE_ALIGNMENT - 1;
! 882: result &= ~(BACKING_STORE_ALIGNMENT - 1);
! 883: /* Verify that it's at least readable. If not, we goofed. */
! 884: GC_noop1(*(word *)result);
! 885: }
1.4 noro 886: return (ptr_t)result;
887: }
888: }
889: # endif
890:
1.2 noro 891: ptr_t GC_linux_stack_base(void)
892: {
1.3 noro 893: /* We read the stack base value from /proc/self/stat. We do this */
894: /* using direct I/O system calls in order to avoid calling malloc */
895: /* in case REDIRECT_MALLOC is defined. */
896: # define STAT_BUF_SIZE 4096
1.7 ! noro 897: # define STAT_READ read
! 898: /* Should probably call the real read, if read is wrapped. */
1.3 noro 899: char stat_buf[STAT_BUF_SIZE];
900: int f;
1.2 noro 901: char c;
902: word result = 0;
1.3 noro 903: size_t i, buf_offset = 0;
1.2 noro 904:
1.4 noro 905: /* First try the easy way. This should work for glibc 2.2 */
906: if (0 != &__libc_stack_end) {
1.6 noro 907: # ifdef IA64
908: /* Some versions of glibc set the address 16 bytes too */
909: /* low while the initialization code is running. */
910: if (((word)__libc_stack_end & 0xfff) + 0x10 < 0x1000) {
911: return __libc_stack_end + 0x10;
912: } /* Otherwise it's not safe to add 16 bytes and we fall */
913: /* back to using /proc. */
914: # else
915: return __libc_stack_end;
916: # endif
1.4 noro 917: }
1.3 noro 918: f = open("/proc/self/stat", O_RDONLY);
919: if (f < 0 || STAT_READ(f, stat_buf, STAT_BUF_SIZE) < 2 * STAT_SKIP) {
920: ABORT("Couldn't read /proc/self/stat");
921: }
922: c = stat_buf[buf_offset++];
1.2 noro 923: /* Skip the required number of fields. This number is hopefully */
924: /* constant across all Linux implementations. */
925: for (i = 0; i < STAT_SKIP; ++i) {
1.3 noro 926: while (isspace(c)) c = stat_buf[buf_offset++];
927: while (!isspace(c)) c = stat_buf[buf_offset++];
1.2 noro 928: }
1.3 noro 929: while (isspace(c)) c = stat_buf[buf_offset++];
1.2 noro 930: while (isdigit(c)) {
931: result *= 10;
932: result += c - '0';
1.3 noro 933: c = stat_buf[buf_offset++];
1.2 noro 934: }
1.3 noro 935: close(f);
1.2 noro 936: if (result < 0x10000000) ABORT("Absurd stack bottom value");
937: return (ptr_t)result;
938: }
939:
940: #endif /* LINUX_STACKBOTTOM */
1.1 noro 941:
1.4 noro 942: #ifdef FREEBSD_STACKBOTTOM
943:
944: /* This uses an undocumented sysctl call, but at least one expert */
945: /* believes it will stay. */
946:
947: #include <unistd.h>
948: #include <sys/types.h>
949: #include <sys/sysctl.h>
950:
951: ptr_t GC_freebsd_stack_base(void)
952: {
1.6 noro 953: int nm[2] = {CTL_KERN, KERN_USRSTACK};
954: ptr_t base;
955: size_t len = sizeof(ptr_t);
956: int r = sysctl(nm, 2, &base, &len, NULL, 0);
1.4 noro 957:
958: if (r) ABORT("Error getting stack base");
959:
1.6 noro 960: return base;
1.4 noro 961: }
962:
963: #endif /* FREEBSD_STACKBOTTOM */
964:
965: #if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \
966: && !defined(MSWINCE) && !defined(OS2)
967:
1.1 noro 968: ptr_t GC_get_stack_base()
969: {
1.7 ! noro 970: # if defined(HEURISTIC1) || defined(HEURISTIC2) || \
! 971: defined(LINUX_STACKBOTTOM) || defined(FREEBSD_STACKBOTTOM)
1.1 noro 972: word dummy;
973: ptr_t result;
1.7 ! noro 974: # endif
1.1 noro 975:
976: # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
977:
978: # ifdef STACKBOTTOM
979: return(STACKBOTTOM);
980: # else
981: # ifdef HEURISTIC1
982: # ifdef STACK_GROWS_DOWN
983: result = (ptr_t)((((word)(&dummy))
984: + STACKBOTTOM_ALIGNMENT_M1)
985: & ~STACKBOTTOM_ALIGNMENT_M1);
986: # else
987: result = (ptr_t)(((word)(&dummy))
988: & ~STACKBOTTOM_ALIGNMENT_M1);
989: # endif
990: # endif /* HEURISTIC1 */
1.2 noro 991: # ifdef LINUX_STACKBOTTOM
992: result = GC_linux_stack_base();
993: # endif
1.4 noro 994: # ifdef FREEBSD_STACKBOTTOM
995: result = GC_freebsd_stack_base();
996: # endif
1.1 noro 997: # ifdef HEURISTIC2
998: # ifdef STACK_GROWS_DOWN
999: result = GC_find_limit((ptr_t)(&dummy), TRUE);
1000: # ifdef HEURISTIC2_LIMIT
1001: if (result > HEURISTIC2_LIMIT
1002: && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
1003: result = HEURISTIC2_LIMIT;
1004: }
1005: # endif
1006: # else
1007: result = GC_find_limit((ptr_t)(&dummy), FALSE);
1008: # ifdef HEURISTIC2_LIMIT
1009: if (result < HEURISTIC2_LIMIT
1010: && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
1011: result = HEURISTIC2_LIMIT;
1012: }
1013: # endif
1014: # endif
1015:
1016: # endif /* HEURISTIC2 */
1017: # ifdef STACK_GROWS_DOWN
1018: if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
1019: # endif
1020: return(result);
1021: # endif /* STACKBOTTOM */
1022: }
1023:
1.4 noro 1024: # endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS */
1.1 noro 1025:
1026: /*
1027: * Register static data segment(s) as roots.
1028: * If more data segments are added later then they need to be registered
1029: * add that point (as we do with SunOS dynamic loading),
1030: * or GC_mark_roots needs to check for them (as we do with PCR).
1031: * Called with allocator lock held.
1032: */
1033:
1034: # ifdef OS2
1035:
1036: void GC_register_data_segments()
1037: {
1038: PTIB ptib;
1039: PPIB ppib;
1040: HMODULE module_handle;
1041: # define PBUFSIZ 512
1042: UCHAR path[PBUFSIZ];
1043: FILE * myexefile;
1044: struct exe_hdr hdrdos; /* MSDOS header. */
1045: struct e32_exe hdr386; /* Real header for my executable */
1046: struct o32_obj seg; /* Currrent segment */
1047: int nsegs;
1048:
1049:
1050: if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
1051: GC_err_printf0("DosGetInfoBlocks failed\n");
1052: ABORT("DosGetInfoBlocks failed\n");
1053: }
1054: module_handle = ppib -> pib_hmte;
1055: if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
1056: GC_err_printf0("DosQueryModuleName failed\n");
1057: ABORT("DosGetInfoBlocks failed\n");
1058: }
1059: myexefile = fopen(path, "rb");
1060: if (myexefile == 0) {
1061: GC_err_puts("Couldn't open executable ");
1062: GC_err_puts(path); GC_err_puts("\n");
1063: ABORT("Failed to open executable\n");
1064: }
1065: if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
1066: GC_err_puts("Couldn't read MSDOS header from ");
1067: GC_err_puts(path); GC_err_puts("\n");
1068: ABORT("Couldn't read MSDOS header");
1069: }
1070: if (E_MAGIC(hdrdos) != EMAGIC) {
1071: GC_err_puts("Executable has wrong DOS magic number: ");
1072: GC_err_puts(path); GC_err_puts("\n");
1073: ABORT("Bad DOS magic number");
1074: }
1075: if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
1076: GC_err_puts("Seek to new header failed in ");
1077: GC_err_puts(path); GC_err_puts("\n");
1078: ABORT("Bad DOS magic number");
1079: }
1080: if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
1081: GC_err_puts("Couldn't read MSDOS header from ");
1082: GC_err_puts(path); GC_err_puts("\n");
1083: ABORT("Couldn't read OS/2 header");
1084: }
1085: if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
1086: GC_err_puts("Executable has wrong OS/2 magic number:");
1087: GC_err_puts(path); GC_err_puts("\n");
1088: ABORT("Bad OS/2 magic number");
1089: }
1090: if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
1091: GC_err_puts("Executable %s has wrong byte order: ");
1092: GC_err_puts(path); GC_err_puts("\n");
1093: ABORT("Bad byte order");
1094: }
1095: if ( E32_CPU(hdr386) == E32CPU286) {
1096: GC_err_puts("GC can't handle 80286 executables: ");
1097: GC_err_puts(path); GC_err_puts("\n");
1098: EXIT();
1099: }
1100: if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
1101: SEEK_SET) != 0) {
1102: GC_err_puts("Seek to object table failed: ");
1103: GC_err_puts(path); GC_err_puts("\n");
1104: ABORT("Seek to object table failed");
1105: }
1106: for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
1107: int flags;
1108: if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
1109: GC_err_puts("Couldn't read obj table entry from ");
1110: GC_err_puts(path); GC_err_puts("\n");
1111: ABORT("Couldn't read obj table entry");
1112: }
1113: flags = O32_FLAGS(seg);
1114: if (!(flags & OBJWRITE)) continue;
1115: if (!(flags & OBJREAD)) continue;
1116: if (flags & OBJINVALID) {
1117: GC_err_printf0("Object with invalid pages?\n");
1118: continue;
1119: }
1120: GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
1121: }
1122: }
1123:
1.4 noro 1124: # else /* !OS2 */
1125:
1126: # if defined(MSWIN32) || defined(MSWINCE)
1.1 noro 1127:
1128: # ifdef MSWIN32
1129: /* Unfortunately, we have to handle win32s very differently from NT, */
1130: /* Since VirtualQuery has very different semantics. In particular, */
1131: /* under win32s a VirtualQuery call on an unmapped page returns an */
1.6 noro 1132: /* invalid result. Under NT, GC_register_data_segments is a noop and */
1.1 noro 1133: /* all real work is done by GC_register_dynamic_libraries. Under */
1134: /* win32s, we cannot find the data segments associated with dll's. */
1.7 ! noro 1135: /* We register the main data segment here. */
1.6 noro 1136: GC_bool GC_no_win32_dlls = FALSE;
1.7 ! noro 1137: /* This used to be set for gcc, to avoid dealing with */
! 1138: /* the structured exception handling issues. But we now have */
! 1139: /* assembly code to do that right. */
1.1 noro 1140:
1141: void GC_init_win32()
1142: {
1.6 noro 1143: /* if we're running under win32s, assume that no DLLs will be loaded */
1144: DWORD v = GetVersion();
1145: GC_no_win32_dlls |= ((v & 0x80000000) && (v & 0xff) <= 3);
1.1 noro 1146: }
1.4 noro 1147:
1.1 noro 1148: /* Return the smallest address a such that VirtualQuery */
1149: /* returns correct results for all addresses between a and start. */
1150: /* Assumes VirtualQuery returns correct information for start. */
1151: ptr_t GC_least_described_address(ptr_t start)
1152: {
1153: MEMORY_BASIC_INFORMATION buf;
1154: DWORD result;
1155: LPVOID limit;
1156: ptr_t p;
1157: LPVOID q;
1158:
1.4 noro 1159: limit = GC_sysinfo.lpMinimumApplicationAddress;
1.1 noro 1160: p = (ptr_t)((word)start & ~(GC_page_size - 1));
1161: for (;;) {
1162: q = (LPVOID)(p - GC_page_size);
1163: if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
1164: result = VirtualQuery(q, &buf, sizeof(buf));
1165: if (result != sizeof(buf) || buf.AllocationBase == 0) break;
1166: p = (ptr_t)(buf.AllocationBase);
1167: }
1168: return(p);
1169: }
1.4 noro 1170: # endif
1.7 ! noro 1171:
! 1172: # ifndef REDIRECT_MALLOC
! 1173: /* We maintain a linked list of AllocationBase values that we know */
! 1174: /* correspond to malloc heap sections. Currently this is only called */
! 1175: /* during a GC. But there is some hope that for long running */
! 1176: /* programs we will eventually see most heap sections. */
! 1177:
! 1178: /* In the long run, it would be more reliable to occasionally walk */
! 1179: /* the malloc heap with HeapWalk on the default heap. But that */
! 1180: /* apparently works only for NT-based Windows. */
! 1181:
! 1182: /* In the long run, a better data structure would also be nice ... */
! 1183: struct GC_malloc_heap_list {
! 1184: void * allocation_base;
! 1185: struct GC_malloc_heap_list *next;
! 1186: } *GC_malloc_heap_l = 0;
! 1187:
! 1188: /* Is p the base of one of the malloc heap sections we already know */
! 1189: /* about? */
! 1190: GC_bool GC_is_malloc_heap_base(ptr_t p)
! 1191: {
! 1192: struct GC_malloc_heap_list *q = GC_malloc_heap_l;
! 1193:
! 1194: while (0 != q) {
! 1195: if (q -> allocation_base == p) return TRUE;
! 1196: q = q -> next;
! 1197: }
! 1198: return FALSE;
! 1199: }
! 1200:
! 1201: void *GC_get_allocation_base(void *p)
! 1202: {
! 1203: MEMORY_BASIC_INFORMATION buf;
! 1204: DWORD result = VirtualQuery(p, &buf, sizeof(buf));
! 1205: if (result != sizeof(buf)) {
! 1206: ABORT("Weird VirtualQuery result");
! 1207: }
! 1208: return buf.AllocationBase;
! 1209: }
! 1210:
! 1211: size_t GC_max_root_size = 100000; /* Appr. largest root size. */
! 1212:
! 1213: void GC_add_current_malloc_heap()
! 1214: {
! 1215: struct GC_malloc_heap_list *new_l =
! 1216: malloc(sizeof(struct GC_malloc_heap_list));
! 1217: void * candidate = GC_get_allocation_base(new_l);
! 1218:
! 1219: if (new_l == 0) return;
! 1220: if (GC_is_malloc_heap_base(candidate)) {
! 1221: /* Try a little harder to find malloc heap. */
! 1222: size_t req_size = 10000;
! 1223: do {
! 1224: void *p = malloc(req_size);
! 1225: if (0 == p) { free(new_l); return; }
! 1226: candidate = GC_get_allocation_base(p);
! 1227: free(p);
! 1228: req_size *= 2;
! 1229: } while (GC_is_malloc_heap_base(candidate)
! 1230: && req_size < GC_max_root_size/10 && req_size < 500000);
! 1231: if (GC_is_malloc_heap_base(candidate)) {
! 1232: free(new_l); return;
! 1233: }
! 1234: }
! 1235: # ifdef CONDPRINT
! 1236: if (GC_print_stats)
! 1237: GC_printf1("Found new system malloc AllocationBase at 0x%lx\n",
! 1238: candidate);
! 1239: # endif
! 1240: new_l -> allocation_base = candidate;
! 1241: new_l -> next = GC_malloc_heap_l;
! 1242: GC_malloc_heap_l = new_l;
! 1243: }
! 1244: # endif /* REDIRECT_MALLOC */
1.1 noro 1245:
1246: /* Is p the start of either the malloc heap, or of one of our */
1247: /* heap sections? */
1248: GC_bool GC_is_heap_base (ptr_t p)
1249: {
1250:
1.7 ! noro 1251: unsigned i;
1.1 noro 1252:
1253: # ifndef REDIRECT_MALLOC
1.7 ! noro 1254: static word last_gc_no = -1;
1.1 noro 1255:
1.7 ! noro 1256: if (last_gc_no != GC_gc_no) {
! 1257: GC_add_current_malloc_heap();
! 1258: last_gc_no = GC_gc_no;
1.1 noro 1259: }
1.7 ! noro 1260: if (GC_root_size > GC_max_root_size) GC_max_root_size = GC_root_size;
! 1261: if (GC_is_malloc_heap_base(p)) return TRUE;
1.1 noro 1262: # endif
1263: for (i = 0; i < GC_n_heap_bases; i++) {
1.7 ! noro 1264: if (GC_heap_bases[i] == p) return TRUE;
1.1 noro 1265: }
1.7 ! noro 1266: return FALSE ;
1.1 noro 1267: }
1.4 noro 1268:
1269: # ifdef MSWIN32
1.1 noro 1270: void GC_register_root_section(ptr_t static_root)
1271: {
1272: MEMORY_BASIC_INFORMATION buf;
1273: DWORD result;
1274: DWORD protect;
1275: LPVOID p;
1276: char * base;
1277: char * limit, * new_limit;
1278:
1.6 noro 1279: if (!GC_no_win32_dlls) return;
1.1 noro 1280: p = base = limit = GC_least_described_address(static_root);
1.4 noro 1281: while (p < GC_sysinfo.lpMaximumApplicationAddress) {
1.1 noro 1282: result = VirtualQuery(p, &buf, sizeof(buf));
1283: if (result != sizeof(buf) || buf.AllocationBase == 0
1284: || GC_is_heap_base(buf.AllocationBase)) break;
1285: new_limit = (char *)p + buf.RegionSize;
1286: protect = buf.Protect;
1287: if (buf.State == MEM_COMMIT
1288: && is_writable(protect)) {
1289: if ((char *)p == limit) {
1290: limit = new_limit;
1291: } else {
1292: if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1293: base = p;
1294: limit = new_limit;
1295: }
1296: }
1297: if (p > (LPVOID)new_limit /* overflow */) break;
1298: p = (LPVOID)new_limit;
1299: }
1300: if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1301: }
1.4 noro 1302: #endif
1.1 noro 1303:
1304: void GC_register_data_segments()
1305: {
1.4 noro 1306: # ifdef MSWIN32
1.1 noro 1307: static char dummy;
1308: GC_register_root_section((ptr_t)(&dummy));
1309: # endif
1310: }
1311:
1.4 noro 1312: # else /* !OS2 && !Windows */
1.1 noro 1313:
1.4 noro 1314: # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
1315: || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
1.7 ! noro 1316: ptr_t GC_SysVGetDataStart(max_page_size, etext_addr)
1.1 noro 1317: int max_page_size;
1318: int * etext_addr;
1319: {
1320: word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1321: & ~(sizeof(word) - 1);
1322: /* etext rounded to word boundary */
1323: word next_page = ((text_end + (word)max_page_size - 1)
1324: & ~((word)max_page_size - 1));
1325: word page_offset = (text_end & ((word)max_page_size - 1));
1326: VOLATILE char * result = (char *)(next_page + page_offset);
1327: /* Note that this isnt equivalent to just adding */
1328: /* max_page_size to &etext if &etext is at a page boundary */
1329:
1330: GC_setup_temporary_fault_handler();
1331: if (setjmp(GC_jmp_buf) == 0) {
1332: /* Try writing to the address. */
1333: *result = *result;
1334: GC_reset_fault_handler();
1335: } else {
1336: GC_reset_fault_handler();
1337: /* We got here via a longjmp. The address is not readable. */
1338: /* This is known to happen under Solaris 2.4 + gcc, which place */
1339: /* string constants in the text segment, but after etext. */
1340: /* Use plan B. Note that we now know there is a gap between */
1341: /* text and data segments, so plan A bought us something. */
1.7 ! noro 1342: result = (char *)GC_find_limit((ptr_t)(DATAEND), FALSE);
! 1343: }
! 1344: return((ptr_t)result);
! 1345: }
! 1346: # endif
! 1347:
! 1348: # if defined(FREEBSD) && defined(I386) && !defined(PCR)
! 1349: /* Its unclear whether this should be identical to the above, or */
! 1350: /* whether it should apply to non-X86 architectures. */
! 1351: /* For now we don't assume that there is always an empty page after */
! 1352: /* etext. But in some cases there actually seems to be slightly more. */
! 1353: /* This also deals with holes between read-only data and writable data. */
! 1354: ptr_t GC_FreeBSDGetDataStart(max_page_size, etext_addr)
! 1355: int max_page_size;
! 1356: int * etext_addr;
! 1357: {
! 1358: word text_end = ((word)(etext_addr) + sizeof(word) - 1)
! 1359: & ~(sizeof(word) - 1);
! 1360: /* etext rounded to word boundary */
! 1361: VOLATILE word next_page = (text_end + (word)max_page_size - 1)
! 1362: & ~((word)max_page_size - 1);
! 1363: VOLATILE ptr_t result = (ptr_t)text_end;
! 1364: GC_setup_temporary_fault_handler();
! 1365: if (setjmp(GC_jmp_buf) == 0) {
! 1366: /* Try reading at the address. */
! 1367: /* This should happen before there is another thread. */
! 1368: for (; next_page < (word)(DATAEND); next_page += (word)max_page_size)
! 1369: *(VOLATILE char *)next_page;
! 1370: GC_reset_fault_handler();
! 1371: } else {
! 1372: GC_reset_fault_handler();
! 1373: /* As above, we go to plan B */
! 1374: result = GC_find_limit((ptr_t)(DATAEND), FALSE);
1.1 noro 1375: }
1.7 ! noro 1376: return(result);
1.1 noro 1377: }
1.7 ! noro 1378:
1.1 noro 1379: # endif
1380:
1381:
1.4 noro 1382: #ifdef AMIGA
1383:
1384: # define GC_AMIGA_DS
1385: # include "AmigaOS.c"
1386: # undef GC_AMIGA_DS
1387:
1388: #else /* !OS2 && !Windows && !AMIGA */
1389:
1.1 noro 1390: void GC_register_data_segments()
1391: {
1.7 ! noro 1392: # if !defined(PCR) && !defined(SRC_M3) && !defined(MACOS)
1.6 noro 1393: # if defined(REDIRECT_MALLOC) && defined(GC_SOLARIS_THREADS)
1.1 noro 1394: /* As of Solaris 2.3, the Solaris threads implementation */
1395: /* allocates the data structure for the initial thread with */
1396: /* sbrk at process startup. It needs to be scanned, so that */
1397: /* we don't lose some malloc allocated data structures */
1398: /* hanging from it. We're on thin ice here ... */
1399: extern caddr_t sbrk();
1400:
1401: GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1402: # else
1403: GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1.6 noro 1404: # if defined(DATASTART2)
1405: GC_add_roots_inner(DATASTART2, (char *)(DATAEND2), FALSE);
1406: # endif
1.1 noro 1407: # endif
1408: # endif
1409: # if defined(MACOS)
1410: {
1411: # if defined(THINK_C)
1412: extern void* GC_MacGetDataStart(void);
1413: /* globals begin above stack and end at a5. */
1414: GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1415: (ptr_t)LMGetCurrentA5(), FALSE);
1416: # else
1417: # if defined(__MWERKS__)
1418: # if !__POWERPC__
1419: extern void* GC_MacGetDataStart(void);
1420: /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1421: # if __option(far_data)
1422: extern void* GC_MacGetDataEnd(void);
1423: # endif
1424: /* globals begin above stack and end at a5. */
1425: GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1426: (ptr_t)LMGetCurrentA5(), FALSE);
1427: /* MATTHEW: Handle Far Globals */
1428: # if __option(far_data)
1429: /* Far globals follow he QD globals: */
1430: GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1431: (ptr_t)GC_MacGetDataEnd(), FALSE);
1432: # endif
1433: # else
1434: extern char __data_start__[], __data_end__[];
1435: GC_add_roots_inner((ptr_t)&__data_start__,
1436: (ptr_t)&__data_end__, FALSE);
1437: # endif /* __POWERPC__ */
1438: # endif /* __MWERKS__ */
1439: # endif /* !THINK_C */
1440: }
1441: # endif /* MACOS */
1442:
1443: /* Dynamic libraries are added at every collection, since they may */
1444: /* change. */
1445: }
1446:
1447: # endif /* ! AMIGA */
1.4 noro 1448: # endif /* ! MSWIN32 && ! MSWINCE*/
1.1 noro 1449: # endif /* ! OS2 */
1450:
1451: /*
1452: * Auxiliary routines for obtaining memory from OS.
1453: */
1.4 noro 1454:
1.1 noro 1455: # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1.4 noro 1456: && !defined(MSWIN32) && !defined(MSWINCE) \
1457: && !defined(MACOS) && !defined(DOS4GW)
1.1 noro 1458:
1459: # ifdef SUNOS4
1460: extern caddr_t sbrk();
1461: # endif
1462: # ifdef __STDC__
1463: # define SBRK_ARG_T ptrdiff_t
1464: # else
1465: # define SBRK_ARG_T int
1466: # endif
1467:
1.4 noro 1468:
1.1 noro 1469: # ifdef RS6000
1470: /* The compiler seems to generate speculative reads one past the end of */
1471: /* an allocated object. Hence we need to make sure that the page */
1472: /* following the last heap page is also mapped. */
1473: ptr_t GC_unix_get_mem(bytes)
1474: word bytes;
1475: {
1476: caddr_t cur_brk = (caddr_t)sbrk(0);
1477: caddr_t result;
1478: SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1479: static caddr_t my_brk_val = 0;
1480:
1481: if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1482: if (lsbs != 0) {
1483: if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1484: }
1485: if (cur_brk == my_brk_val) {
1486: /* Use the extra block we allocated last time. */
1487: result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1488: if (result == (caddr_t)(-1)) return(0);
1489: result -= GC_page_size;
1490: } else {
1491: result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1492: if (result == (caddr_t)(-1)) return(0);
1493: }
1494: my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1495: return((ptr_t)result);
1496: }
1497:
1498: #else /* Not RS6000 */
1499:
1500: #if defined(USE_MMAP)
1.4 noro 1501: /* Tested only under Linux, IRIX5 and Solaris 2 */
1.1 noro 1502:
1503: #ifdef USE_MMAP_FIXED
1504: # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1505: /* Seems to yield better performance on Solaris 2, but can */
1506: /* be unreliable if something is already mapped at the address. */
1507: #else
1508: # define GC_MMAP_FLAGS MAP_PRIVATE
1509: #endif
1510:
1.4 noro 1511: #ifndef HEAP_START
1512: # define HEAP_START 0
1513: #endif
1514:
1.1 noro 1515: ptr_t GC_unix_get_mem(bytes)
1516: word bytes;
1517: {
1518: void *result;
1519: static ptr_t last_addr = HEAP_START;
1520:
1.7 ! noro 1521: # ifndef USE_MMAP_ANON
! 1522: static GC_bool initialized = FALSE;
! 1523: static int fd;
! 1524:
! 1525: if (!initialized) {
! 1526: fd = open("/dev/zero", O_RDONLY);
! 1527: fcntl(fd, F_SETFD, FD_CLOEXEC);
! 1528: initialized = TRUE;
! 1529: }
! 1530: # endif
! 1531:
1.1 noro 1532: if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1.7 ! noro 1533: # ifdef USE_MMAP_ANON
! 1534: result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
! 1535: GC_MMAP_FLAGS | MAP_ANON, -1, 0/* offset */);
! 1536: # else
! 1537: result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
! 1538: GC_MMAP_FLAGS, fd, 0/* offset */);
! 1539: # endif
1.1 noro 1540: if (result == MAP_FAILED) return(0);
1541: last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1542: last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1.4 noro 1543: # if !defined(LINUX)
1544: if (last_addr == 0) {
1545: /* Oops. We got the end of the address space. This isn't */
1546: /* usable by arbitrary C code, since one-past-end pointers */
1547: /* don't work, so we discard it and try again. */
1548: munmap(result, (size_t)(-GC_page_size) - (size_t)result);
1549: /* Leave last page mapped, so we can't repeat. */
1550: return GC_unix_get_mem(bytes);
1551: }
1552: # else
1553: GC_ASSERT(last_addr != 0);
1554: # endif
1.1 noro 1555: return((ptr_t)result);
1556: }
1557:
1558: #else /* Not RS6000, not USE_MMAP */
1559: ptr_t GC_unix_get_mem(bytes)
1560: word bytes;
1561: {
1562: ptr_t result;
1563: # ifdef IRIX5
1564: /* Bare sbrk isn't thread safe. Play by malloc rules. */
1565: /* The equivalent may be needed on other systems as well. */
1566: __LOCK_MALLOC();
1567: # endif
1568: {
1569: ptr_t cur_brk = (ptr_t)sbrk(0);
1570: SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1571:
1572: if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1573: if (lsbs != 0) {
1574: if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1575: }
1576: result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1577: if (result == (ptr_t)(-1)) result = 0;
1578: }
1579: # ifdef IRIX5
1580: __UNLOCK_MALLOC();
1581: # endif
1582: return(result);
1583: }
1584:
1585: #endif /* Not USE_MMAP */
1586: #endif /* Not RS6000 */
1587:
1588: # endif /* UN*X */
1589:
1590: # ifdef OS2
1591:
1592: void * os2_alloc(size_t bytes)
1593: {
1594: void * result;
1595:
1596: if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1597: PAG_WRITE | PAG_COMMIT)
1598: != NO_ERROR) {
1599: return(0);
1600: }
1601: if (result == 0) return(os2_alloc(bytes));
1602: return(result);
1603: }
1604:
1605: # endif /* OS2 */
1606:
1607:
1.4 noro 1608: # if defined(MSWIN32) || defined(MSWINCE)
1609: SYSTEM_INFO GC_sysinfo;
1610: # endif
1611:
1.6 noro 1612: # ifdef MSWIN32
1613:
1614: # ifdef USE_GLOBAL_ALLOC
1615: # define GLOBAL_ALLOC_TEST 1
1616: # else
1617: # define GLOBAL_ALLOC_TEST GC_no_win32_dlls
1618: # endif
1.4 noro 1619:
1.1 noro 1620: word GC_n_heap_bases = 0;
1621:
1622: ptr_t GC_win32_get_mem(bytes)
1623: word bytes;
1624: {
1625: ptr_t result;
1.4 noro 1626:
1.6 noro 1627: if (GLOBAL_ALLOC_TEST) {
1.1 noro 1628: /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1629: /* There are also unconfirmed rumors of other */
1630: /* problems, so we dodge the issue. */
1631: result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1632: result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1633: } else {
1.6 noro 1634: /* VirtualProtect only works on regions returned by a */
1635: /* single VirtualAlloc call. Thus we allocate one */
1636: /* extra page, which will prevent merging of blocks */
1637: /* in separate regions, and eliminate any temptation */
1638: /* to call VirtualProtect on a range spanning regions. */
1639: /* This wastes a small amount of memory, and risks */
1640: /* increased fragmentation. But better alternatives */
1641: /* would require effort. */
1642: result = (ptr_t) VirtualAlloc(NULL, bytes + 1,
1.1 noro 1643: MEM_COMMIT | MEM_RESERVE,
1644: PAGE_EXECUTE_READWRITE);
1645: }
1646: if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1647: /* If I read the documentation correctly, this can */
1648: /* only happen if HBLKSIZE > 64k or not a power of 2. */
1649: if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1650: GC_heap_bases[GC_n_heap_bases++] = result;
1651: return(result);
1652: }
1653:
1654: void GC_win32_free_heap ()
1655: {
1.6 noro 1656: if (GC_no_win32_dlls) {
1.1 noro 1657: while (GC_n_heap_bases > 0) {
1658: GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1659: GC_heap_bases[GC_n_heap_bases] = 0;
1660: }
1661: }
1662: }
1.4 noro 1663: # endif
1664:
1665: #ifdef AMIGA
1666: # define GC_AMIGA_AM
1667: # include "AmigaOS.c"
1668: # undef GC_AMIGA_AM
1669: #endif
1.1 noro 1670:
1671:
1.4 noro 1672: # ifdef MSWINCE
1673: word GC_n_heap_bases = 0;
1674:
1675: ptr_t GC_wince_get_mem(bytes)
1676: word bytes;
1677: {
1678: ptr_t result;
1679: word i;
1680:
1681: /* Round up allocation size to multiple of page size */
1682: bytes = (bytes + GC_page_size-1) & ~(GC_page_size-1);
1683:
1684: /* Try to find reserved, uncommitted pages */
1685: for (i = 0; i < GC_n_heap_bases; i++) {
1686: if (((word)(-(signed_word)GC_heap_lengths[i])
1687: & (GC_sysinfo.dwAllocationGranularity-1))
1688: >= bytes) {
1689: result = GC_heap_bases[i] + GC_heap_lengths[i];
1690: break;
1691: }
1692: }
1693:
1694: if (i == GC_n_heap_bases) {
1695: /* Reserve more pages */
1696: word res_bytes = (bytes + GC_sysinfo.dwAllocationGranularity-1)
1697: & ~(GC_sysinfo.dwAllocationGranularity-1);
1.6 noro 1698: /* If we ever support MPROTECT_VDB here, we will probably need to */
1699: /* ensure that res_bytes is strictly > bytes, so that VirtualProtect */
1700: /* never spans regions. It seems to be OK for a VirtualFree argument */
1701: /* to span regions, so we should be OK for now. */
1.4 noro 1702: result = (ptr_t) VirtualAlloc(NULL, res_bytes,
1703: MEM_RESERVE | MEM_TOP_DOWN,
1704: PAGE_EXECUTE_READWRITE);
1705: if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1706: /* If I read the documentation correctly, this can */
1707: /* only happen if HBLKSIZE > 64k or not a power of 2. */
1708: if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1709: GC_heap_bases[GC_n_heap_bases] = result;
1710: GC_heap_lengths[GC_n_heap_bases] = 0;
1711: GC_n_heap_bases++;
1712: }
1713:
1714: /* Commit pages */
1715: result = (ptr_t) VirtualAlloc(result, bytes,
1716: MEM_COMMIT,
1717: PAGE_EXECUTE_READWRITE);
1718: if (result != NULL) {
1719: if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1720: GC_heap_lengths[i] += bytes;
1721: }
1722:
1723: return(result);
1724: }
1.1 noro 1725: # endif
1726:
1727: #ifdef USE_MUNMAP
1728:
1.4 noro 1729: /* For now, this only works on Win32/WinCE and some Unix-like */
1730: /* systems. If you have something else, don't define */
1731: /* USE_MUNMAP. */
1.1 noro 1732: /* We assume ANSI C to support this feature. */
1.4 noro 1733:
1734: #if !defined(MSWIN32) && !defined(MSWINCE)
1735:
1.1 noro 1736: #include <unistd.h>
1737: #include <sys/mman.h>
1738: #include <sys/stat.h>
1739: #include <sys/types.h>
1.4 noro 1740:
1741: #endif
1.1 noro 1742:
1743: /* Compute a page aligned starting address for the unmap */
1744: /* operation on a block of size bytes starting at start. */
1745: /* Return 0 if the block is too small to make this feasible. */
1746: ptr_t GC_unmap_start(ptr_t start, word bytes)
1747: {
1748: ptr_t result = start;
1749: /* Round start to next page boundary. */
1750: result += GC_page_size - 1;
1751: result = (ptr_t)((word)result & ~(GC_page_size - 1));
1752: if (result + GC_page_size > start + bytes) return 0;
1753: return result;
1754: }
1755:
1756: /* Compute end address for an unmap operation on the indicated */
1757: /* block. */
1758: ptr_t GC_unmap_end(ptr_t start, word bytes)
1759: {
1760: ptr_t end_addr = start + bytes;
1761: end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1762: return end_addr;
1763: }
1764:
1.4 noro 1765: /* Under Win32/WinCE we commit (map) and decommit (unmap) */
1766: /* memory using VirtualAlloc and VirtualFree. These functions */
1767: /* work on individual allocations of virtual memory, made */
1768: /* previously using VirtualAlloc with the MEM_RESERVE flag. */
1769: /* The ranges we need to (de)commit may span several of these */
1770: /* allocations; therefore we use VirtualQuery to check */
1771: /* allocation lengths, and split up the range as necessary. */
1772:
1.1 noro 1773: /* We assume that GC_remap is called on exactly the same range */
1774: /* as a previous call to GC_unmap. It is safe to consistently */
1775: /* round the endpoints in both places. */
1776: void GC_unmap(ptr_t start, word bytes)
1777: {
1778: ptr_t start_addr = GC_unmap_start(start, bytes);
1779: ptr_t end_addr = GC_unmap_end(start, bytes);
1780: word len = end_addr - start_addr;
1781: if (0 == start_addr) return;
1.4 noro 1782: # if defined(MSWIN32) || defined(MSWINCE)
1783: while (len != 0) {
1784: MEMORY_BASIC_INFORMATION mem_info;
1785: GC_word free_len;
1786: if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1787: != sizeof(mem_info))
1788: ABORT("Weird VirtualQuery result");
1789: free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1790: if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1791: ABORT("VirtualFree failed");
1792: GC_unmapped_bytes += free_len;
1793: start_addr += free_len;
1794: len -= free_len;
1795: }
1796: # else
1797: if (munmap(start_addr, len) != 0) ABORT("munmap failed");
1798: GC_unmapped_bytes += len;
1799: # endif
1.1 noro 1800: }
1801:
1802:
1803: void GC_remap(ptr_t start, word bytes)
1804: {
1805: static int zero_descr = -1;
1806: ptr_t start_addr = GC_unmap_start(start, bytes);
1807: ptr_t end_addr = GC_unmap_end(start, bytes);
1808: word len = end_addr - start_addr;
1809: ptr_t result;
1810:
1.4 noro 1811: # if defined(MSWIN32) || defined(MSWINCE)
1812: if (0 == start_addr) return;
1813: while (len != 0) {
1814: MEMORY_BASIC_INFORMATION mem_info;
1815: GC_word alloc_len;
1816: if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1817: != sizeof(mem_info))
1818: ABORT("Weird VirtualQuery result");
1819: alloc_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1820: result = VirtualAlloc(start_addr, alloc_len,
1821: MEM_COMMIT,
1822: PAGE_EXECUTE_READWRITE);
1823: if (result != start_addr) {
1824: ABORT("VirtualAlloc remapping failed");
1825: }
1826: GC_unmapped_bytes -= alloc_len;
1827: start_addr += alloc_len;
1828: len -= alloc_len;
1829: }
1830: # else
1831: if (-1 == zero_descr) zero_descr = open("/dev/zero", O_RDWR);
1.7 ! noro 1832: fcntl(zero_descr, F_SETFD, FD_CLOEXEC);
1.4 noro 1833: if (0 == start_addr) return;
1834: result = mmap(start_addr, len, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1835: MAP_FIXED | MAP_PRIVATE, zero_descr, 0);
1836: if (result != start_addr) {
1837: ABORT("mmap remapping failed");
1838: }
1839: GC_unmapped_bytes -= len;
1840: # endif
1.1 noro 1841: }
1842:
1843: /* Two adjacent blocks have already been unmapped and are about to */
1844: /* be merged. Unmap the whole block. This typically requires */
1845: /* that we unmap a small section in the middle that was not previously */
1846: /* unmapped due to alignment constraints. */
1847: void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
1848: {
1849: ptr_t start1_addr = GC_unmap_start(start1, bytes1);
1850: ptr_t end1_addr = GC_unmap_end(start1, bytes1);
1851: ptr_t start2_addr = GC_unmap_start(start2, bytes2);
1852: ptr_t end2_addr = GC_unmap_end(start2, bytes2);
1853: ptr_t start_addr = end1_addr;
1854: ptr_t end_addr = start2_addr;
1855: word len;
1856: GC_ASSERT(start1 + bytes1 == start2);
1857: if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
1858: if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
1859: if (0 == start_addr) return;
1860: len = end_addr - start_addr;
1.4 noro 1861: # if defined(MSWIN32) || defined(MSWINCE)
1862: while (len != 0) {
1863: MEMORY_BASIC_INFORMATION mem_info;
1864: GC_word free_len;
1865: if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1866: != sizeof(mem_info))
1867: ABORT("Weird VirtualQuery result");
1868: free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1869: if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1870: ABORT("VirtualFree failed");
1871: GC_unmapped_bytes += free_len;
1872: start_addr += free_len;
1873: len -= free_len;
1874: }
1875: # else
1876: if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
1877: GC_unmapped_bytes += len;
1878: # endif
1.1 noro 1879: }
1880:
1881: #endif /* USE_MUNMAP */
1882:
1883: /* Routine for pushing any additional roots. In THREADS */
1884: /* environment, this is also responsible for marking from */
1.4 noro 1885: /* thread stacks. */
1.1 noro 1886: #ifndef THREADS
1887: void (*GC_push_other_roots)() = 0;
1888: #else /* THREADS */
1889:
1890: # ifdef PCR
1891: PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1892: {
1893: struct PCR_ThCtl_TInfoRep info;
1894: PCR_ERes result;
1895:
1896: info.ti_stkLow = info.ti_stkHi = 0;
1897: result = PCR_ThCtl_GetInfo(t, &info);
1898: GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1899: return(result);
1900: }
1901:
1902: /* Push the contents of an old object. We treat this as stack */
1903: /* data only becasue that makes it robust against mark stack */
1904: /* overflow. */
1905: PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
1906: {
1907: GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
1908: return(PCR_ERes_okay);
1909: }
1910:
1911:
1.4 noro 1912: void GC_default_push_other_roots GC_PROTO((void))
1.1 noro 1913: {
1914: /* Traverse data allocated by previous memory managers. */
1915: {
1916: extern struct PCR_MM_ProcsRep * GC_old_allocator;
1917:
1918: if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
1919: GC_push_old_obj, 0)
1920: != PCR_ERes_okay) {
1921: ABORT("Old object enumeration failed");
1922: }
1923: }
1924: /* Traverse all thread stacks. */
1925: if (PCR_ERes_IsErr(
1926: PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
1927: || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
1928: ABORT("Thread stack marking failed\n");
1929: }
1930: }
1931:
1932: # endif /* PCR */
1933:
1934: # ifdef SRC_M3
1935:
1936: # ifdef ALL_INTERIOR_POINTERS
1937: --> misconfigured
1938: # endif
1939:
1.4 noro 1940: void GC_push_thread_structures GC_PROTO((void))
1941: {
1942: /* Not our responsibibility. */
1943: }
1.1 noro 1944:
1945: extern void ThreadF__ProcessStacks();
1946:
1947: void GC_push_thread_stack(start, stop)
1948: word start, stop;
1949: {
1950: GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
1951: }
1952:
1953: /* Push routine with M3 specific calling convention. */
1954: GC_m3_push_root(dummy1, p, dummy2, dummy3)
1955: word *p;
1956: ptr_t dummy1, dummy2;
1957: int dummy3;
1958: {
1959: word q = *p;
1960:
1.4 noro 1961: GC_PUSH_ONE_STACK(q, p);
1.1 noro 1962: }
1963:
1964: /* M3 set equivalent to RTHeap.TracedRefTypes */
1965: typedef struct { int elts[1]; } RefTypeSet;
1966: RefTypeSet GC_TracedRefTypes = {{0x1}};
1967:
1.4 noro 1968: void GC_default_push_other_roots GC_PROTO((void))
1.1 noro 1969: {
1.4 noro 1970: /* Use the M3 provided routine for finding static roots. */
1971: /* This is a bit dubious, since it presumes no C roots. */
1972: /* We handle the collector roots explicitly in GC_push_roots */
1973: RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
1.1 noro 1974: if (GC_words_allocd > 0) {
1975: ThreadF__ProcessStacks(GC_push_thread_stack);
1976: }
1977: /* Otherwise this isn't absolutely necessary, and we have */
1978: /* startup ordering problems. */
1979: }
1980:
1981: # endif /* SRC_M3 */
1982:
1.6 noro 1983: # if defined(GC_SOLARIS_THREADS) || defined(GC_PTHREADS) || \
1984: defined(GC_WIN32_THREADS)
1.1 noro 1985:
1986: extern void GC_push_all_stacks();
1987:
1.4 noro 1988: void GC_default_push_other_roots GC_PROTO((void))
1.1 noro 1989: {
1990: GC_push_all_stacks();
1991: }
1992:
1.6 noro 1993: # endif /* GC_SOLARIS_THREADS || GC_PTHREADS */
1.1 noro 1994:
1.4 noro 1995: void (*GC_push_other_roots) GC_PROTO((void)) = GC_default_push_other_roots;
1.1 noro 1996:
1.6 noro 1997: #endif /* THREADS */
1.1 noro 1998:
1999: /*
2000: * Routines for accessing dirty bits on virtual pages.
1.4 noro 2001: * We plan to eventually implement four strategies for doing so:
1.1 noro 2002: * DEFAULT_VDB: A simple dummy implementation that treats every page
2003: * as possibly dirty. This makes incremental collection
2004: * useless, but the implementation is still correct.
2005: * PCR_VDB: Use PPCRs virtual dirty bit facility.
2006: * PROC_VDB: Use the /proc facility for reading dirty bits. Only
2007: * works under some SVR4 variants. Even then, it may be
2008: * too slow to be entirely satisfactory. Requires reading
2009: * dirty bits for entire address space. Implementations tend
2010: * to assume that the client is a (slow) debugger.
2011: * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
2012: * dirtied pages. The implementation (and implementability)
2013: * is highly system dependent. This usually fails when system
2014: * calls write to a protected page. We prevent the read system
2015: * call from doing so. It is the clients responsibility to
2016: * make sure that other system calls are similarly protected
2017: * or write only to the stack.
2018: */
2019: GC_bool GC_dirty_maintained = FALSE;
2020:
2021: # ifdef DEFAULT_VDB
2022:
2023: /* All of the following assume the allocation lock is held, and */
2024: /* signals are disabled. */
2025:
2026: /* The client asserts that unallocated pages in the heap are never */
2027: /* written. */
2028:
2029: /* Initialize virtual dirty bit implementation. */
2030: void GC_dirty_init()
2031: {
1.7 ! noro 2032: # ifdef PRINTSTATS
! 2033: GC_printf0("Initializing DEFAULT_VDB...\n");
! 2034: # endif
1.1 noro 2035: GC_dirty_maintained = TRUE;
2036: }
2037:
2038: /* Retrieve system dirty bits for heap to a local buffer. */
2039: /* Restore the systems notion of which pages are dirty. */
2040: void GC_read_dirty()
2041: {}
2042:
2043: /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
2044: /* If the actual page size is different, this returns TRUE if any */
2045: /* of the pages overlapping h are dirty. This routine may err on the */
2046: /* side of labelling pages as dirty (and this implementation does). */
2047: /*ARGSUSED*/
2048: GC_bool GC_page_was_dirty(h)
2049: struct hblk *h;
2050: {
2051: return(TRUE);
2052: }
2053:
2054: /*
2055: * The following two routines are typically less crucial. They matter
2056: * most with large dynamic libraries, or if we can't accurately identify
2057: * stacks, e.g. under Solaris 2.X. Otherwise the following default
2058: * versions are adequate.
2059: */
2060:
2061: /* Could any valid GC heap pointer ever have been written to this page? */
2062: /*ARGSUSED*/
2063: GC_bool GC_page_was_ever_dirty(h)
2064: struct hblk *h;
2065: {
2066: return(TRUE);
2067: }
2068:
2069: /* Reset the n pages starting at h to "was never dirty" status. */
2070: void GC_is_fresh(h, n)
2071: struct hblk *h;
2072: word n;
2073: {
2074: }
2075:
1.6 noro 2076: /* A call that: */
2077: /* I) hints that [h, h+nblocks) is about to be written. */
2078: /* II) guarantees that protection is removed. */
2079: /* (I) may speed up some dirty bit implementations. */
2080: /* (II) may be essential if we need to ensure that */
2081: /* pointer-free system call buffers in the heap are */
2082: /* not protected. */
1.1 noro 2083: /*ARGSUSED*/
1.6 noro 2084: void GC_remove_protection(h, nblocks, is_ptrfree)
1.1 noro 2085: struct hblk *h;
1.6 noro 2086: word nblocks;
2087: GC_bool is_ptrfree;
1.1 noro 2088: {
2089: }
2090:
2091: # endif /* DEFAULT_VDB */
2092:
2093:
2094: # ifdef MPROTECT_VDB
2095:
2096: /*
2097: * See DEFAULT_VDB for interface descriptions.
2098: */
2099:
2100: /*
2101: * This implementation maintains dirty bits itself by catching write
2102: * faults and keeping track of them. We assume nobody else catches
1.6 noro 2103: * SIGBUS or SIGSEGV. We assume no write faults occur in system calls.
2104: * This means that clients must ensure that system calls don't write
2105: * to the write-protected heap. Probably the best way to do this is to
2106: * ensure that system calls write at most to POINTERFREE objects in the
2107: * heap, and do even that only if we are on a platform on which those
2108: * are not protected. Another alternative is to wrap system calls
2109: * (see example for read below), but the current implementation holds
2110: * a lock across blocking calls, making it problematic for multithreaded
2111: * applications.
1.1 noro 2112: * We assume the page size is a multiple of HBLKSIZE.
1.6 noro 2113: * We prefer them to be the same. We avoid protecting POINTERFREE
2114: * objects only if they are the same.
1.1 noro 2115: */
2116:
1.7 ! noro 2117: # if !defined(MSWIN32) && !defined(MSWINCE) && !defined(DARWIN)
1.1 noro 2118:
2119: # include <sys/mman.h>
2120: # include <signal.h>
2121: # include <sys/syscall.h>
2122:
2123: # define PROTECT(addr, len) \
1.2 noro 2124: if (mprotect((caddr_t)(addr), (size_t)(len), \
1.1 noro 2125: PROT_READ | OPT_PROT_EXEC) < 0) { \
2126: ABORT("mprotect failed"); \
2127: }
2128: # define UNPROTECT(addr, len) \
1.2 noro 2129: if (mprotect((caddr_t)(addr), (size_t)(len), \
1.1 noro 2130: PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
2131: ABORT("un-mprotect failed"); \
2132: }
2133:
2134: # else
2135:
1.7 ! noro 2136: # ifdef DARWIN
! 2137: /* Using vm_protect (mach syscall) over mprotect (BSD syscall) seems to
! 2138: decrease the likelihood of some of the problems described below. */
! 2139: #include <mach/vm_map.h>
! 2140: extern mach_port_t GC_task_self;
! 2141: #define PROTECT(addr,len) \
! 2142: if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
! 2143: FALSE,VM_PROT_READ) != KERN_SUCCESS) { \
! 2144: ABORT("vm_portect failed"); \
! 2145: }
! 2146: #define UNPROTECT(addr,len) \
! 2147: if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
! 2148: FALSE,VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) { \
! 2149: ABORT("vm_portect failed"); \
! 2150: }
! 2151: # else
! 2152:
1.4 noro 2153: # ifndef MSWINCE
2154: # include <signal.h>
2155: # endif
1.1 noro 2156:
2157: static DWORD protect_junk;
2158: # define PROTECT(addr, len) \
2159: if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
2160: &protect_junk)) { \
2161: DWORD last_error = GetLastError(); \
2162: GC_printf1("Last error code: %lx\n", last_error); \
2163: ABORT("VirtualProtect failed"); \
2164: }
2165: # define UNPROTECT(addr, len) \
2166: if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
2167: &protect_junk)) { \
2168: ABORT("un-VirtualProtect failed"); \
2169: }
1.7 ! noro 2170: # endif /* !DARWIN */
! 2171: # endif /* MSWIN32 || MSWINCE || DARWIN */
1.1 noro 2172:
2173: #if defined(SUNOS4) || defined(FREEBSD)
2174: typedef void (* SIG_PF)();
1.7 ! noro 2175: #endif /* SUNOS4 || FREEBSD */
! 2176:
1.6 noro 2177: #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) \
1.7 ! noro 2178: || defined(HURD)
1.2 noro 2179: # ifdef __STDC__
1.1 noro 2180: typedef void (* SIG_PF)(int);
1.2 noro 2181: # else
2182: typedef void (* SIG_PF)();
2183: # endif
1.7 ! noro 2184: #endif /* SUNOS5SIGS || OSF1 || LINUX || HURD */
! 2185:
1.1 noro 2186: #if defined(MSWIN32)
2187: typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
2188: # undef SIG_DFL
2189: # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
2190: #endif
1.4 noro 2191: #if defined(MSWINCE)
2192: typedef LONG (WINAPI *SIG_PF)(struct _EXCEPTION_POINTERS *);
2193: # undef SIG_DFL
2194: # define SIG_DFL (SIG_PF) (-1)
2195: #endif
1.1 noro 2196:
1.6 noro 2197: #if defined(IRIX5) || defined(OSF1) || defined(HURD)
1.1 noro 2198: typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
1.7 ! noro 2199: #endif /* IRIX5 || OSF1 || HURD */
! 2200:
1.1 noro 2201: #if defined(SUNOS5SIGS)
1.2 noro 2202: # ifdef HPUX
2203: # define SIGINFO __siginfo
2204: # else
2205: # define SIGINFO siginfo
2206: # endif
2207: # ifdef __STDC__
2208: typedef void (* REAL_SIG_PF)(int, struct SIGINFO *, void *);
2209: # else
2210: typedef void (* REAL_SIG_PF)();
2211: # endif
1.7 ! noro 2212: #endif /* SUNOS5SIGS */
! 2213:
1.1 noro 2214: #if defined(LINUX)
1.6 noro 2215: # if __GLIBC__ > 2 || __GLIBC__ == 2 && __GLIBC_MINOR__ >= 2
1.1 noro 2216: typedef struct sigcontext s_c;
1.6 noro 2217: # else /* glibc < 2.2 */
2218: # include <linux/version.h>
2219: # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(ARM32)
2220: typedef struct sigcontext s_c;
2221: # else
2222: typedef struct sigcontext_struct s_c;
2223: # endif
2224: # endif /* glibc < 2.2 */
1.2 noro 2225: # if defined(ALPHA) || defined(M68K)
2226: typedef void (* REAL_SIG_PF)(int, int, s_c *);
2227: # else
1.4 noro 2228: # if defined(IA64) || defined(HP_PA)
1.2 noro 2229: typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
2230: # else
2231: typedef void (* REAL_SIG_PF)(int, s_c);
2232: # endif
2233: # endif
1.1 noro 2234: # ifdef ALPHA
2235: /* Retrieve fault address from sigcontext structure by decoding */
2236: /* instruction. */
2237: char * get_fault_addr(s_c *sc) {
2238: unsigned instr;
2239: word faultaddr;
2240:
2241: instr = *((unsigned *)(sc->sc_pc));
2242: faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
2243: faultaddr += (word) (((int)instr << 16) >> 16);
2244: return (char *)faultaddr;
2245: }
2246: # endif /* !ALPHA */
1.7 ! noro 2247: # endif /* LINUX */
1.4 noro 2248:
1.7 ! noro 2249: #ifndef DARWIN
1.1 noro 2250: SIG_PF GC_old_bus_handler;
2251: SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */
1.7 ! noro 2252: #endif /* !DARWIN */
1.1 noro 2253:
1.7 ! noro 2254: #if defined(THREADS)
1.4 noro 2255: /* We need to lock around the bitmap update in the write fault handler */
2256: /* in order to avoid the risk of losing a bit. We do this with a */
2257: /* test-and-set spin lock if we know how to do that. Otherwise we */
2258: /* check whether we are already in the handler and use the dumb but */
2259: /* safe fallback algorithm of setting all bits in the word. */
2260: /* Contention should be very rare, so we do the minimum to handle it */
2261: /* correctly. */
2262: #ifdef GC_TEST_AND_SET_DEFINED
2263: static VOLATILE unsigned int fault_handler_lock = 0;
2264: void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
1.6 noro 2265: while (GC_test_and_set(&fault_handler_lock)) {}
1.4 noro 2266: /* Could also revert to set_pht_entry_from_index_safe if initial */
2267: /* GC_test_and_set fails. */
2268: set_pht_entry_from_index(db, index);
2269: GC_clear(&fault_handler_lock);
2270: }
2271: #else /* !GC_TEST_AND_SET_DEFINED */
2272: /* THIS IS INCORRECT! The dirty bit vector may be temporarily wrong, */
2273: /* just before we notice the conflict and correct it. We may end up */
2274: /* looking at it while it's wrong. But this requires contention */
2275: /* exactly when a GC is triggered, which seems far less likely to */
2276: /* fail than the old code, which had no reported failures. Thus we */
2277: /* leave it this way while we think of something better, or support */
2278: /* GC_test_and_set on the remaining platforms. */
2279: static VOLATILE word currently_updating = 0;
2280: void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2281: unsigned int update_dummy;
2282: currently_updating = (word)(&update_dummy);
2283: set_pht_entry_from_index(db, index);
2284: /* If we get contention in the 10 or so instruction window here, */
2285: /* and we get stopped by a GC between the two updates, we lose! */
2286: if (currently_updating != (word)(&update_dummy)) {
2287: set_pht_entry_from_index_safe(db, index);
2288: /* We claim that if two threads concurrently try to update the */
2289: /* dirty bit vector, the first one to execute UPDATE_START */
2290: /* will see it changed when UPDATE_END is executed. (Note that */
2291: /* &update_dummy must differ in two distinct threads.) It */
2292: /* will then execute set_pht_entry_from_index_safe, thus */
2293: /* returning us to a safe state, though not soon enough. */
2294: }
2295: }
2296: #endif /* !GC_TEST_AND_SET_DEFINED */
2297: #else /* !THREADS */
2298: # define async_set_pht_entry_from_index(db, index) \
2299: set_pht_entry_from_index(db, index)
2300: #endif /* !THREADS */
2301:
1.1 noro 2302: /*ARGSUSED*/
1.7 ! noro 2303: #if !defined(DARWIN)
1.1 noro 2304: # if defined (SUNOS4) || defined(FREEBSD)
2305: void GC_write_fault_handler(sig, code, scp, addr)
2306: int sig, code;
2307: struct sigcontext *scp;
2308: char * addr;
2309: # ifdef SUNOS4
2310: # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2311: # define CODE_OK (FC_CODE(code) == FC_PROT \
2312: || (FC_CODE(code) == FC_OBJERR \
2313: && FC_ERRNO(code) == FC_PROT))
2314: # endif
2315: # ifdef FREEBSD
2316: # define SIG_OK (sig == SIGBUS)
2317: # define CODE_OK (code == BUS_PAGE_FAULT)
2318: # endif
1.7 ! noro 2319: # endif /* SUNOS4 || FREEBSD */
! 2320:
1.6 noro 2321: # if defined(IRIX5) || defined(OSF1) || defined(HURD)
1.1 noro 2322: # include <errno.h>
2323: void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
2324: # ifdef OSF1
1.6 noro 2325: # define SIG_OK (sig == SIGSEGV)
1.1 noro 2326: # define CODE_OK (code == 2 /* experimentally determined */)
2327: # endif
2328: # ifdef IRIX5
1.6 noro 2329: # define SIG_OK (sig == SIGSEGV)
1.1 noro 2330: # define CODE_OK (code == EACCES)
2331: # endif
1.6 noro 2332: # ifdef HURD
2333: # define SIG_OK (sig == SIGBUS || sig == SIGSEGV)
2334: # define CODE_OK TRUE
2335: # endif
1.7 ! noro 2336: # endif /* IRIX5 || OSF1 || HURD */
! 2337:
1.1 noro 2338: # if defined(LINUX)
1.2 noro 2339: # if defined(ALPHA) || defined(M68K)
1.1 noro 2340: void GC_write_fault_handler(int sig, int code, s_c * sc)
2341: # else
1.4 noro 2342: # if defined(IA64) || defined(HP_PA)
1.2 noro 2343: void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
2344: # else
1.6 noro 2345: # if defined(ARM32)
2346: void GC_write_fault_handler(int sig, int a2, int a3, int a4, s_c sc)
2347: # else
2348: void GC_write_fault_handler(int sig, s_c sc)
2349: # endif
1.2 noro 2350: # endif
1.1 noro 2351: # endif
2352: # define SIG_OK (sig == SIGSEGV)
2353: # define CODE_OK TRUE
1.2 noro 2354: /* Empirically c.trapno == 14, on IA32, but is that useful? */
2355: /* Should probably consider alignment issues on other */
2356: /* architectures. */
1.7 ! noro 2357: # endif /* LINUX */
! 2358:
1.1 noro 2359: # if defined(SUNOS5SIGS)
1.2 noro 2360: # ifdef __STDC__
2361: void GC_write_fault_handler(int sig, struct SIGINFO *scp, void * context)
2362: # else
2363: void GC_write_fault_handler(sig, scp, context)
2364: int sig;
2365: struct SIGINFO *scp;
2366: void * context;
2367: # endif
2368: # ifdef HPUX
2369: # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2370: # define CODE_OK (scp -> si_code == SEGV_ACCERR) \
2371: || (scp -> si_code == BUS_ADRERR) \
2372: || (scp -> si_code == BUS_UNKNOWN) \
2373: || (scp -> si_code == SEGV_UNKNOWN) \
2374: || (scp -> si_code == BUS_OBJERR)
2375: # else
2376: # define SIG_OK (sig == SIGSEGV)
2377: # define CODE_OK (scp -> si_code == SEGV_ACCERR)
2378: # endif
1.7 ! noro 2379: # endif /* SUNOS5SIGS */
1.4 noro 2380:
2381: # if defined(MSWIN32) || defined(MSWINCE)
1.1 noro 2382: LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
2383: # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
1.4 noro 2384: STATUS_ACCESS_VIOLATION)
1.1 noro 2385: # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
2386: /* Write fault */
1.7 ! noro 2387: # endif /* MSWIN32 || MSWINCE */
1.1 noro 2388: {
2389: register unsigned i;
1.6 noro 2390: # if defined(HURD)
2391: char *addr = (char *) code;
2392: # endif
1.1 noro 2393: # ifdef IRIX5
2394: char * addr = (char *) (size_t) (scp -> sc_badvaddr);
2395: # endif
2396: # if defined(OSF1) && defined(ALPHA)
2397: char * addr = (char *) (scp -> sc_traparg_a0);
2398: # endif
2399: # ifdef SUNOS5SIGS
2400: char * addr = (char *) (scp -> si_addr);
2401: # endif
2402: # ifdef LINUX
1.7 ! noro 2403: # if defined(I386) || defined (X86_64)
1.1 noro 2404: char * addr = (char *) (sc.cr2);
2405: # else
2406: # if defined(M68K)
2407: char * addr = NULL;
2408:
1.4 noro 2409: struct sigcontext *scp = (struct sigcontext *)(sc);
1.1 noro 2410:
2411: int format = (scp->sc_formatvec >> 12) & 0xf;
2412: unsigned long *framedata = (unsigned long *)(scp + 1);
2413: unsigned long ea;
2414:
2415: if (format == 0xa || format == 0xb) {
2416: /* 68020/030 */
2417: ea = framedata[2];
2418: } else if (format == 7) {
2419: /* 68040 */
2420: ea = framedata[3];
1.4 noro 2421: if (framedata[1] & 0x08000000) {
2422: /* correct addr on misaligned access */
2423: ea = (ea+4095)&(~4095);
2424: }
1.1 noro 2425: } else if (format == 4) {
2426: /* 68060 */
2427: ea = framedata[0];
2428: if (framedata[1] & 0x08000000) {
2429: /* correct addr on misaligned access */
2430: ea = (ea+4095)&(~4095);
2431: }
2432: }
2433: addr = (char *)ea;
2434: # else
2435: # ifdef ALPHA
2436: char * addr = get_fault_addr(sc);
2437: # else
1.4 noro 2438: # if defined(IA64) || defined(HP_PA)
1.2 noro 2439: char * addr = si -> si_addr;
1.3 noro 2440: /* I believe this is claimed to work on all platforms for */
2441: /* Linux 2.3.47 and later. Hopefully we don't have to */
2442: /* worry about earlier kernels on IA64. */
1.2 noro 2443: # else
2444: # if defined(POWERPC)
2445: char * addr = (char *) (sc.regs->dar);
2446: # else
1.6 noro 2447: # if defined(ARM32)
2448: char * addr = (char *)sc.fault_address;
2449: # else
2450: --> architecture not supported
2451: # endif
1.2 noro 2452: # endif
2453: # endif
1.1 noro 2454: # endif
2455: # endif
2456: # endif
2457: # endif
1.4 noro 2458: # if defined(MSWIN32) || defined(MSWINCE)
1.1 noro 2459: char * addr = (char *) (exc_info -> ExceptionRecord
2460: -> ExceptionInformation[1]);
2461: # define sig SIGSEGV
2462: # endif
2463:
2464: if (SIG_OK && CODE_OK) {
2465: register struct hblk * h =
2466: (struct hblk *)((word)addr & ~(GC_page_size-1));
2467: GC_bool in_allocd_block;
2468:
2469: # ifdef SUNOS5SIGS
2470: /* Address is only within the correct physical page. */
2471: in_allocd_block = FALSE;
2472: for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2473: if (HDR(h+i) != 0) {
2474: in_allocd_block = TRUE;
2475: }
2476: }
2477: # else
2478: in_allocd_block = (HDR(addr) != 0);
2479: # endif
2480: if (!in_allocd_block) {
2481: /* Heap blocks now begin and end on page boundaries */
2482: SIG_PF old_handler;
2483:
2484: if (sig == SIGSEGV) {
2485: old_handler = GC_old_segv_handler;
2486: } else {
2487: old_handler = GC_old_bus_handler;
2488: }
2489: if (old_handler == SIG_DFL) {
1.4 noro 2490: # if !defined(MSWIN32) && !defined(MSWINCE)
1.1 noro 2491: GC_err_printf1("Segfault at 0x%lx\n", addr);
2492: ABORT("Unexpected bus error or segmentation fault");
2493: # else
2494: return(EXCEPTION_CONTINUE_SEARCH);
2495: # endif
2496: } else {
2497: # if defined (SUNOS4) || defined(FREEBSD)
2498: (*old_handler) (sig, code, scp, addr);
2499: return;
2500: # endif
2501: # if defined (SUNOS5SIGS)
2502: (*(REAL_SIG_PF)old_handler) (sig, scp, context);
2503: return;
2504: # endif
2505: # if defined (LINUX)
1.2 noro 2506: # if defined(ALPHA) || defined(M68K)
1.1 noro 2507: (*(REAL_SIG_PF)old_handler) (sig, code, sc);
2508: # else
1.4 noro 2509: # if defined(IA64) || defined(HP_PA)
1.2 noro 2510: (*(REAL_SIG_PF)old_handler) (sig, si, scp);
2511: # else
1.1 noro 2512: (*(REAL_SIG_PF)old_handler) (sig, sc);
1.2 noro 2513: # endif
1.1 noro 2514: # endif
2515: return;
2516: # endif
1.6 noro 2517: # if defined (IRIX5) || defined(OSF1) || defined(HURD)
1.1 noro 2518: (*(REAL_SIG_PF)old_handler) (sig, code, scp);
2519: return;
2520: # endif
2521: # ifdef MSWIN32
2522: return((*old_handler)(exc_info));
2523: # endif
2524: }
2525: }
1.6 noro 2526: UNPROTECT(h, GC_page_size);
2527: /* We need to make sure that no collection occurs between */
2528: /* the UNPROTECT and the setting of the dirty bit. Otherwise */
2529: /* a write by a third thread might go unnoticed. Reversing */
2530: /* the order is just as bad, since we would end up unprotecting */
2531: /* a page in a GC cycle during which it's not marked. */
2532: /* Currently we do this by disabling the thread stopping */
2533: /* signals while this handler is running. An alternative might */
2534: /* be to record the fact that we're about to unprotect, or */
2535: /* have just unprotected a page in the GC's thread structure, */
2536: /* and then to have the thread stopping code set the dirty */
2537: /* flag, if necessary. */
1.1 noro 2538: for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2539: register int index = PHT_HASH(h+i);
2540:
1.4 noro 2541: async_set_pht_entry_from_index(GC_dirty_pages, index);
1.1 noro 2542: }
1.6 noro 2543: # if defined(OSF1)
1.1 noro 2544: /* These reset the signal handler each time by default. */
2545: signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
2546: # endif
2547: /* The write may not take place before dirty bits are read. */
2548: /* But then we'll fault again ... */
1.4 noro 2549: # if defined(MSWIN32) || defined(MSWINCE)
1.1 noro 2550: return(EXCEPTION_CONTINUE_EXECUTION);
2551: # else
2552: return;
2553: # endif
2554: }
1.4 noro 2555: #if defined(MSWIN32) || defined(MSWINCE)
1.1 noro 2556: return EXCEPTION_CONTINUE_SEARCH;
2557: #else
2558: GC_err_printf1("Segfault at 0x%lx\n", addr);
2559: ABORT("Unexpected bus error or segmentation fault");
2560: #endif
2561: }
1.7 ! noro 2562: #endif /* !DARWIN */
1.1 noro 2563:
2564: /*
2565: * We hold the allocation lock. We expect block h to be written
1.6 noro 2566: * shortly. Ensure that all pages containing any part of the n hblks
2567: * starting at h are no longer protected. If is_ptrfree is false,
2568: * also ensure that they will subsequently appear to be dirty.
1.1 noro 2569: */
1.6 noro 2570: void GC_remove_protection(h, nblocks, is_ptrfree)
1.1 noro 2571: struct hblk *h;
1.6 noro 2572: word nblocks;
2573: GC_bool is_ptrfree;
1.1 noro 2574: {
1.6 noro 2575: struct hblk * h_trunc; /* Truncated to page boundary */
2576: struct hblk * h_end; /* Page boundary following block end */
2577: struct hblk * current;
2578: GC_bool found_clean;
1.1 noro 2579:
2580: if (!GC_dirty_maintained) return;
2581: h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
1.6 noro 2582: h_end = (struct hblk *)(((word)(h + nblocks) + GC_page_size-1)
2583: & ~(GC_page_size-1));
1.1 noro 2584: found_clean = FALSE;
1.6 noro 2585: for (current = h_trunc; current < h_end; ++current) {
2586: int index = PHT_HASH(current);
1.1 noro 2587:
1.6 noro 2588: if (!is_ptrfree || current < h || current >= h + nblocks) {
1.4 noro 2589: async_set_pht_entry_from_index(GC_dirty_pages, index);
1.1 noro 2590: }
2591: }
1.6 noro 2592: UNPROTECT(h_trunc, (ptr_t)h_end - (ptr_t)h_trunc);
1.1 noro 2593: }
2594:
1.7 ! noro 2595: #if !defined(DARWIN)
1.1 noro 2596: void GC_dirty_init()
2597: {
1.6 noro 2598: # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) || \
2599: defined(OSF1) || defined(HURD)
1.4 noro 2600: struct sigaction act, oldact;
1.6 noro 2601: /* We should probably specify SA_SIGINFO for Linux, and handle */
2602: /* the different architectures more uniformly. */
2603: # if defined(IRIX5) || defined(LINUX) || defined(OSF1) || defined(HURD)
1.1 noro 2604: act.sa_flags = SA_RESTART;
1.6 noro 2605: act.sa_handler = (SIG_PF)GC_write_fault_handler;
1.4 noro 2606: # else
1.1 noro 2607: act.sa_flags = SA_RESTART | SA_SIGINFO;
2608: act.sa_sigaction = GC_write_fault_handler;
1.4 noro 2609: # endif
2610: (void)sigemptyset(&act.sa_mask);
1.6 noro 2611: # ifdef SIG_SUSPEND
2612: /* Arrange to postpone SIG_SUSPEND while we're in a write fault */
2613: /* handler. This effectively makes the handler atomic w.r.t. */
2614: /* stopping the world for GC. */
2615: (void)sigaddset(&act.sa_mask, SIG_SUSPEND);
2616: # endif /* SIG_SUSPEND */
1.4 noro 2617: # endif
1.1 noro 2618: # ifdef PRINTSTATS
2619: GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2620: # endif
2621: GC_dirty_maintained = TRUE;
2622: if (GC_page_size % HBLKSIZE != 0) {
2623: GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2624: ABORT("Page size not multiple of HBLKSIZE");
2625: }
2626: # if defined(SUNOS4) || defined(FREEBSD)
2627: GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
2628: if (GC_old_bus_handler == SIG_IGN) {
2629: GC_err_printf0("Previously ignored bus error!?");
2630: GC_old_bus_handler = SIG_DFL;
2631: }
2632: if (GC_old_bus_handler != SIG_DFL) {
2633: # ifdef PRINTSTATS
2634: GC_err_printf0("Replaced other SIGBUS handler\n");
2635: # endif
2636: }
2637: # endif
1.6 noro 2638: # if defined(SUNOS4)
1.1 noro 2639: GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
2640: if (GC_old_segv_handler == SIG_IGN) {
2641: GC_err_printf0("Previously ignored segmentation violation!?");
2642: GC_old_segv_handler = SIG_DFL;
2643: }
2644: if (GC_old_segv_handler != SIG_DFL) {
2645: # ifdef PRINTSTATS
2646: GC_err_printf0("Replaced other SIGSEGV handler\n");
2647: # endif
2648: }
2649: # endif
1.6 noro 2650: # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) \
2651: || defined(OSF1) || defined(HURD)
2652: /* SUNOS5SIGS includes HPUX */
2653: # if defined(GC_IRIX_THREADS)
1.1 noro 2654: sigaction(SIGSEGV, 0, &oldact);
2655: sigaction(SIGSEGV, &act, 0);
2656: # else
1.7 ! noro 2657: {
! 2658: int res = sigaction(SIGSEGV, &act, &oldact);
! 2659: if (res != 0) ABORT("Sigaction failed");
! 2660: }
1.1 noro 2661: # endif
1.6 noro 2662: # if defined(_sigargs) || defined(HURD) || !defined(SA_SIGINFO)
1.1 noro 2663: /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
2664: /* sa_sigaction. */
2665: GC_old_segv_handler = oldact.sa_handler;
1.6 noro 2666: # else /* Irix 6.x or SUNOS5SIGS or LINUX */
1.1 noro 2667: if (oldact.sa_flags & SA_SIGINFO) {
2668: GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2669: } else {
2670: GC_old_segv_handler = oldact.sa_handler;
2671: }
2672: # endif
2673: if (GC_old_segv_handler == SIG_IGN) {
2674: GC_err_printf0("Previously ignored segmentation violation!?");
2675: GC_old_segv_handler = SIG_DFL;
2676: }
2677: if (GC_old_segv_handler != SIG_DFL) {
2678: # ifdef PRINTSTATS
2679: GC_err_printf0("Replaced other SIGSEGV handler\n");
2680: # endif
2681: }
1.4 noro 2682: # endif
1.7 ! noro 2683: # if defined(HPUX) || defined(LINUX) || defined(HURD)
1.4 noro 2684: sigaction(SIGBUS, &act, &oldact);
2685: GC_old_bus_handler = oldact.sa_handler;
2686: if (GC_old_bus_handler == SIG_IGN) {
2687: GC_err_printf0("Previously ignored bus error!?");
2688: GC_old_bus_handler = SIG_DFL;
2689: }
2690: if (GC_old_bus_handler != SIG_DFL) {
2691: # ifdef PRINTSTATS
2692: GC_err_printf0("Replaced other SIGBUS handler\n");
2693: # endif
2694: }
1.7 ! noro 2695: # endif /* HPUX || LINUX || HURD */
1.1 noro 2696: # if defined(MSWIN32)
2697: GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2698: if (GC_old_segv_handler != NULL) {
2699: # ifdef PRINTSTATS
2700: GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2701: # endif
2702: } else {
2703: GC_old_segv_handler = SIG_DFL;
2704: }
2705: # endif
2706: }
1.7 ! noro 2707: #endif /* !DARWIN */
1.1 noro 2708:
1.6 noro 2709: int GC_incremental_protection_needs()
2710: {
2711: if (GC_page_size == HBLKSIZE) {
2712: return GC_PROTECTS_POINTER_HEAP;
2713: } else {
2714: return GC_PROTECTS_POINTER_HEAP | GC_PROTECTS_PTRFREE_HEAP;
2715: }
2716: }
2717:
2718: #define HAVE_INCREMENTAL_PROTECTION_NEEDS
1.1 noro 2719:
1.6 noro 2720: #define IS_PTRFREE(hhdr) ((hhdr)->hb_descr == 0)
1.1 noro 2721:
1.6 noro 2722: #define PAGE_ALIGNED(x) !((word)(x) & (GC_page_size - 1))
1.1 noro 2723: void GC_protect_heap()
2724: {
2725: ptr_t start;
2726: word len;
1.6 noro 2727: struct hblk * current;
2728: struct hblk * current_start; /* Start of block to be protected. */
2729: struct hblk * limit;
1.1 noro 2730: unsigned i;
1.6 noro 2731: GC_bool protect_all =
2732: (0 != (GC_incremental_protection_needs() & GC_PROTECTS_PTRFREE_HEAP));
1.1 noro 2733: for (i = 0; i < GC_n_heap_sects; i++) {
2734: start = GC_heap_sects[i].hs_start;
2735: len = GC_heap_sects[i].hs_bytes;
1.6 noro 2736: if (protect_all) {
2737: PROTECT(start, len);
2738: } else {
2739: GC_ASSERT(PAGE_ALIGNED(len))
2740: GC_ASSERT(PAGE_ALIGNED(start))
2741: current_start = current = (struct hblk *)start;
2742: limit = (struct hblk *)(start + len);
2743: while (current < limit) {
2744: hdr * hhdr;
2745: word nhblks;
2746: GC_bool is_ptrfree;
2747:
2748: GC_ASSERT(PAGE_ALIGNED(current));
2749: GET_HDR(current, hhdr);
2750: if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
2751: /* This can happen only if we're at the beginning of a */
2752: /* heap segment, and a block spans heap segments. */
2753: /* We will handle that block as part of the preceding */
2754: /* segment. */
2755: GC_ASSERT(current_start == current);
2756: current_start = ++current;
2757: continue;
2758: }
2759: if (HBLK_IS_FREE(hhdr)) {
2760: GC_ASSERT(PAGE_ALIGNED(hhdr -> hb_sz));
2761: nhblks = divHBLKSZ(hhdr -> hb_sz);
2762: is_ptrfree = TRUE; /* dirty on alloc */
2763: } else {
2764: nhblks = OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
2765: is_ptrfree = IS_PTRFREE(hhdr);
2766: }
2767: if (is_ptrfree) {
2768: if (current_start < current) {
2769: PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2770: }
2771: current_start = (current += nhblks);
2772: } else {
2773: current += nhblks;
2774: }
2775: }
2776: if (current_start < current) {
2777: PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2778: }
2779: }
1.1 noro 2780: }
2781: }
2782:
2783: /* We assume that either the world is stopped or its OK to lose dirty */
2784: /* bits while this is happenning (as in GC_enable_incremental). */
2785: void GC_read_dirty()
2786: {
2787: BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
2788: (sizeof GC_dirty_pages));
2789: BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
2790: GC_protect_heap();
2791: }
2792:
2793: GC_bool GC_page_was_dirty(h)
2794: struct hblk * h;
2795: {
2796: register word index = PHT_HASH(h);
2797:
2798: return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2799: }
2800:
2801: /*
2802: * Acquiring the allocation lock here is dangerous, since this
2803: * can be called from within GC_call_with_alloc_lock, and the cord
2804: * package does so. On systems that allow nested lock acquisition, this
2805: * happens to work.
2806: * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2807: */
1.4 noro 2808:
2809: static GC_bool syscall_acquired_lock = FALSE; /* Protected by GC lock. */
1.1 noro 2810:
2811: void GC_begin_syscall()
2812: {
1.4 noro 2813: if (!I_HOLD_LOCK()) {
2814: LOCK();
2815: syscall_acquired_lock = TRUE;
2816: }
1.1 noro 2817: }
2818:
2819: void GC_end_syscall()
2820: {
1.4 noro 2821: if (syscall_acquired_lock) {
2822: syscall_acquired_lock = FALSE;
2823: UNLOCK();
2824: }
1.1 noro 2825: }
2826:
2827: void GC_unprotect_range(addr, len)
2828: ptr_t addr;
2829: word len;
2830: {
2831: struct hblk * start_block;
2832: struct hblk * end_block;
2833: register struct hblk *h;
2834: ptr_t obj_start;
2835:
1.6 noro 2836: if (!GC_dirty_maintained) return;
1.1 noro 2837: obj_start = GC_base(addr);
2838: if (obj_start == 0) return;
2839: if (GC_base(addr + len - 1) != obj_start) {
2840: ABORT("GC_unprotect_range(range bigger than object)");
2841: }
2842: start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
2843: end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
2844: end_block += GC_page_size/HBLKSIZE - 1;
2845: for (h = start_block; h <= end_block; h++) {
2846: register word index = PHT_HASH(h);
2847:
1.4 noro 2848: async_set_pht_entry_from_index(GC_dirty_pages, index);
1.1 noro 2849: }
2850: UNPROTECT(start_block,
2851: ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
2852: }
2853:
1.6 noro 2854: #if 0
2855:
2856: /* We no longer wrap read by default, since that was causing too many */
2857: /* problems. It is preferred that the client instead avoids writing */
2858: /* to the write-protected heap with a system call. */
2859: /* This still serves as sample code if you do want to wrap system calls.*/
2860:
2861: #if !defined(MSWIN32) && !defined(MSWINCE) && !defined(GC_USE_LD_WRAP)
2862: /* Replacement for UNIX system call. */
2863: /* Other calls that write to the heap should be handled similarly. */
2864: /* Note that this doesn't work well for blocking reads: It will hold */
2865: /* the allocation lock for the entire duration of the call. Multithreaded */
2866: /* clients should really ensure that it won't block, either by setting */
2867: /* the descriptor nonblocking, or by calling select or poll first, to */
2868: /* make sure that input is available. */
2869: /* Another, preferred alternative is to ensure that system calls never */
2870: /* write to the protected heap (see above). */
1.1 noro 2871: # if defined(__STDC__) && !defined(SUNOS4)
2872: # include <unistd.h>
1.3 noro 2873: # include <sys/uio.h>
1.1 noro 2874: ssize_t read(int fd, void *buf, size_t nbyte)
2875: # else
2876: # ifndef LINT
2877: int read(fd, buf, nbyte)
2878: # else
2879: int GC_read(fd, buf, nbyte)
2880: # endif
2881: int fd;
2882: char *buf;
2883: int nbyte;
2884: # endif
2885: {
2886: int result;
2887:
2888: GC_begin_syscall();
2889: GC_unprotect_range(buf, (word)nbyte);
1.6 noro 2890: # if defined(IRIX5) || defined(GC_LINUX_THREADS)
1.1 noro 2891: /* Indirect system call may not always be easily available. */
2892: /* We could call _read, but that would interfere with the */
2893: /* libpthread interception of read. */
1.3 noro 2894: /* On Linux, we have to be careful with the linuxthreads */
2895: /* read interception. */
1.1 noro 2896: {
2897: struct iovec iov;
2898:
2899: iov.iov_base = buf;
2900: iov.iov_len = nbyte;
2901: result = readv(fd, &iov, 1);
2902: }
2903: # else
1.6 noro 2904: # if defined(HURD)
2905: result = __read(fd, buf, nbyte);
2906: # else
1.4 noro 2907: /* The two zero args at the end of this list are because one
2908: IA-64 syscall() implementation actually requires six args
2909: to be passed, even though they aren't always used. */
2910: result = syscall(SYS_read, fd, buf, nbyte, 0, 0);
1.6 noro 2911: # endif /* !HURD */
1.1 noro 2912: # endif
2913: GC_end_syscall();
2914: return(result);
2915: }
1.6 noro 2916: #endif /* !MSWIN32 && !MSWINCE && !GC_LINUX_THREADS */
1.3 noro 2917:
1.6 noro 2918: #if defined(GC_USE_LD_WRAP) && !defined(THREADS)
1.3 noro 2919: /* We use the GNU ld call wrapping facility. */
2920: /* This requires that the linker be invoked with "--wrap read". */
2921: /* This can be done by passing -Wl,"--wrap read" to gcc. */
2922: /* I'm not sure that this actually wraps whatever version of read */
2923: /* is called by stdio. That code also mentions __read. */
2924: # include <unistd.h>
2925: ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
2926: {
2927: int result;
2928:
2929: GC_begin_syscall();
2930: GC_unprotect_range(buf, (word)nbyte);
2931: result = __real_read(fd, buf, nbyte);
2932: GC_end_syscall();
2933: return(result);
2934: }
2935:
2936: /* We should probably also do this for __read, or whatever stdio */
2937: /* actually calls. */
2938: #endif
1.1 noro 2939:
1.6 noro 2940: #endif /* 0 */
2941:
1.1 noro 2942: /*ARGSUSED*/
2943: GC_bool GC_page_was_ever_dirty(h)
2944: struct hblk *h;
2945: {
2946: return(TRUE);
2947: }
2948:
2949: /* Reset the n pages starting at h to "was never dirty" status. */
2950: /*ARGSUSED*/
2951: void GC_is_fresh(h, n)
2952: struct hblk *h;
2953: word n;
2954: {
2955: }
2956:
2957: # endif /* MPROTECT_VDB */
2958:
2959: # ifdef PROC_VDB
2960:
2961: /*
2962: * See DEFAULT_VDB for interface descriptions.
2963: */
2964:
2965: /*
2966: * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
2967: * from which we can read page modified bits. This facility is far from
2968: * optimal (e.g. we would like to get the info for only some of the
2969: * address space), but it avoids intercepting system calls.
2970: */
2971:
2972: #include <errno.h>
2973: #include <sys/types.h>
2974: #include <sys/signal.h>
2975: #include <sys/fault.h>
2976: #include <sys/syscall.h>
2977: #include <sys/procfs.h>
2978: #include <sys/stat.h>
2979:
2980: #define INITIAL_BUF_SZ 4096
2981: word GC_proc_buf_size = INITIAL_BUF_SZ;
2982: char *GC_proc_buf;
2983:
1.6 noro 2984: #ifdef GC_SOLARIS_THREADS
1.1 noro 2985: /* We don't have exact sp values for threads. So we count on */
2986: /* occasionally declaring stack pages to be fresh. Thus we */
2987: /* need a real implementation of GC_is_fresh. We can't clear */
2988: /* entries in GC_written_pages, since that would declare all */
2989: /* pages with the given hash address to be fresh. */
2990: # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
2991: struct hblk ** GC_fresh_pages; /* A direct mapped cache. */
2992: /* Collisions are dropped. */
2993:
2994: # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
2995: # define ADD_FRESH_PAGE(h) \
2996: GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
2997: # define PAGE_IS_FRESH(h) \
2998: (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
2999: #endif
3000:
3001: /* Add all pages in pht2 to pht1 */
3002: void GC_or_pages(pht1, pht2)
3003: page_hash_table pht1, pht2;
3004: {
3005: register int i;
3006:
3007: for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
3008: }
3009:
3010: int GC_proc_fd;
3011:
3012: void GC_dirty_init()
3013: {
3014: int fd;
3015: char buf[30];
3016:
3017: GC_dirty_maintained = TRUE;
3018: if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
3019: register int i;
3020:
3021: for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
3022: # ifdef PRINTSTATS
3023: GC_printf1("Allocated words:%lu:all pages may have been written\n",
3024: (unsigned long)
3025: (GC_words_allocd + GC_words_allocd_before_gc));
3026: # endif
3027: }
3028: sprintf(buf, "/proc/%d", getpid());
3029: fd = open(buf, O_RDONLY);
3030: if (fd < 0) {
3031: ABORT("/proc open failed");
3032: }
3033: GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
3034: close(fd);
1.7 ! noro 3035: syscall(SYS_fcntl, GC_proc_fd, F_SETFD, FD_CLOEXEC);
1.1 noro 3036: if (GC_proc_fd < 0) {
3037: ABORT("/proc ioctl failed");
3038: }
3039: GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
1.6 noro 3040: # ifdef GC_SOLARIS_THREADS
1.1 noro 3041: GC_fresh_pages = (struct hblk **)
3042: GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
3043: if (GC_fresh_pages == 0) {
3044: GC_err_printf0("No space for fresh pages\n");
3045: EXIT();
3046: }
3047: BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
3048: # endif
3049: }
3050:
3051: /* Ignore write hints. They don't help us here. */
3052: /*ARGSUSED*/
1.6 noro 3053: void GC_remove_protection(h, nblocks, is_ptrfree)
1.1 noro 3054: struct hblk *h;
1.6 noro 3055: word nblocks;
3056: GC_bool is_ptrfree;
1.1 noro 3057: {
3058: }
3059:
1.6 noro 3060: #ifdef GC_SOLARIS_THREADS
1.1 noro 3061: # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
3062: #else
3063: # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
3064: #endif
3065:
3066: void GC_read_dirty()
3067: {
3068: unsigned long ps, np;
3069: int nmaps;
3070: ptr_t vaddr;
3071: struct prasmap * map;
3072: char * bufp;
3073: ptr_t current_addr, limit;
3074: int i;
3075: int dummy;
3076:
3077: BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
3078:
3079: bufp = GC_proc_buf;
3080: if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3081: # ifdef PRINTSTATS
3082: GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
3083: GC_proc_buf_size);
3084: # endif
3085: {
3086: /* Retry with larger buffer. */
3087: word new_size = 2 * GC_proc_buf_size;
3088: char * new_buf = GC_scratch_alloc(new_size);
3089:
3090: if (new_buf != 0) {
3091: GC_proc_buf = bufp = new_buf;
3092: GC_proc_buf_size = new_size;
3093: }
3094: if (syscall(SYS_read, GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3095: WARN("Insufficient space for /proc read\n", 0);
3096: /* Punt: */
3097: memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
3098: memset(GC_written_pages, 0xff, sizeof(page_hash_table));
1.6 noro 3099: # ifdef GC_SOLARIS_THREADS
1.1 noro 3100: BZERO(GC_fresh_pages,
3101: MAX_FRESH_PAGES * sizeof (struct hblk *));
3102: # endif
3103: return;
3104: }
3105: }
3106: }
3107: /* Copy dirty bits into GC_grungy_pages */
3108: nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
3109: /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
3110: nmaps, PG_REFERENCED, PG_MODIFIED); */
3111: bufp = bufp + sizeof(struct prpageheader);
3112: for (i = 0; i < nmaps; i++) {
3113: map = (struct prasmap *)bufp;
3114: vaddr = (ptr_t)(map -> pr_vaddr);
3115: ps = map -> pr_pagesize;
3116: np = map -> pr_npage;
3117: /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
3118: limit = vaddr + ps * np;
3119: bufp += sizeof (struct prasmap);
3120: for (current_addr = vaddr;
3121: current_addr < limit; current_addr += ps){
3122: if ((*bufp++) & PG_MODIFIED) {
3123: register struct hblk * h = (struct hblk *) current_addr;
3124:
3125: while ((ptr_t)h < current_addr + ps) {
3126: register word index = PHT_HASH(h);
3127:
3128: set_pht_entry_from_index(GC_grungy_pages, index);
1.6 noro 3129: # ifdef GC_SOLARIS_THREADS
1.1 noro 3130: {
3131: register int slot = FRESH_PAGE_SLOT(h);
3132:
3133: if (GC_fresh_pages[slot] == h) {
3134: GC_fresh_pages[slot] = 0;
3135: }
3136: }
3137: # endif
3138: h++;
3139: }
3140: }
3141: }
3142: bufp += sizeof(long) - 1;
3143: bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
3144: }
3145: /* Update GC_written_pages. */
3146: GC_or_pages(GC_written_pages, GC_grungy_pages);
1.6 noro 3147: # ifdef GC_SOLARIS_THREADS
1.1 noro 3148: /* Make sure that old stacks are considered completely clean */
3149: /* unless written again. */
3150: GC_old_stacks_are_fresh();
3151: # endif
3152: }
3153:
3154: #undef READ
3155:
3156: GC_bool GC_page_was_dirty(h)
3157: struct hblk *h;
3158: {
3159: register word index = PHT_HASH(h);
3160: register GC_bool result;
3161:
3162: result = get_pht_entry_from_index(GC_grungy_pages, index);
1.6 noro 3163: # ifdef GC_SOLARIS_THREADS
1.1 noro 3164: if (result && PAGE_IS_FRESH(h)) result = FALSE;
3165: /* This happens only if page was declared fresh since */
3166: /* the read_dirty call, e.g. because it's in an unused */
3167: /* thread stack. It's OK to treat it as clean, in */
3168: /* that case. And it's consistent with */
3169: /* GC_page_was_ever_dirty. */
3170: # endif
3171: return(result);
3172: }
3173:
3174: GC_bool GC_page_was_ever_dirty(h)
3175: struct hblk *h;
3176: {
3177: register word index = PHT_HASH(h);
3178: register GC_bool result;
3179:
3180: result = get_pht_entry_from_index(GC_written_pages, index);
1.6 noro 3181: # ifdef GC_SOLARIS_THREADS
1.1 noro 3182: if (result && PAGE_IS_FRESH(h)) result = FALSE;
3183: # endif
3184: return(result);
3185: }
3186:
3187: /* Caller holds allocation lock. */
3188: void GC_is_fresh(h, n)
3189: struct hblk *h;
3190: word n;
3191: {
3192:
3193: register word index;
3194:
1.6 noro 3195: # ifdef GC_SOLARIS_THREADS
1.1 noro 3196: register word i;
3197:
3198: if (GC_fresh_pages != 0) {
3199: for (i = 0; i < n; i++) {
3200: ADD_FRESH_PAGE(h + i);
3201: }
3202: }
3203: # endif
3204: }
3205:
3206: # endif /* PROC_VDB */
3207:
3208:
3209: # ifdef PCR_VDB
3210:
3211: # include "vd/PCR_VD.h"
3212:
3213: # define NPAGES (32*1024) /* 128 MB */
3214:
3215: PCR_VD_DB GC_grungy_bits[NPAGES];
3216:
3217: ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */
3218: /* HBLKSIZE aligned. */
3219:
3220: void GC_dirty_init()
3221: {
3222: GC_dirty_maintained = TRUE;
3223: /* For the time being, we assume the heap generally grows up */
3224: GC_vd_base = GC_heap_sects[0].hs_start;
3225: if (GC_vd_base == 0) {
3226: ABORT("Bad initial heap segment");
3227: }
3228: if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
3229: != PCR_ERes_okay) {
3230: ABORT("dirty bit initialization failed");
3231: }
3232: }
3233:
3234: void GC_read_dirty()
3235: {
3236: /* lazily enable dirty bits on newly added heap sects */
3237: {
3238: static int onhs = 0;
3239: int nhs = GC_n_heap_sects;
3240: for( ; onhs < nhs; onhs++ ) {
3241: PCR_VD_WriteProtectEnable(
3242: GC_heap_sects[onhs].hs_start,
3243: GC_heap_sects[onhs].hs_bytes );
3244: }
3245: }
3246:
3247:
3248: if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
3249: != PCR_ERes_okay) {
3250: ABORT("dirty bit read failed");
3251: }
3252: }
3253:
3254: GC_bool GC_page_was_dirty(h)
3255: struct hblk *h;
3256: {
3257: if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
3258: return(TRUE);
3259: }
3260: return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
3261: }
3262:
3263: /*ARGSUSED*/
1.6 noro 3264: void GC_remove_protection(h, nblocks, is_ptrfree)
1.1 noro 3265: struct hblk *h;
1.6 noro 3266: word nblocks;
3267: GC_bool is_ptrfree;
1.1 noro 3268: {
1.6 noro 3269: PCR_VD_WriteProtectDisable(h, nblocks*HBLKSIZE);
3270: PCR_VD_WriteProtectEnable(h, nblocks*HBLKSIZE);
1.1 noro 3271: }
3272:
3273: # endif /* PCR_VDB */
3274:
1.7 ! noro 3275: #if defined(MPROTECT_VDB) && defined(DARWIN)
! 3276: /* The following sources were used as a *reference* for this exception handling
! 3277: code:
! 3278: 1. Apple's mach/xnu documentation
! 3279: 2. Timothy J. Wood's "Mach Exception Handlers 101" post to the
! 3280: omnigroup's macosx-dev list.
! 3281: www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
! 3282: 3. macosx-nat.c from Apple's GDB source code.
! 3283: */
! 3284:
! 3285: /* There seem to be numerous problems with darwin's mach exception handling.
! 3286: I'm pretty sure they are not problems in my code. Search for
! 3287: BROKEN_EXCEPTION_HANDLING for more information. */
! 3288: #define BROKEN_EXCEPTION_HANDLING
! 3289:
! 3290: #include <mach/mach.h>
! 3291: #include <mach/mach_error.h>
! 3292: #include <mach/thread_status.h>
! 3293: #include <mach/exception.h>
! 3294: #include <mach/task.h>
! 3295: #include <pthread.h>
! 3296:
! 3297: /* These are not defined in any header, although they are documented */
! 3298: extern boolean_t exc_server(mach_msg_header_t *,mach_msg_header_t *);
! 3299: extern kern_return_t exception_raise(
! 3300: mach_port_t,mach_port_t,mach_port_t,
! 3301: exception_type_t,exception_data_t,mach_msg_type_number_t);
! 3302: extern kern_return_t exception_raise_state(
! 3303: mach_port_t,mach_port_t,mach_port_t,
! 3304: exception_type_t,exception_data_t,mach_msg_type_number_t,
! 3305: thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
! 3306: thread_state_t,mach_msg_type_number_t*);
! 3307: extern kern_return_t exception_raise_state_identity(
! 3308: mach_port_t,mach_port_t,mach_port_t,
! 3309: exception_type_t,exception_data_t,mach_msg_type_number_t,
! 3310: thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
! 3311: thread_state_t,mach_msg_type_number_t*);
! 3312:
! 3313:
! 3314: #define MAX_EXCEPTION_PORTS 16
! 3315:
! 3316: static mach_port_t GC_task_self;
! 3317:
! 3318: static struct {
! 3319: mach_msg_type_number_t count;
! 3320: exception_mask_t masks[MAX_EXCEPTION_PORTS];
! 3321: exception_handler_t ports[MAX_EXCEPTION_PORTS];
! 3322: exception_behavior_t behaviors[MAX_EXCEPTION_PORTS];
! 3323: thread_state_flavor_t flavors[MAX_EXCEPTION_PORTS];
! 3324: } GC_old_exc_ports;
! 3325:
! 3326: static struct {
! 3327: mach_port_t exception;
! 3328: #if defined(THREADS)
! 3329: mach_port_t reply;
! 3330: #endif
! 3331: } GC_ports;
! 3332:
! 3333: typedef struct {
! 3334: mach_msg_header_t head;
! 3335: } GC_msg_t;
! 3336:
! 3337: typedef enum {
! 3338: GC_MP_NORMAL, GC_MP_DISCARDING, GC_MP_STOPPED
! 3339: } GC_mprotect_state_t;
! 3340:
! 3341: /* FIXME: 1 and 2 seem to be safe to use in the msgh_id field,
! 3342: but it isn't documented. Use the source and see if they
! 3343: should be ok. */
! 3344: #define ID_STOP 1
! 3345: #define ID_RESUME 2
! 3346:
! 3347: /* These values are only used on the reply port */
! 3348: #define ID_ACK 3
! 3349:
! 3350: #if defined(THREADS)
! 3351:
! 3352: GC_mprotect_state_t GC_mprotect_state;
! 3353:
! 3354: /* The following should ONLY be called when the world is stopped */
! 3355: static void GC_mprotect_thread_notify(mach_msg_id_t id) {
! 3356: struct {
! 3357: GC_msg_t msg;
! 3358: mach_msg_trailer_t trailer;
! 3359: } buf;
! 3360: mach_msg_return_t r;
! 3361: /* remote, local */
! 3362: buf.msg.head.msgh_bits =
! 3363: MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
! 3364: buf.msg.head.msgh_size = sizeof(buf.msg);
! 3365: buf.msg.head.msgh_remote_port = GC_ports.exception;
! 3366: buf.msg.head.msgh_local_port = MACH_PORT_NULL;
! 3367: buf.msg.head.msgh_id = id;
! 3368:
! 3369: r = mach_msg(
! 3370: &buf.msg.head,
! 3371: MACH_SEND_MSG|MACH_RCV_MSG|MACH_RCV_LARGE,
! 3372: sizeof(buf.msg),
! 3373: sizeof(buf),
! 3374: GC_ports.reply,
! 3375: MACH_MSG_TIMEOUT_NONE,
! 3376: MACH_PORT_NULL);
! 3377: if(r != MACH_MSG_SUCCESS)
! 3378: ABORT("mach_msg failed in GC_mprotect_thread_notify");
! 3379: if(buf.msg.head.msgh_id != ID_ACK)
! 3380: ABORT("invalid ack in GC_mprotect_thread_notify");
! 3381: }
! 3382:
! 3383: /* Should only be called by the mprotect thread */
! 3384: static void GC_mprotect_thread_reply() {
! 3385: GC_msg_t msg;
! 3386: mach_msg_return_t r;
! 3387: /* remote, local */
! 3388: msg.head.msgh_bits =
! 3389: MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
! 3390: msg.head.msgh_size = sizeof(msg);
! 3391: msg.head.msgh_remote_port = GC_ports.reply;
! 3392: msg.head.msgh_local_port = MACH_PORT_NULL;
! 3393: msg.head.msgh_id = ID_ACK;
! 3394:
! 3395: r = mach_msg(
! 3396: &msg.head,
! 3397: MACH_SEND_MSG,
! 3398: sizeof(msg),
! 3399: 0,
! 3400: MACH_PORT_NULL,
! 3401: MACH_MSG_TIMEOUT_NONE,
! 3402: MACH_PORT_NULL);
! 3403: if(r != MACH_MSG_SUCCESS)
! 3404: ABORT("mach_msg failed in GC_mprotect_thread_reply");
! 3405: }
! 3406:
! 3407: void GC_mprotect_stop() {
! 3408: GC_mprotect_thread_notify(ID_STOP);
! 3409: }
! 3410: void GC_mprotect_resume() {
! 3411: GC_mprotect_thread_notify(ID_RESUME);
! 3412: }
! 3413:
! 3414: #else /* !THREADS */
! 3415: /* The compiler should optimize away any GC_mprotect_state computations */
! 3416: #define GC_mprotect_state GC_MP_NORMAL
! 3417: #endif
! 3418:
! 3419: static void *GC_mprotect_thread(void *arg) {
! 3420: mach_msg_return_t r;
! 3421: /* These two structures contain some private kernel data. We don't need to
! 3422: access any of it so we don't bother defining a proper struct. The
! 3423: correct definitions are in the xnu source code. */
! 3424: struct {
! 3425: mach_msg_header_t head;
! 3426: char data[256];
! 3427: } reply;
! 3428: struct {
! 3429: mach_msg_header_t head;
! 3430: mach_msg_body_t msgh_body;
! 3431: char data[1024];
! 3432: } msg;
! 3433:
! 3434: mach_msg_id_t id;
! 3435:
! 3436: for(;;) {
! 3437: r = mach_msg(
! 3438: &msg.head,
! 3439: MACH_RCV_MSG|MACH_RCV_LARGE|
! 3440: (GC_mprotect_state == GC_MP_DISCARDING ? MACH_RCV_TIMEOUT : 0),
! 3441: 0,
! 3442: sizeof(msg),
! 3443: GC_ports.exception,
! 3444: GC_mprotect_state == GC_MP_DISCARDING ? 0 : MACH_MSG_TIMEOUT_NONE,
! 3445: MACH_PORT_NULL);
! 3446:
! 3447: id = r == MACH_MSG_SUCCESS ? msg.head.msgh_id : -1;
! 3448:
! 3449: #if defined(THREADS)
! 3450: if(GC_mprotect_state == GC_MP_DISCARDING) {
! 3451: if(r == MACH_RCV_TIMED_OUT) {
! 3452: GC_mprotect_state = GC_MP_STOPPED;
! 3453: GC_mprotect_thread_reply();
! 3454: continue;
! 3455: }
! 3456: if(r == MACH_MSG_SUCCESS && (id == ID_STOP || id == ID_RESUME))
! 3457: ABORT("out of order mprotect thread request");
! 3458: }
! 3459: #endif
! 3460:
! 3461: if(r != MACH_MSG_SUCCESS) {
! 3462: GC_err_printf2("mach_msg failed with %d %s\n",
! 3463: (int)r,mach_error_string(r));
! 3464: ABORT("mach_msg failed");
! 3465: }
! 3466:
! 3467: switch(id) {
! 3468: #if defined(THREADS)
! 3469: case ID_STOP:
! 3470: if(GC_mprotect_state != GC_MP_NORMAL)
! 3471: ABORT("Called mprotect_stop when state wasn't normal");
! 3472: GC_mprotect_state = GC_MP_DISCARDING;
! 3473: break;
! 3474: case ID_RESUME:
! 3475: if(GC_mprotect_state != GC_MP_STOPPED)
! 3476: ABORT("Called mprotect_resume when state wasn't stopped");
! 3477: GC_mprotect_state = GC_MP_NORMAL;
! 3478: GC_mprotect_thread_reply();
! 3479: break;
! 3480: #endif /* THREADS */
! 3481: default:
! 3482: /* Handle the message (calls catch_exception_raise) */
! 3483: if(!exc_server(&msg.head,&reply.head))
! 3484: ABORT("exc_server failed");
! 3485: /* Send the reply */
! 3486: r = mach_msg(
! 3487: &reply.head,
! 3488: MACH_SEND_MSG,
! 3489: reply.head.msgh_size,
! 3490: 0,
! 3491: MACH_PORT_NULL,
! 3492: MACH_MSG_TIMEOUT_NONE,
! 3493: MACH_PORT_NULL);
! 3494: if(r != MACH_MSG_SUCCESS) {
! 3495: /* This will fail if the thread dies, but the thread shouldn't
! 3496: die... */
! 3497: #ifdef BROKEN_EXCEPTION_HANDLING
! 3498: GC_err_printf2(
! 3499: "mach_msg failed with %d %s while sending exc reply\n",
! 3500: (int)r,mach_error_string(r));
! 3501: #else
! 3502: ABORT("mach_msg failed while sending exception reply");
! 3503: #endif
! 3504: }
! 3505: } /* switch */
! 3506: } /* for(;;) */
! 3507: /* NOT REACHED */
! 3508: return NULL;
! 3509: }
! 3510:
! 3511: /* All this SIGBUS code shouldn't be necessary. All protection faults should
! 3512: be going throught the mach exception handler. However, it seems a SIGBUS is
! 3513: occasionally sent for some unknown reason. Even more odd, it seems to be
! 3514: meaningless and safe to ignore. */
! 3515: #ifdef BROKEN_EXCEPTION_HANDLING
! 3516:
! 3517: typedef void (* SIG_PF)();
! 3518: static SIG_PF GC_old_bus_handler;
! 3519:
! 3520: /* Updates to this aren't atomic, but the SIGBUSs seem pretty rare.
! 3521: Even if this doesn't get updated property, it isn't really a problem */
! 3522: static int GC_sigbus_count;
! 3523:
! 3524: static void GC_darwin_sigbus(int num,siginfo_t *sip,void *context) {
! 3525: if(num != SIGBUS) ABORT("Got a non-sigbus signal in the sigbus handler");
! 3526:
! 3527: /* Ugh... some seem safe to ignore, but too many in a row probably means
! 3528: trouble. GC_sigbus_count is reset for each mach exception that is
! 3529: handled */
! 3530: if(GC_sigbus_count >= 8) {
! 3531: ABORT("Got more than 8 SIGBUSs in a row!");
! 3532: } else {
! 3533: GC_sigbus_count++;
! 3534: GC_err_printf0("GC: WARNING: Ignoring SIGBUS.\n");
! 3535: }
! 3536: }
! 3537: #endif /* BROKEN_EXCEPTION_HANDLING */
! 3538:
! 3539: void GC_dirty_init() {
! 3540: kern_return_t r;
! 3541: mach_port_t me;
! 3542: pthread_t thread;
! 3543: pthread_attr_t attr;
! 3544: exception_mask_t mask;
! 3545:
! 3546: # ifdef PRINTSTATS
! 3547: GC_printf0("Inititalizing mach/darwin mprotect virtual dirty bit "
! 3548: "implementation\n");
! 3549: # endif
! 3550: # ifdef BROKEN_EXCEPTION_HANDLING
! 3551: GC_err_printf0("GC: WARNING: Enabling workarounds for various darwin "
! 3552: "exception handling bugs.\n");
! 3553: # endif
! 3554: GC_dirty_maintained = TRUE;
! 3555: if (GC_page_size % HBLKSIZE != 0) {
! 3556: GC_err_printf0("Page size not multiple of HBLKSIZE\n");
! 3557: ABORT("Page size not multiple of HBLKSIZE");
! 3558: }
! 3559:
! 3560: GC_task_self = me = mach_task_self();
! 3561:
! 3562: r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.exception);
! 3563: if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (exception port)");
! 3564:
! 3565: r = mach_port_insert_right(me,GC_ports.exception,GC_ports.exception,
! 3566: MACH_MSG_TYPE_MAKE_SEND);
! 3567: if(r != KERN_SUCCESS)
! 3568: ABORT("mach_port_insert_right failed (exception port)");
! 3569:
! 3570: #if defined(THREADS)
! 3571: r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.reply);
! 3572: if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (reply port)");
! 3573: #endif
! 3574:
! 3575: /* The exceptions we want to catch */
! 3576: mask = EXC_MASK_BAD_ACCESS;
! 3577:
! 3578: r = task_get_exception_ports(
! 3579: me,
! 3580: mask,
! 3581: GC_old_exc_ports.masks,
! 3582: &GC_old_exc_ports.count,
! 3583: GC_old_exc_ports.ports,
! 3584: GC_old_exc_ports.behaviors,
! 3585: GC_old_exc_ports.flavors
! 3586: );
! 3587: if(r != KERN_SUCCESS) ABORT("task_get_exception_ports failed");
! 3588:
! 3589: r = task_set_exception_ports(
! 3590: me,
! 3591: mask,
! 3592: GC_ports.exception,
! 3593: EXCEPTION_DEFAULT,
! 3594: MACHINE_THREAD_STATE
! 3595: );
! 3596: if(r != KERN_SUCCESS) ABORT("task_set_exception_ports failed");
! 3597:
! 3598: if(pthread_attr_init(&attr) != 0) ABORT("pthread_attr_init failed");
! 3599: if(pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED) != 0)
! 3600: ABORT("pthread_attr_setdetachedstate failed");
! 3601:
! 3602: # undef pthread_create
! 3603: /* This will call the real pthread function, not our wrapper */
! 3604: if(pthread_create(&thread,&attr,GC_mprotect_thread,NULL) != 0)
! 3605: ABORT("pthread_create failed");
! 3606: pthread_attr_destroy(&attr);
! 3607:
! 3608: /* Setup the sigbus handler for ignoring the meaningless SIGBUSs */
! 3609: #ifdef BROKEN_EXCEPTION_HANDLING
! 3610: {
! 3611: struct sigaction sa, oldsa;
! 3612: sa.sa_handler = (SIG_PF)GC_darwin_sigbus;
! 3613: sigemptyset(&sa.sa_mask);
! 3614: sa.sa_flags = SA_RESTART|SA_SIGINFO;
! 3615: if(sigaction(SIGBUS,&sa,&oldsa) < 0) ABORT("sigaction");
! 3616: GC_old_bus_handler = (SIG_PF)oldsa.sa_handler;
! 3617: if (GC_old_bus_handler != SIG_DFL) {
! 3618: # ifdef PRINTSTATS
! 3619: GC_err_printf0("Replaced other SIGBUS handler\n");
! 3620: # endif
! 3621: }
! 3622: }
! 3623: #endif /* BROKEN_EXCEPTION_HANDLING */
! 3624: }
! 3625:
! 3626: /* The source code for Apple's GDB was used as a reference for the exception
! 3627: forwarding code. This code is similar to be GDB code only because there is
! 3628: only one way to do it. */
! 3629: static kern_return_t GC_forward_exception(
! 3630: mach_port_t thread,
! 3631: mach_port_t task,
! 3632: exception_type_t exception,
! 3633: exception_data_t data,
! 3634: mach_msg_type_number_t data_count
! 3635: ) {
! 3636: int i;
! 3637: kern_return_t r;
! 3638: mach_port_t port;
! 3639: exception_behavior_t behavior;
! 3640: thread_state_flavor_t flavor;
! 3641:
! 3642: thread_state_data_t thread_state;
! 3643: mach_msg_type_number_t thread_state_count = THREAD_STATE_MAX;
! 3644:
! 3645: for(i=0;i<GC_old_exc_ports.count;i++)
! 3646: if(GC_old_exc_ports.masks[i] & (1 << exception))
! 3647: break;
! 3648: if(i==GC_old_exc_ports.count) ABORT("No handler for exception!");
! 3649:
! 3650: port = GC_old_exc_ports.ports[i];
! 3651: behavior = GC_old_exc_ports.behaviors[i];
! 3652: flavor = GC_old_exc_ports.flavors[i];
! 3653:
! 3654: if(behavior != EXCEPTION_DEFAULT) {
! 3655: r = thread_get_state(thread,flavor,thread_state,&thread_state_count);
! 3656: if(r != KERN_SUCCESS)
! 3657: ABORT("thread_get_state failed in forward_exception");
! 3658: }
! 3659:
! 3660: switch(behavior) {
! 3661: case EXCEPTION_DEFAULT:
! 3662: r = exception_raise(port,thread,task,exception,data,data_count);
! 3663: break;
! 3664: case EXCEPTION_STATE:
! 3665: r = exception_raise_state(port,thread,task,exception,data,
! 3666: data_count,&flavor,thread_state,thread_state_count,
! 3667: thread_state,&thread_state_count);
! 3668: break;
! 3669: case EXCEPTION_STATE_IDENTITY:
! 3670: r = exception_raise_state_identity(port,thread,task,exception,data,
! 3671: data_count,&flavor,thread_state,thread_state_count,
! 3672: thread_state,&thread_state_count);
! 3673: break;
! 3674: default:
! 3675: r = KERN_FAILURE; /* make gcc happy */
! 3676: ABORT("forward_exception: unknown behavior");
! 3677: break;
! 3678: }
! 3679:
! 3680: if(behavior != EXCEPTION_DEFAULT) {
! 3681: r = thread_set_state(thread,flavor,thread_state,thread_state_count);
! 3682: if(r != KERN_SUCCESS)
! 3683: ABORT("thread_set_state failed in forward_exception");
! 3684: }
! 3685:
! 3686: return r;
! 3687: }
! 3688:
! 3689: #define FWD() GC_forward_exception(thread,task,exception,code,code_count)
! 3690:
! 3691: /* This violates the namespace rules but there isn't anything that can be done
! 3692: about it. The exception handling stuff is hard coded to call this */
! 3693: kern_return_t
! 3694: catch_exception_raise(
! 3695: mach_port_t exception_port,mach_port_t thread,mach_port_t task,
! 3696: exception_type_t exception,exception_data_t code,
! 3697: mach_msg_type_number_t code_count
! 3698: ) {
! 3699: kern_return_t r;
! 3700: char *addr;
! 3701: struct hblk *h;
! 3702: int i;
! 3703: #ifdef POWERPC
! 3704: thread_state_flavor_t flavor = PPC_EXCEPTION_STATE;
! 3705: mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE_COUNT;
! 3706: ppc_exception_state_t exc_state;
! 3707: #else
! 3708: # error FIXME for non-ppc darwin
! 3709: #endif
! 3710:
! 3711:
! 3712: if(exception != EXC_BAD_ACCESS || code[0] != KERN_PROTECTION_FAILURE) {
! 3713: #ifdef DEBUG_EXCEPTION_HANDLING
! 3714: /* We aren't interested, pass it on to the old handler */
! 3715: GC_printf3("Exception: 0x%x Code: 0x%x 0x%x in catch....\n",
! 3716: exception,
! 3717: code_count > 0 ? code[0] : -1,
! 3718: code_count > 1 ? code[1] : -1);
! 3719: #endif
! 3720: return FWD();
! 3721: }
! 3722:
! 3723: r = thread_get_state(thread,flavor,
! 3724: (natural_t*)&exc_state,&exc_state_count);
! 3725: if(r != KERN_SUCCESS) {
! 3726: /* The thread is supposed to be suspended while the exception handler
! 3727: is called. This shouldn't fail. */
! 3728: #ifdef BROKEN_EXCEPTION_HANDLING
! 3729: GC_err_printf0("thread_get_state failed in "
! 3730: "catch_exception_raise\n");
! 3731: return KERN_SUCCESS;
! 3732: #else
! 3733: ABORT("thread_get_state failed in catch_exception_raise");
! 3734: #endif
! 3735: }
! 3736:
! 3737: /* This is the address that caused the fault */
! 3738: addr = (char*) exc_state.dar;
! 3739:
! 3740: if((HDR(addr)) == 0) {
! 3741: /* Ugh... just like the SIGBUS problem above, it seems we get a bogus
! 3742: KERN_PROTECTION_FAILURE every once and a while. We wait till we get
! 3743: a bunch in a row before doing anything about it. If a "real" fault
! 3744: ever occurres it'll just keep faulting over and over and we'll hit
! 3745: the limit pretty quickly. */
! 3746: #ifdef BROKEN_EXCEPTION_HANDLING
! 3747: static char *last_fault;
! 3748: static int last_fault_count;
! 3749:
! 3750: if(addr != last_fault) {
! 3751: last_fault = addr;
! 3752: last_fault_count = 0;
! 3753: }
! 3754: if(++last_fault_count < 32) {
! 3755: if(last_fault_count == 1)
! 3756: GC_err_printf1(
! 3757: "GC: WARNING: Ignoring KERN_PROTECTION_FAILURE at %p\n",
! 3758: addr);
! 3759: return KERN_SUCCESS;
! 3760: }
! 3761:
! 3762: GC_err_printf1("Unexpected KERN_PROTECTION_FAILURE at %p\n",addr);
! 3763: /* Can't pass it along to the signal handler because that is
! 3764: ignoring SIGBUS signals. We also shouldn't call ABORT here as
! 3765: signals don't always work too well from the exception handler. */
! 3766: GC_err_printf0("Aborting\n");
! 3767: exit(EXIT_FAILURE);
! 3768: #else /* BROKEN_EXCEPTION_HANDLING */
! 3769: /* Pass it along to the next exception handler
! 3770: (which should call SIGBUS/SIGSEGV) */
! 3771: return FWD();
! 3772: #endif /* !BROKEN_EXCEPTION_HANDLING */
! 3773: }
! 3774:
! 3775: #ifdef BROKEN_EXCEPTION_HANDLING
! 3776: /* Reset the number of consecutive SIGBUSs */
! 3777: GC_sigbus_count = 0;
! 3778: #endif
! 3779:
! 3780: if(GC_mprotect_state == GC_MP_NORMAL) { /* common case */
! 3781: h = (struct hblk*)((word)addr & ~(GC_page_size-1));
! 3782: UNPROTECT(h, GC_page_size);
! 3783: for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
! 3784: register int index = PHT_HASH(h+i);
! 3785: async_set_pht_entry_from_index(GC_dirty_pages, index);
! 3786: }
! 3787: } else if(GC_mprotect_state == GC_MP_DISCARDING) {
! 3788: /* Lie to the thread for now. No sense UNPROTECT()ing the memory
! 3789: when we're just going to PROTECT() it again later. The thread
! 3790: will just fault again once it resumes */
! 3791: } else {
! 3792: /* Shouldn't happen, i don't think */
! 3793: GC_printf0("KERN_PROTECTION_FAILURE while world is stopped\n");
! 3794: return FWD();
! 3795: }
! 3796: return KERN_SUCCESS;
! 3797: }
! 3798: #undef FWD
! 3799:
! 3800: /* These should never be called, but just in case... */
! 3801: kern_return_t catch_exception_raise_state(mach_port_name_t exception_port,
! 3802: int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
! 3803: int flavor, thread_state_t old_state, int old_stateCnt,
! 3804: thread_state_t new_state, int new_stateCnt)
! 3805: {
! 3806: ABORT("catch_exception_raise_state");
! 3807: return(KERN_INVALID_ARGUMENT);
! 3808: }
! 3809: kern_return_t catch_exception_raise_state_identity(
! 3810: mach_port_name_t exception_port, mach_port_t thread, mach_port_t task,
! 3811: int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
! 3812: int flavor, thread_state_t old_state, int old_stateCnt,
! 3813: thread_state_t new_state, int new_stateCnt)
! 3814: {
! 3815: ABORT("catch_exception_raise_state_identity");
! 3816: return(KERN_INVALID_ARGUMENT);
! 3817: }
! 3818:
! 3819:
! 3820: #endif /* DARWIN && MPROTECT_VDB */
! 3821:
1.6 noro 3822: # ifndef HAVE_INCREMENTAL_PROTECTION_NEEDS
3823: int GC_incremental_protection_needs()
3824: {
3825: return GC_PROTECTS_NONE;
3826: }
3827: # endif /* !HAVE_INCREMENTAL_PROTECTION_NEEDS */
3828:
1.1 noro 3829: /*
3830: * Call stack save code for debugging.
3831: * Should probably be in mach_dep.c, but that requires reorganization.
3832: */
1.4 noro 3833:
3834: /* I suspect the following works for most X86 *nix variants, so */
3835: /* long as the frame pointer is explicitly stored. In the case of gcc, */
3836: /* compiler flags (e.g. -fomit-frame-pointer) determine whether it is. */
3837: #if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN)
1.6 noro 3838: # include <features.h>
3839:
1.4 noro 3840: struct frame {
3841: struct frame *fr_savfp;
3842: long fr_savpc;
3843: long fr_arg[NARGS]; /* All the arguments go here. */
3844: };
3845: #endif
3846:
3847: #if defined(SPARC)
3848: # if defined(LINUX)
1.6 noro 3849: # include <features.h>
3850:
1.4 noro 3851: struct frame {
3852: long fr_local[8];
3853: long fr_arg[6];
3854: struct frame *fr_savfp;
3855: long fr_savpc;
3856: # ifndef __arch64__
3857: char *fr_stret;
3858: # endif
3859: long fr_argd[6];
3860: long fr_argx[0];
3861: };
3862: # else
3863: # if defined(SUNOS4)
3864: # include <machine/frame.h>
3865: # else
3866: # if defined (DRSNX)
3867: # include <sys/sparc/frame.h>
3868: # else
3869: # if defined(OPENBSD) || defined(NETBSD)
3870: # include <frame.h>
3871: # else
3872: # include <sys/frame.h>
3873: # endif
3874: # endif
3875: # endif
3876: # endif
3877: # if NARGS > 6
1.1 noro 3878: --> We only know how to to get the first 6 arguments
1.4 noro 3879: # endif
3880: #endif /* SPARC */
1.1 noro 3881:
1.6 noro 3882: #ifdef NEED_CALLINFO
1.1 noro 3883: /* Fill in the pc and argument information for up to NFRAMES of my */
3884: /* callers. Ignore my frame and my callers frame. */
3885:
1.6 noro 3886: #ifdef LINUX
3887: # include <unistd.h>
3888: #endif
3889:
3890: #endif /* NEED_CALLINFO */
3891:
3892: #ifdef SAVE_CALL_CHAIN
3893:
3894: #if NARGS == 0 && NFRAMES % 2 == 0 /* No padding */ \
1.7 ! noro 3895: && defined(GC_HAVE_BUILTIN_BACKTRACE)
! 3896:
! 3897: #include <execinfo.h>
1.6 noro 3898:
3899: void GC_save_callers (info)
3900: struct callinfo info[NFRAMES];
3901: {
3902: void * tmp_info[NFRAMES + 1];
3903: int npcs, i;
3904: # define IGNORE_FRAMES 1
3905:
3906: /* We retrieve NFRAMES+1 pc values, but discard the first, since it */
3907: /* points to our own frame. */
3908: GC_ASSERT(sizeof(struct callinfo) == sizeof(void *));
3909: npcs = backtrace((void **)tmp_info, NFRAMES + IGNORE_FRAMES);
3910: BCOPY(tmp_info+IGNORE_FRAMES, info, (npcs - IGNORE_FRAMES) * sizeof(void *));
3911: for (i = npcs - IGNORE_FRAMES; i < NFRAMES; ++i) info[i].ci_pc = 0;
3912: }
3913:
3914: #else /* No builtin backtrace; do it ourselves */
3915:
1.4 noro 3916: #if (defined(OPENBSD) || defined(NETBSD)) && defined(SPARC)
1.1 noro 3917: # define FR_SAVFP fr_fp
3918: # define FR_SAVPC fr_pc
3919: #else
3920: # define FR_SAVFP fr_savfp
3921: # define FR_SAVPC fr_savpc
3922: #endif
3923:
1.4 noro 3924: #if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
3925: # define BIAS 2047
3926: #else
3927: # define BIAS 0
3928: #endif
3929:
1.1 noro 3930: void GC_save_callers (info)
3931: struct callinfo info[NFRAMES];
3932: {
3933: struct frame *frame;
3934: struct frame *fp;
3935: int nframes = 0;
1.4 noro 3936: # ifdef I386
3937: /* We assume this is turned on only with gcc as the compiler. */
3938: asm("movl %%ebp,%0" : "=r"(frame));
3939: fp = frame;
3940: # else
3941: frame = (struct frame *) GC_save_regs_in_stack ();
3942: fp = (struct frame *)((long) frame -> FR_SAVFP + BIAS);
3943: #endif
1.1 noro 3944:
1.4 noro 3945: for (; (!(fp HOTTER_THAN frame) && !(GC_stackbottom HOTTER_THAN (ptr_t)fp)
3946: && (nframes < NFRAMES));
3947: fp = (struct frame *)((long) fp -> FR_SAVFP + BIAS), nframes++) {
1.1 noro 3948: register int i;
3949:
3950: info[nframes].ci_pc = fp->FR_SAVPC;
1.6 noro 3951: # if NARGS > 0
3952: for (i = 0; i < NARGS; i++) {
3953: info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
3954: }
3955: # endif /* NARGS > 0 */
1.1 noro 3956: }
3957: if (nframes < NFRAMES) info[nframes].ci_pc = 0;
3958: }
3959:
1.6 noro 3960: #endif /* No builtin backtrace */
3961:
1.1 noro 3962: #endif /* SAVE_CALL_CHAIN */
1.6 noro 3963:
3964: #ifdef NEED_CALLINFO
3965:
3966: /* Print info to stderr. We do NOT hold the allocation lock */
3967: void GC_print_callers (info)
3968: struct callinfo info[NFRAMES];
3969: {
3970: register int i;
3971: static int reentry_count = 0;
1.7 ! noro 3972: GC_bool stop = FALSE;
1.6 noro 3973:
3974: LOCK();
3975: ++reentry_count;
3976: UNLOCK();
3977:
3978: # if NFRAMES == 1
3979: GC_err_printf0("\tCaller at allocation:\n");
3980: # else
3981: GC_err_printf0("\tCall chain at allocation:\n");
3982: # endif
1.7 ! noro 3983: for (i = 0; i < NFRAMES && !stop ; i++) {
1.6 noro 3984: if (info[i].ci_pc == 0) break;
3985: # if NARGS > 0
3986: {
3987: int j;
3988:
3989: GC_err_printf0("\t\targs: ");
3990: for (j = 0; j < NARGS; j++) {
3991: if (j != 0) GC_err_printf0(", ");
3992: GC_err_printf2("%d (0x%X)", ~(info[i].ci_arg[j]),
3993: ~(info[i].ci_arg[j]));
3994: }
3995: GC_err_printf0("\n");
3996: }
3997: # endif
3998: if (reentry_count > 1) {
3999: /* We were called during an allocation during */
4000: /* a previous GC_print_callers call; punt. */
4001: GC_err_printf1("\t\t##PC##= 0x%lx\n", info[i].ci_pc);
4002: continue;
4003: }
4004: {
4005: # ifdef LINUX
4006: FILE *pipe;
4007: # endif
1.7 ! noro 4008: # if defined(GC_HAVE_BUILTIN_BACKTRACE)
1.6 noro 4009: char **sym_name =
4010: backtrace_symbols((void **)(&(info[i].ci_pc)), 1);
4011: char *name = sym_name[0];
4012: # else
4013: char buf[40];
4014: char *name = buf;
4015: sprintf(buf, "##PC##= 0x%lx", info[i].ci_pc);
4016: # endif
1.7 ! noro 4017: # if defined(LINUX) && !defined(SMALL_CONFIG)
! 4018: /* Try for a line number. */
! 4019: {
1.6 noro 4020: # define EXE_SZ 100
4021: static char exe_name[EXE_SZ];
4022: # define CMD_SZ 200
4023: char cmd_buf[CMD_SZ];
4024: # define RESULT_SZ 200
4025: static char result_buf[RESULT_SZ];
4026: size_t result_len;
4027: static GC_bool found_exe_name = FALSE;
4028: static GC_bool will_fail = FALSE;
4029: int ret_code;
4030: /* Try to get it via a hairy and expensive scheme. */
4031: /* First we get the name of the executable: */
4032: if (will_fail) goto out;
4033: if (!found_exe_name) {
4034: ret_code = readlink("/proc/self/exe", exe_name, EXE_SZ);
4035: if (ret_code < 0 || ret_code >= EXE_SZ
4036: || exe_name[0] != '/') {
4037: will_fail = TRUE; /* Dont try again. */
4038: goto out;
4039: }
4040: exe_name[ret_code] = '\0';
4041: found_exe_name = TRUE;
4042: }
4043: /* Then we use popen to start addr2line -e <exe> <addr> */
4044: /* There are faster ways to do this, but hopefully this */
4045: /* isn't time critical. */
1.7 ! noro 4046: sprintf(cmd_buf, "/usr/bin/addr2line -f -e %s 0x%lx", exe_name,
1.6 noro 4047: (unsigned long)info[i].ci_pc);
4048: pipe = popen(cmd_buf, "r");
1.7 ! noro 4049: if (pipe == NULL
! 4050: || (result_len = fread(result_buf, 1, RESULT_SZ - 1, pipe))
! 4051: == 0) {
! 4052: if (pipe != NULL) pclose(pipe);
1.6 noro 4053: will_fail = TRUE;
4054: goto out;
4055: }
4056: if (result_buf[result_len - 1] == '\n') --result_len;
1.7 ! noro 4057: result_buf[result_len] = 0;
1.6 noro 4058: if (result_buf[0] == '?'
4059: || result_buf[result_len-2] == ':'
1.7 ! noro 4060: && result_buf[result_len-1] == '0') {
! 4061: pclose(pipe);
1.6 noro 4062: goto out;
1.7 ! noro 4063: }
! 4064: /* Get rid of embedded newline, if any. Test for "main" */
! 4065: {
! 4066: char * nl = strchr(result_buf, '\n');
! 4067: if (nl != NULL && nl < result_buf + result_len) {
! 4068: *nl = ':';
! 4069: }
! 4070: if (strncmp(result_buf, "main", nl - result_buf) == 0) {
! 4071: stop = TRUE;
! 4072: }
! 4073: }
1.6 noro 4074: if (result_len < RESULT_SZ - 25) {
4075: /* Add in hex address */
4076: sprintf(result_buf + result_len, " [0x%lx]",
4077: (unsigned long)info[i].ci_pc);
4078: }
4079: name = result_buf;
4080: pclose(pipe);
1.7 ! noro 4081: out:;
1.6 noro 4082: }
4083: # endif /* LINUX */
4084: GC_err_printf1("\t\t%s\n", name);
1.7 ! noro 4085: # if defined(GC_HAVE_BUILTIN_BACKTRACE)
! 4086: free(sym_name); /* May call GC_free; that's OK */
! 4087: # endif
1.6 noro 4088: }
4089: }
4090: LOCK();
4091: --reentry_count;
4092: UNLOCK();
4093: }
4094:
4095: #endif /* NEED_CALLINFO */
1.1 noro 4096:
1.4 noro 4097:
4098:
4099: #if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
4100:
4101: /* Dump /proc/self/maps to GC_stderr, to enable looking up names for
4102: addresses in FIND_LEAK output. */
4103:
1.7 ! noro 4104: static word dump_maps(char *maps)
! 4105: {
! 4106: GC_err_write(maps, strlen(maps));
! 4107: return 1;
! 4108: }
! 4109:
1.4 noro 4110: void GC_print_address_map()
4111: {
4112: GC_err_printf0("---------- Begin address map ----------\n");
1.7 ! noro 4113: GC_apply_to_maps(dump_maps);
1.4 noro 4114: GC_err_printf0("---------- End address map ----------\n");
4115: }
4116:
4117: #endif
1.1 noro 4118:
4119:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>