[BACK]Return to reclaim.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2000 / gc

Diff for /OpenXM_contrib2/asir2000/gc/reclaim.c between version 1.1.1.1 and 1.8

version 1.1.1.1, 1999/12/03 07:39:10 version 1.8, 2002/07/24 09:44:21
Line 1 
Line 1 
 /*  /*
  * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers   * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
  * Copyright (c) 1991-1994 by Xerox Corporation.  All rights reserved.   * Copyright (c) 1991-1996 by Xerox Corporation.  All rights reserved.
    * Copyright (c) 1996-1999 by Silicon Graphics.  All rights reserved.
    * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
  *   *
  * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED   * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
  * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.   * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
Line 11 
Line 13 
  * provided the above notices are retained, and a notice that the code was   * provided the above notices are retained, and a notice that the code was
  * modified is included with the above copyright notice.   * modified is included with the above copyright notice.
  */   */
 /* Boehm, February 15, 1996 2:41 pm PST */  
   
 #include <stdio.h>  #include <stdio.h>
 #include "gc_priv.h"  #include "private/gc_priv.h"
   
 void GC_timerstart(), GC_timerstop();  
   
 signed_word GC_mem_found = 0;  signed_word GC_mem_found = 0;
                         /* Number of words of memory reclaimed     */                          /* Number of words of memory reclaimed     */
   
 # ifdef FIND_LEAK  #if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC)
     word GC_fl_builder_count = 0;
           /* Number of threads currently building free lists without      */
           /* holding GC lock.  It is not safe to collect if this is       */
           /* nonzero.                                                     */
   #endif /* PARALLEL_MARK */
   
 static void report_leak(p, sz)  static void report_leak(p, sz)
 ptr_t p;  ptr_t p;
 word sz;  word sz;
Line 31  word sz;
Line 36  word sz;
     } else {      } else {
         GC_err_printf0("Leaked composite object at ");          GC_err_printf0("Leaked composite object at ");
     }      }
     if (GC_debugging_started && GC_has_debug_info(p)) {      GC_print_heap_obj(p);
         GC_print_obj(p);      GC_err_printf0("\n");
     } else {  
         GC_err_printf2("0x%lx (appr. size = %ld)\n",  
                       (unsigned long)p,  
                       (unsigned long)WORDS_TO_BYTES(sz));  
     }  
 }  }
   
 #   define FOUND_FREE(hblk, word_no) \  #   define FOUND_FREE(hblk, word_no) \
       if (abort_if_found) { \        { \
          report_leak((ptr_t)hblk + WORDS_TO_BYTES(word_no), \           report_leak((ptr_t)hblk + WORDS_TO_BYTES(word_no), \
                      HDR(hblk) -> hb_sz); \                       HDR(hblk) -> hb_sz); \
       }        }
 # else  
 #   define FOUND_FREE(hblk, word_no)  
 # endif  
   
 /*  /*
  * reclaim phase   * reclaim phase
Line 64  word sz;
Line 61  word sz;
 GC_bool GC_block_empty(hhdr)  GC_bool GC_block_empty(hhdr)
 register hdr * hhdr;  register hdr * hhdr;
 {  {
       /* We treat hb_marks as an array of words here, even if it is       */
       /* actually an array of bytes.  Since we only check for zero, there */
       /* are no endian-ness issues.                                       */
     register word *p = (word *)(&(hhdr -> hb_marks[0]));      register word *p = (word *)(&(hhdr -> hb_marks[0]));
     register word * plim =      register word * plim =
                         (word *)(&(hhdr -> hb_marks[MARK_BITS_SZ]));              (word *)(&(hhdr -> hb_marks[MARK_BITS_SZ]));
     while (p < plim) {      while (p < plim) {
         if (*p++) return(FALSE);          if (*p++) return(FALSE);
     }      }
     return(TRUE);      return(TRUE);
 }  }
   
 # ifdef GATHERSTATS  /* The following functions sometimes return a DONT_KNOW value. */
   #define DONT_KNOW  2
   
   #ifdef SMALL_CONFIG
   # define GC_block_nearly_full1(hhdr, pat1) DONT_KNOW
   # define GC_block_nearly_full3(hhdr, pat1, pat2) DONT_KNOW
   # define GC_block_nearly_full(hhdr) DONT_KNOW
   #endif
   
   #if !defined(SMALL_CONFIG) && defined(USE_MARK_BYTES)
   
   # define GC_block_nearly_full1(hhdr, pat1) GC_block_nearly_full(hhdr)
   # define GC_block_nearly_full3(hhdr, pat1, pat2) GC_block_nearly_full(hhdr)
   
   
   GC_bool GC_block_nearly_full(hhdr)
   register hdr * hhdr;
   {
       /* We again treat hb_marks as an array of words, even though it     */
       /* isn't.  We first sum up all the words, resulting in a word       */
       /* containing 4 or 8 separate partial sums.                         */
       /* We then sum the bytes in the word of partial sums.               */
       /* This is still endian independant.  This fails if the partial     */
       /* sums can overflow.                                               */
   #   if (BYTES_TO_WORDS(MARK_BITS_SZ)) >= 256
           --> potential overflow; fix the code
   #   endif
       register word *p = (word *)(&(hhdr -> hb_marks[0]));
       register word * plim =
               (word *)(&(hhdr -> hb_marks[MARK_BITS_SZ]));
       word sum_vector = 0;
       unsigned sum;
       while (p < plim) {
           sum_vector += *p;
           ++p;
       }
       sum = 0;
       while (sum_vector > 0) {
           sum += sum_vector & 0xff;
           sum_vector >>= 8;
       }
       return (sum > BYTES_TO_WORDS(7*HBLKSIZE/8)/(hhdr -> hb_sz));
   }
   #endif  /* USE_MARK_BYTES */
   
   #if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
   
   /*
    * Test whether nearly all of the mark words consist of the same
    * repeating pattern.
    */
   #define FULL_THRESHOLD (MARK_BITS_SZ/16)
   
   GC_bool GC_block_nearly_full1(hhdr, pat1)
   hdr *hhdr;
   word pat1;
   {
       unsigned i;
       unsigned misses = 0;
       GC_ASSERT((MARK_BITS_SZ & 1) == 0);
       for (i = 0; i < MARK_BITS_SZ; ++i) {
           if ((hhdr -> hb_marks[i] | ~pat1) != ONES) {
               if (++misses > FULL_THRESHOLD) return FALSE;
           }
       }
       return TRUE;
   }
   
   /*
    * Test whether the same repeating 3 word pattern occurs in nearly
    * all the mark bit slots.
    * This is used as a heuristic, so we're a bit sloppy and ignore
    * the last one or two words.
    */
   GC_bool GC_block_nearly_full3(hhdr, pat1, pat2, pat3)
   hdr *hhdr;
   word pat1, pat2, pat3;
   {
       unsigned i;
       unsigned misses = 0;
   
       if (MARK_BITS_SZ < 4) {
         return DONT_KNOW;
       }
       for (i = 0; i < MARK_BITS_SZ - 2; i += 3) {
           if ((hhdr -> hb_marks[i] | ~pat1) != ONES) {
               if (++misses > FULL_THRESHOLD) return FALSE;
           }
           if ((hhdr -> hb_marks[i+1] | ~pat2) != ONES) {
               if (++misses > FULL_THRESHOLD) return FALSE;
           }
           if ((hhdr -> hb_marks[i+2] | ~pat3) != ONES) {
               if (++misses > FULL_THRESHOLD) return FALSE;
           }
       }
       return TRUE;
   }
   
   /* Check whether a small object block is nearly full by looking at only */
   /* the mark bits.                                                       */
   /* We manually precomputed the mark bit patterns that need to be        */
   /* checked for, and we give up on the ones that are unlikely to occur,  */
   /* or have period > 3.                                                  */
   /* This would be a lot easier with a mark bit per object instead of per */
   /* word, but that would rewuire computing object numbers in the mark    */
   /* loop, which would require different data structures ...              */
   GC_bool GC_block_nearly_full(hhdr)
   hdr *hhdr;
   {
       int sz = hhdr -> hb_sz;
   
   #   if CPP_WORDSZ != 32 && CPP_WORDSZ != 64
         return DONT_KNOW; /* Shouldn't be used in any standard config.    */
   #   endif
   #   if CPP_WORDSZ == 32
         switch(sz) {
           case 1:
             return GC_block_nearly_full1(hhdr, 0xffffffffl);
           case 2:
             return GC_block_nearly_full1(hhdr, 0x55555555l);
           case 4:
             return GC_block_nearly_full1(hhdr, 0x11111111l);
           case 6:
             return GC_block_nearly_full3(hhdr, 0x41041041l,
                                                 0x10410410l,
                                                  0x04104104l);
           case 8:
             return GC_block_nearly_full1(hhdr, 0x01010101l);
           case 12:
             return GC_block_nearly_full3(hhdr, 0x01001001l,
                                                 0x10010010l,
                                                  0x00100100l);
           case 16:
             return GC_block_nearly_full1(hhdr, 0x00010001l);
           case 32:
             return GC_block_nearly_full1(hhdr, 0x00000001l);
           default:
             return DONT_KNOW;
         }
   #   endif
   #   if CPP_WORDSZ == 64
         switch(sz) {
           case 1:
             return GC_block_nearly_full1(hhdr, 0xffffffffffffffffl);
           case 2:
             return GC_block_nearly_full1(hhdr, 0x5555555555555555l);
           case 4:
             return GC_block_nearly_full1(hhdr, 0x1111111111111111l);
           case 6:
             return GC_block_nearly_full3(hhdr, 0x1041041041041041l,
                                                  0x4104104104104104l,
                                                    0x0410410410410410l);
           case 8:
             return GC_block_nearly_full1(hhdr, 0x0101010101010101l);
           case 12:
             return GC_block_nearly_full3(hhdr, 0x1001001001001001l,
                                                  0x0100100100100100l,
                                                    0x0010010010010010l);
           case 16:
             return GC_block_nearly_full1(hhdr, 0x0001000100010001l);
           case 32:
             return GC_block_nearly_full1(hhdr, 0x0000000100000001l);
           default:
             return DONT_KNOW;
         }
   #   endif
   }
   #endif /* !SMALL_CONFIG  && !USE_MARK_BYTES */
   
   /* We keep track of reclaimed memory if we are either asked to, or      */
   /* we are using the parallel marker.  In the latter case, we assume     */
   /* that most allocation goes through GC_malloc_many for scalability.    */
   /* GC_malloc_many needs the count anyway.                               */
   # if defined(GATHERSTATS) || defined(PARALLEL_MARK)
 #   define INCR_WORDS(sz) n_words_found += (sz)  #   define INCR_WORDS(sz) n_words_found += (sz)
   #   define COUNT_PARAM , count
   #   define COUNT_ARG , count
   #   define COUNT_DECL signed_word * count;
   #   define NWORDS_DECL signed_word n_words_found = 0;
   #   define COUNT_UPDATE *count += n_words_found;
   #   define MEM_FOUND_ADDR , &GC_mem_found
 # else  # else
 #   define INCR_WORDS(sz)  #   define INCR_WORDS(sz)
   #   define COUNT_PARAM
   #   define COUNT_ARG
   #   define COUNT_DECL
   #   define NWORDS_DECL
   #   define COUNT_UPDATE
   #   define MEM_FOUND_ADDR
 # endif  # endif
 /*  /*
  * Restore unmarked small objects in h of size sz to the object   * Restore unmarked small objects in h of size sz to the object
Line 84  register hdr * hhdr;
Line 269  register hdr * hhdr;
  * Clears unmarked objects.   * Clears unmarked objects.
  */   */
 /*ARGSUSED*/  /*ARGSUSED*/
 ptr_t GC_reclaim_clear(hbp, hhdr, sz, list, abort_if_found)  ptr_t GC_reclaim_clear(hbp, hhdr, sz, list COUNT_PARAM)
 register struct hblk *hbp;      /* ptr to current heap block            */  register struct hblk *hbp;      /* ptr to current heap block            */
 register hdr * hhdr;  register hdr * hhdr;
 GC_bool abort_if_found;         /* Abort if a reclaimable object is found */  
 register ptr_t list;  register ptr_t list;
 register word sz;  register word sz;
   COUNT_DECL
 {  {
     register int word_no;      register int word_no;
     register word *p, *q, *plim;      register word *p, *q, *plim;
 #   ifdef GATHERSTATS      NWORDS_DECL
         register int n_words_found = 0;  
 #   endif  
   
       GC_ASSERT(hhdr == GC_find_header((ptr_t)hbp));
     p = (word *)(hbp->hb_body);      p = (word *)(hbp->hb_body);
     word_no = HDR_WORDS;      word_no = 0;
     plim = (word *)((((word)hbp) + HBLKSIZE)      plim = (word *)((((word)hbp) + HBLKSIZE)
                    - WORDS_TO_BYTES(sz));                     - WORDS_TO_BYTES(sz));
   
Line 107  register word sz;
Line 291  register word sz;
             if( mark_bit_from_hdr(hhdr, word_no) ) {              if( mark_bit_from_hdr(hhdr, word_no) ) {
                 p += sz;                  p += sz;
             } else {              } else {
                 FOUND_FREE(hbp, word_no);  
                 INCR_WORDS(sz);                  INCR_WORDS(sz);
                 /* object is available - put on list */                  /* object is available - put on list */
                     obj_link(p) = list;                      obj_link(p) = list;
                     list = ((ptr_t)p);                      list = ((ptr_t)p);
                 /* Clear object, advance p to next object in the process */                  /* Clear object, advance p to next object in the process */
                     q = p + sz;                      q = p + sz;
                     p++; /* Skip link field */  #                   ifdef USE_MARK_BYTES
                     while (p < q) {                        GC_ASSERT(!(sz & 1)
                                   && !((word)p & (2 * sizeof(word) - 1)));
                         p[1] = 0;
                         p += 2;
                         while (p < q) {
                           CLEAR_DOUBLE(p);
                           p += 2;
                         }
   #                   else
                         p++; /* Skip link field */
                         while (p < q) {
                         *p++ = 0;                          *p++ = 0;
                     }                        }
   #                   endif
             }              }
             word_no += sz;              word_no += sz;
         }          }
 #   ifdef GATHERSTATS      COUNT_UPDATE
         GC_mem_found += n_words_found;  
 #   endif  
     return(list);      return(list);
 }  }
   
 #ifndef SMALL_CONFIG  #if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
   
 /*  /*
  * A special case for 2 word composite objects (e.g. cons cells):   * A special case for 2 word composite objects (e.g. cons cells):
  */   */
 /*ARGSUSED*/  /*ARGSUSED*/
 ptr_t GC_reclaim_clear2(hbp, hhdr, list, abort_if_found)  ptr_t GC_reclaim_clear2(hbp, hhdr, list COUNT_PARAM)
 register struct hblk *hbp;      /* ptr to current heap block            */  register struct hblk *hbp;      /* ptr to current heap block            */
 hdr * hhdr;  hdr * hhdr;
 GC_bool abort_if_found;         /* Abort if a reclaimable object is found */  
 register ptr_t list;  register ptr_t list;
   COUNT_DECL
 {  {
     register word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);      register word * mark_word_addr = &(hhdr->hb_marks[0]);
     register word *p, *plim;      register word *p, *plim;
 #   ifdef GATHERSTATS  
         register int n_words_found = 0;  
 #   endif  
     register word mark_word;      register word mark_word;
     register int i;      register int i;
       NWORDS_DECL
 #   define DO_OBJ(start_displ) \  #   define DO_OBJ(start_displ) \
         if (!(mark_word & ((word)1 << start_displ))) { \          if (!(mark_word & ((word)1 << start_displ))) { \
             FOUND_FREE(hbp, p - (word *)hbp + start_displ); \  
             p[start_displ] = (word)list; \              p[start_displ] = (word)list; \
             list = (ptr_t)(p+start_displ); \              list = (ptr_t)(p+start_displ); \
             p[start_displ+1] = 0; \              p[start_displ+1] = 0; \
Line 170  register ptr_t list;
Line 359  register ptr_t list;
                 mark_word >>= 8;                  mark_word >>= 8;
             }              }
         }          }
 #   ifdef GATHERSTATS      COUNT_UPDATE
         GC_mem_found += n_words_found;  
 #   endif  
     return(list);      return(list);
 #   undef DO_OBJ  #   undef DO_OBJ
 }  }
Line 181  register ptr_t list;
Line 368  register ptr_t list;
  * Another special case for 4 word composite objects:   * Another special case for 4 word composite objects:
  */   */
 /*ARGSUSED*/  /*ARGSUSED*/
 ptr_t GC_reclaim_clear4(hbp, hhdr, list, abort_if_found)  ptr_t GC_reclaim_clear4(hbp, hhdr, list COUNT_PARAM)
 register struct hblk *hbp;      /* ptr to current heap block            */  register struct hblk *hbp;      /* ptr to current heap block            */
 hdr * hhdr;  hdr * hhdr;
 GC_bool abort_if_found;         /* Abort if a reclaimable object is found */  
 register ptr_t list;  register ptr_t list;
   COUNT_DECL
 {  {
     register word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);      register word * mark_word_addr = &(hhdr->hb_marks[0]);
     register word *p, *plim;      register word *p, *plim;
 #   ifdef GATHERSTATS  
         register int n_words_found = 0;  
 #   endif  
     register word mark_word;      register word mark_word;
       NWORDS_DECL
 #   define DO_OBJ(start_displ) \  #   define DO_OBJ(start_displ) \
         if (!(mark_word & ((word)1 << start_displ))) { \          if (!(mark_word & ((word)1 << start_displ))) { \
             FOUND_FREE(hbp, p - (word *)hbp + start_displ); \  
             p[start_displ] = (word)list; \              p[start_displ] = (word)list; \
             list = (ptr_t)(p+start_displ); \              list = (ptr_t)(p+start_displ); \
             p[start_displ+1] = 0; \              p[start_displ+1] = 0; \
             p[start_displ+2] = 0; \              CLEAR_DOUBLE(p + start_displ + 2); \
             p[start_displ+3] = 0; \  
             INCR_WORDS(4); \              INCR_WORDS(4); \
         }          }
   
Line 230  register ptr_t list;
Line 413  register ptr_t list;
 #           endif  #           endif
             p += WORDSZ;              p += WORDSZ;
         }          }
 #   ifdef GATHERSTATS      COUNT_UPDATE
         GC_mem_found += n_words_found;  
 #   endif  
     return(list);      return(list);
 #   undef DO_OBJ  #   undef DO_OBJ
 }  }
   
 #endif /* !SMALL_CONFIG */  #endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
   
 /* The same thing, but don't clear objects: */  /* The same thing, but don't clear objects: */
 /*ARGSUSED*/  /*ARGSUSED*/
 ptr_t GC_reclaim_uninit(hbp, hhdr, sz, list, abort_if_found)  ptr_t GC_reclaim_uninit(hbp, hhdr, sz, list COUNT_PARAM)
 register struct hblk *hbp;      /* ptr to current heap block            */  register struct hblk *hbp;      /* ptr to current heap block            */
 register hdr * hhdr;  register hdr * hhdr;
 GC_bool abort_if_found;         /* Abort if a reclaimable object is found */  
 register ptr_t list;  register ptr_t list;
 register word sz;  register word sz;
   COUNT_DECL
 {  {
     register int word_no;      register int word_no = 0;
     register word *p, *plim;      register word *p, *plim;
 #   ifdef GATHERSTATS      NWORDS_DECL
         register int n_words_found = 0;  
 #   endif  
   
     p = (word *)(hbp->hb_body);      p = (word *)(hbp->hb_body);
     word_no = HDR_WORDS;  
     plim = (word *)((((word)hbp) + HBLKSIZE)      plim = (word *)((((word)hbp) + HBLKSIZE)
                    - WORDS_TO_BYTES(sz));                     - WORDS_TO_BYTES(sz));
   
     /* go through all words in block */      /* go through all words in block */
         while( p <= plim )  {          while( p <= plim )  {
             if( !mark_bit_from_hdr(hhdr, word_no) ) {              if( !mark_bit_from_hdr(hhdr, word_no) ) {
                 FOUND_FREE(hbp, word_no);  
                 INCR_WORDS(sz);                  INCR_WORDS(sz);
                 /* object is available - put on list */                  /* object is available - put on list */
                     obj_link(p) = list;                      obj_link(p) = list;
Line 271  register word sz;
Line 448  register word sz;
             p += sz;              p += sz;
             word_no += sz;              word_no += sz;
         }          }
       COUNT_UPDATE
       return(list);
   }
   
   /* Don't really reclaim objects, just check for unmarked ones: */
   /*ARGSUSED*/
   void GC_reclaim_check(hbp, hhdr, sz)
   register struct hblk *hbp;      /* ptr to current heap block            */
   register hdr * hhdr;
   register word sz;
   {
       register int word_no = 0;
       register word *p, *plim;
 #   ifdef GATHERSTATS  #   ifdef GATHERSTATS
         GC_mem_found += n_words_found;          register int n_words_found = 0;
 #   endif  #   endif
     return(list);  
       p = (word *)(hbp->hb_body);
       plim = (word *)((((word)hbp) + HBLKSIZE)
                      - WORDS_TO_BYTES(sz));
   
       /* go through all words in block */
           while( p <= plim )  {
               if( !mark_bit_from_hdr(hhdr, word_no) ) {
                   FOUND_FREE(hbp, word_no);
               }
               p += sz;
               word_no += sz;
           }
 }  }
   
 #ifndef SMALL_CONFIG  #if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
 /*  /*
  * Another special case for 2 word atomic objects:   * Another special case for 2 word atomic objects:
  */   */
 /*ARGSUSED*/  /*ARGSUSED*/
 ptr_t GC_reclaim_uninit2(hbp, hhdr, list, abort_if_found)  ptr_t GC_reclaim_uninit2(hbp, hhdr, list COUNT_PARAM)
 register struct hblk *hbp;      /* ptr to current heap block            */  register struct hblk *hbp;      /* ptr to current heap block            */
 hdr * hhdr;  hdr * hhdr;
 GC_bool abort_if_found;         /* Abort if a reclaimable object is found */  
 register ptr_t list;  register ptr_t list;
   COUNT_DECL
 {  {
     register word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);      register word * mark_word_addr = &(hhdr->hb_marks[0]);
     register word *p, *plim;      register word *p, *plim;
 #   ifdef GATHERSTATS  
         register int n_words_found = 0;  
 #   endif  
     register word mark_word;      register word mark_word;
     register int i;      register int i;
       NWORDS_DECL
 #   define DO_OBJ(start_displ) \  #   define DO_OBJ(start_displ) \
         if (!(mark_word & ((word)1 << start_displ))) { \          if (!(mark_word & ((word)1 << start_displ))) { \
             FOUND_FREE(hbp, p - (word *)hbp + start_displ); \  
             p[start_displ] = (word)list; \              p[start_displ] = (word)list; \
             list = (ptr_t)(p+start_displ); \              list = (ptr_t)(p+start_displ); \
             INCR_WORDS(2); \              INCR_WORDS(2); \
Line 318  register ptr_t list;
Line 517  register ptr_t list;
                 mark_word >>= 8;                  mark_word >>= 8;
             }              }
         }          }
 #   ifdef GATHERSTATS      COUNT_UPDATE
         GC_mem_found += n_words_found;  
 #   endif  
     return(list);      return(list);
 #   undef DO_OBJ  #   undef DO_OBJ
 }  }
Line 329  register ptr_t list;
Line 526  register ptr_t list;
  * Another special case for 4 word atomic objects:   * Another special case for 4 word atomic objects:
  */   */
 /*ARGSUSED*/  /*ARGSUSED*/
 ptr_t GC_reclaim_uninit4(hbp, hhdr, list, abort_if_found)  ptr_t GC_reclaim_uninit4(hbp, hhdr, list COUNT_PARAM)
 register struct hblk *hbp;      /* ptr to current heap block            */  register struct hblk *hbp;      /* ptr to current heap block            */
 hdr * hhdr;  hdr * hhdr;
 GC_bool abort_if_found;         /* Abort if a reclaimable object is found */  
 register ptr_t list;  register ptr_t list;
   COUNT_DECL
 {  {
     register word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);      register word * mark_word_addr = &(hhdr->hb_marks[0]);
     register word *p, *plim;      register word *p, *plim;
 #   ifdef GATHERSTATS  
         register int n_words_found = 0;  
 #   endif  
     register word mark_word;      register word mark_word;
       NWORDS_DECL
 #   define DO_OBJ(start_displ) \  #   define DO_OBJ(start_displ) \
         if (!(mark_word & ((word)1 << start_displ))) { \          if (!(mark_word & ((word)1 << start_displ))) { \
             FOUND_FREE(hbp, p - (word *)hbp + start_displ); \  
             p[start_displ] = (word)list; \              p[start_displ] = (word)list; \
             list = (ptr_t)(p+start_displ); \              list = (ptr_t)(p+start_displ); \
             INCR_WORDS(4); \              INCR_WORDS(4); \
Line 375  register ptr_t list;
Line 569  register ptr_t list;
 #           endif  #           endif
             p += WORDSZ;              p += WORDSZ;
         }          }
 #   ifdef GATHERSTATS      COUNT_UPDATE
         GC_mem_found += n_words_found;  
 #   endif  
     return(list);      return(list);
 #   undef DO_OBJ  #   undef DO_OBJ
 }  }
   
 /* Finally the one word case, which never requires any clearing: */  /* Finally the one word case, which never requires any clearing: */
 /*ARGSUSED*/  /*ARGSUSED*/
 ptr_t GC_reclaim1(hbp, hhdr, list, abort_if_found)  ptr_t GC_reclaim1(hbp, hhdr, list COUNT_PARAM)
 register struct hblk *hbp;      /* ptr to current heap block            */  register struct hblk *hbp;      /* ptr to current heap block            */
 hdr * hhdr;  hdr * hhdr;
 GC_bool abort_if_found;         /* Abort if a reclaimable object is found */  
 register ptr_t list;  register ptr_t list;
   COUNT_DECL
 {  {
     register word * mark_word_addr = &(hhdr->hb_marks[divWORDSZ(HDR_WORDS)]);      register word * mark_word_addr = &(hhdr->hb_marks[0]);
     register word *p, *plim;      register word *p, *plim;
 #   ifdef GATHERSTATS  
         register int n_words_found = 0;  
 #   endif  
     register word mark_word;      register word mark_word;
     register int i;      register int i;
       NWORDS_DECL
 #   define DO_OBJ(start_displ) \  #   define DO_OBJ(start_displ) \
         if (!(mark_word & ((word)1 << start_displ))) { \          if (!(mark_word & ((word)1 << start_displ))) { \
             FOUND_FREE(hbp, p - (word *)hbp + start_displ); \  
             p[start_displ] = (word)list; \              p[start_displ] = (word)list; \
             list = (ptr_t)(p+start_displ); \              list = (ptr_t)(p+start_displ); \
             INCR_WORDS(1); \              INCR_WORDS(1); \
Line 420  register ptr_t list;
Line 609  register ptr_t list;
                 mark_word >>= 4;                  mark_word >>= 4;
             }              }
         }          }
 #   ifdef GATHERSTATS      COUNT_UPDATE
         GC_mem_found += n_words_found;  
 #   endif  
     return(list);      return(list);
 #   undef DO_OBJ  #   undef DO_OBJ
 }  }
   
 #endif /* !SMALL_CONFIG */  #endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
   
 /*  /*
  * Restore unmarked small objects in the block pointed to by hbp   * Generic procedure to rebuild a free list in hbp.
  * to the appropriate object free list.   * Also called directly from GC_malloc_many.
  * If entirely empty blocks are to be completely deallocated, then  
  * caller should perform that check.  
  */   */
 void GC_reclaim_small_nonempty_block(hbp, abort_if_found)  ptr_t GC_reclaim_generic(hbp, hhdr, sz, init, list COUNT_PARAM)
 register struct hblk *hbp;      /* ptr to current heap block            */  struct hblk *hbp;       /* ptr to current heap block            */
 int abort_if_found;             /* Abort if a reclaimable object is found */  hdr * hhdr;
   GC_bool init;
   ptr_t list;
   word sz;
   COUNT_DECL
 {  {
     hdr * hhdr;      ptr_t result = list;
     register word sz;           /* size of objects in current block     */  
     register struct obj_kind * ok;  
     register ptr_t * flh;  
     register int kind;  
   
     hhdr = HDR(hbp);  
     sz = hhdr -> hb_sz;  
     hhdr -> hb_last_reclaimed = (unsigned short) GC_gc_no;  
     kind = hhdr -> hb_obj_kind;  
     ok = &GC_obj_kinds[kind];  
     flh = &(ok -> ok_freelist[sz]);  
     GC_write_hint(hbp);  
   
     if (ok -> ok_init) {      GC_ASSERT(GC_find_header((ptr_t)hbp) == hhdr);
       GC_remove_protection(hbp, 1, (hhdr)->hb_descr == 0 /* Pointer-free? */);
       if (init) {
       switch(sz) {        switch(sz) {
 #      ifndef SMALL_CONFIG  #      if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
         case 1:          case 1:
             *flh = GC_reclaim1(hbp, hhdr, *flh, abort_if_found);              /* We now issue the hint even if GC_nearly_full returned    */
               /* DONT_KNOW.                                               */
               result = GC_reclaim1(hbp, hhdr, list COUNT_ARG);
             break;              break;
         case 2:          case 2:
             *flh = GC_reclaim_clear2(hbp, hhdr, *flh, abort_if_found);              result = GC_reclaim_clear2(hbp, hhdr, list COUNT_ARG);
             break;              break;
         case 4:          case 4:
             *flh = GC_reclaim_clear4(hbp, hhdr, *flh, abort_if_found);              result = GC_reclaim_clear4(hbp, hhdr, list COUNT_ARG);
             break;              break;
 #      endif  #      endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
         default:          default:
             *flh = GC_reclaim_clear(hbp, hhdr, sz, *flh, abort_if_found);              result = GC_reclaim_clear(hbp, hhdr, sz, list COUNT_ARG);
             break;              break;
       }        }
     } else {      } else {
         GC_ASSERT((hhdr)->hb_descr == 0 /* Pointer-free block */);
       switch(sz) {        switch(sz) {
 #      ifndef SMALL_CONFIG  #      if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES)
         case 1:          case 1:
             *flh = GC_reclaim1(hbp, hhdr, *flh, abort_if_found);              result = GC_reclaim1(hbp, hhdr, list COUNT_ARG);
             break;              break;
         case 2:          case 2:
             *flh = GC_reclaim_uninit2(hbp, hhdr, *flh, abort_if_found);              result = GC_reclaim_uninit2(hbp, hhdr, list COUNT_ARG);
             break;              break;
         case 4:          case 4:
             *flh = GC_reclaim_uninit4(hbp, hhdr, *flh, abort_if_found);              result = GC_reclaim_uninit4(hbp, hhdr, list COUNT_ARG);
             break;              break;
 #      endif  #      endif /* !SMALL_CONFIG && !USE_MARK_BYTES */
         default:          default:
             *flh = GC_reclaim_uninit(hbp, hhdr, sz, *flh, abort_if_found);              result = GC_reclaim_uninit(hbp, hhdr, sz, list COUNT_ARG);
             break;              break;
       }        }
     }      }
     if (IS_UNCOLLECTABLE(kind)) GC_set_hdr_marks(hhdr);      if (IS_UNCOLLECTABLE(hhdr -> hb_obj_kind)) GC_set_hdr_marks(hhdr);
       return result;
 }  }
   
 /*  /*
    * Restore unmarked small objects in the block pointed to by hbp
    * to the appropriate object free list.
    * If entirely empty blocks are to be completely deallocated, then
    * caller should perform that check.
    */
   void GC_reclaim_small_nonempty_block(hbp, report_if_found COUNT_PARAM)
   register struct hblk *hbp;      /* ptr to current heap block            */
   int report_if_found;            /* Abort if a reclaimable object is found */
   COUNT_DECL
   {
       hdr *hhdr = HDR(hbp);
       word sz = hhdr -> hb_sz;
       int kind = hhdr -> hb_obj_kind;
       struct obj_kind * ok = &GC_obj_kinds[kind];
       ptr_t * flh = &(ok -> ok_freelist[sz]);
   
       hhdr -> hb_last_reclaimed = (unsigned short) GC_gc_no;
   
       if (report_if_found) {
           GC_reclaim_check(hbp, hhdr, sz);
       } else {
           *flh = GC_reclaim_generic(hbp, hhdr, sz,
                                     (ok -> ok_init || GC_debugging_started),
                                     *flh MEM_FOUND_ADDR);
       }
   }
   
   /*
  * Restore an unmarked large object or an entirely empty blocks of small objects   * Restore an unmarked large object or an entirely empty blocks of small objects
  * to the heap block free list.   * to the heap block free list.
  * Otherwise enqueue the block for later processing   * Otherwise enqueue the block for later processing
  * by GC_reclaim_small_nonempty_block.   * by GC_reclaim_small_nonempty_block.
  * If abort_if_found is TRUE, then process any block immediately.   * If report_if_found is TRUE, then process any block immediately, and
    * simply report free objects; do not actually reclaim them.
  */   */
 void GC_reclaim_block(hbp, abort_if_found)  # if defined(__STDC__) || defined(__cplusplus)
 register struct hblk *hbp;      /* ptr to current heap block            */      void GC_reclaim_block(register struct hblk *hbp, word report_if_found)
 word abort_if_found;            /* Abort if a reclaimable object is found */  # else
       void GC_reclaim_block(hbp, report_if_found)
       register struct hblk *hbp;  /* ptr to current heap block            */
       word report_if_found;       /* Abort if a reclaimable object is found */
   # endif
 {  {
     register hdr * hhdr;      register hdr * hhdr;
     register word sz;           /* size of objects in current block     */      register word sz;           /* size of objects in current block     */
Line 512  word abort_if_found;  /* Abort if a reclaimable object
Line 728  word abort_if_found;  /* Abort if a reclaimable object
     ok = &GC_obj_kinds[hhdr -> hb_obj_kind];      ok = &GC_obj_kinds[hhdr -> hb_obj_kind];
   
     if( sz > MAXOBJSZ ) {  /* 1 big object */      if( sz > MAXOBJSZ ) {  /* 1 big object */
         if( !mark_bit_from_hdr(hhdr, HDR_WORDS) ) {          if( !mark_bit_from_hdr(hhdr, 0) ) {
             FOUND_FREE(hbp, HDR_WORDS);              if (report_if_found) {
 #           ifdef GATHERSTATS                FOUND_FREE(hbp, 0);
               } else {
                 word blocks = OBJ_SZ_TO_BLOCKS(sz);
                 if (blocks > 1) {
                   GC_large_allocd_bytes -= blocks * HBLKSIZE;
                 }
   #             ifdef GATHERSTATS
                 GC_mem_found += sz;                  GC_mem_found += sz;
 #           endif  #             endif
             GC_freehblk(hbp);                GC_freehblk(hbp);
               }
         }          }
     } else {      } else {
         GC_bool empty = GC_block_empty(hhdr);          GC_bool empty = GC_block_empty(hhdr);
         if (abort_if_found) {          if (report_if_found) {
           GC_reclaim_small_nonempty_block(hbp, (int)abort_if_found);            GC_reclaim_small_nonempty_block(hbp, (int)report_if_found
                                             MEM_FOUND_ADDR);
         } else if (empty) {          } else if (empty) {
 #         ifdef GATHERSTATS  #         ifdef GATHERSTATS
             GC_mem_found += BYTES_TO_WORDS(HBLKSIZE);              GC_mem_found += BYTES_TO_WORDS(HBLKSIZE);
 #         endif  #         endif
           GC_freehblk(hbp);            GC_freehblk(hbp);
         } else {          } else if (TRUE != GC_block_nearly_full(hhdr)){
           /* group of smaller objects, enqueue the real work */            /* group of smaller objects, enqueue the real work */
           rlh = &(ok -> ok_reclaim_list[sz]);            rlh = &(ok -> ok_reclaim_list[sz]);
           hhdr -> hb_next = *rlh;            hhdr -> hb_next = *rlh;
           *rlh = hbp;            *rlh = hbp;
         }          } /* else not worth salvaging. */
           /* We used to do the nearly_full check later, but we    */
           /* already have the right cache context here.  Also     */
           /* doing it here avoids some silly lock contention in   */
           /* GC_malloc_many.                                      */
     }      }
 }  }
   
Line 541  word abort_if_found;  /* Abort if a reclaimable object
Line 769  word abort_if_found;  /* Abort if a reclaimable object
 /* Routines to gather and print heap block info         */  /* Routines to gather and print heap block info         */
 /* intended for debugging.  Otherwise should be called  */  /* intended for debugging.  Otherwise should be called  */
 /* with lock.                                           */  /* with lock.                                           */
 static size_t number_of_blocks;  
 static size_t total_bytes;  
   
   struct Print_stats
   {
           size_t number_of_blocks;
           size_t total_bytes;
   };
   
   #ifdef USE_MARK_BYTES
   
   /* Return the number of set mark bits in the given header       */
   int GC_n_set_marks(hhdr)
   hdr * hhdr;
   {
       register int result = 0;
       register int i;
   
       for (i = 0; i < MARK_BITS_SZ; i++) {
           result += hhdr -> hb_marks[i];
       }
       return(result);
   }
   
   #else
   
 /* Number of set bits in a word.  Not performance critical.     */  /* Number of set bits in a word.  Not performance critical.     */
 static int set_bits(n)  static int set_bits(n)
 word n;  word n;
Line 571  hdr * hhdr;
Line 820  hdr * hhdr;
     return(result);      return(result);
 }  }
   
   #endif /* !USE_MARK_BYTES  */
   
 /*ARGSUSED*/  /*ARGSUSED*/
 void GC_print_block_descr(h, dummy)  # if defined(__STDC__) || defined(__cplusplus)
 struct hblk *h;      void GC_print_block_descr(struct hblk *h, word dummy)
 word dummy;  # else
       void GC_print_block_descr(h, dummy)
       struct hblk *h;
       word dummy;
   # endif
 {  {
     register hdr * hhdr = HDR(h);      register hdr * hhdr = HDR(h);
     register size_t bytes = WORDS_TO_BYTES(hhdr -> hb_sz);      register size_t bytes = WORDS_TO_BYTES(hhdr -> hb_sz);
       struct Print_stats *ps;
   
     GC_printf3("(%lu:%lu,%lu)", (unsigned long)(hhdr -> hb_obj_kind),      GC_printf3("(%lu:%lu,%lu)", (unsigned long)(hhdr -> hb_obj_kind),
                                 (unsigned long)bytes,                                  (unsigned long)bytes,
                                 (unsigned long)(GC_n_set_marks(hhdr)));                                  (unsigned long)(GC_n_set_marks(hhdr)));
     bytes += HDR_BYTES + HBLKSIZE-1;      bytes += HBLKSIZE-1;
     bytes &= ~(HBLKSIZE-1);      bytes &= ~(HBLKSIZE-1);
     total_bytes += bytes;  
     number_of_blocks++;      ps = (struct Print_stats *)dummy;
       ps->total_bytes += bytes;
       ps->number_of_blocks++;
 }  }
   
 void GC_print_block_list()  void GC_print_block_list()
 {  {
       struct Print_stats pstats;
   
     GC_printf0("(kind(0=ptrfree,1=normal,2=unc.,3=stubborn):size_in_bytes, #_marks_set)\n");      GC_printf0("(kind(0=ptrfree,1=normal,2=unc.,3=stubborn):size_in_bytes, #_marks_set)\n");
     number_of_blocks = 0;      pstats.number_of_blocks = 0;
     total_bytes = 0;      pstats.total_bytes = 0;
     GC_apply_to_all_blocks(GC_print_block_descr, (word)0);      GC_apply_to_all_blocks(GC_print_block_descr, (word)&pstats);
     GC_printf2("\nblocks = %lu, bytes = %lu\n",      GC_printf2("\nblocks = %lu, bytes = %lu\n",
                (unsigned long)number_of_blocks,                 (unsigned long)pstats.number_of_blocks,
                (unsigned long)total_bytes);                 (unsigned long)pstats.total_bytes);
 }  }
   
 #endif /* NO_DEBUGGING */  #endif /* NO_DEBUGGING */
   
 /*  /*
  * Do the same thing on the entire heap, after first clearing small object   * Clear all obj_link pointers in the list of free objects *flp.
  * free lists (if we are not just looking for leaks).   * Clear *flp.
    * This must be done before dropping a list of free gcj-style objects,
    * since may otherwise end up with dangling "descriptor" pointers.
    * It may help for other pointer-containg objects.
  */   */
 void GC_start_reclaim(abort_if_found)  void GC_clear_fl_links(flp)
 int abort_if_found;             /* Abort if a GC_reclaimable object is found */  ptr_t *flp;
 {  {
       ptr_t next = *flp;
   
       while (0 != next) {
          *flp = 0;
          flp = &(obj_link(next));
          next = *flp;
       }
   }
   
   /*
    * Perform GC_reclaim_block on the entire heap, after first clearing
    * small object free lists (if we are not just looking for leaks).
    */
   void GC_start_reclaim(report_if_found)
   int report_if_found;            /* Abort if a GC_reclaimable object is found */
   {
     int kind;      int kind;
   
   #   if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC)
         GC_ASSERT(0 == GC_fl_builder_count);
   #   endif
     /* Clear reclaim- and free-lists */      /* Clear reclaim- and free-lists */
       for (kind = 0; kind < GC_n_kinds; kind++) {        for (kind = 0; kind < GC_n_kinds; kind++) {
         register ptr_t *fop;          ptr_t *fop;
         register ptr_t *lim;          ptr_t *lim;
         register struct hblk ** rlp;          struct hblk ** rlp;
         register struct hblk ** rlim;          struct hblk ** rlim;
         register struct hblk ** rlist = GC_obj_kinds[kind].ok_reclaim_list;          struct hblk ** rlist = GC_obj_kinds[kind].ok_reclaim_list;
           GC_bool should_clobber = (GC_obj_kinds[kind].ok_descriptor != 0);
   
         if (rlist == 0) continue;       /* This kind not used.  */          if (rlist == 0) continue;       /* This kind not used.  */
         if (!abort_if_found) {          if (!report_if_found) {
             lim = &(GC_obj_kinds[kind].ok_freelist[MAXOBJSZ+1]);              lim = &(GC_obj_kinds[kind].ok_freelist[MAXOBJSZ+1]);
             for( fop = GC_obj_kinds[kind].ok_freelist; fop < lim; fop++ ) {              for( fop = GC_obj_kinds[kind].ok_freelist; fop < lim; fop++ ) {
               *fop = 0;                if (*fop != 0) {
                   if (should_clobber) {
                     GC_clear_fl_links(fop);
                   } else {
                     *fop = 0;
                   }
                 }
             }              }
         } /* otherwise free list objects are marked,    */          } /* otherwise free list objects are marked,    */
           /* and its safe to leave them                 */            /* and its safe to leave them                 */
Line 639  int abort_if_found;  /* Abort if a GC_reclaimable obje
Line 928  int abort_if_found;  /* Abort if a GC_reclaimable obje
   
   /* Go through all heap blocks (in hblklist) and reclaim unmarked objects */    /* Go through all heap blocks (in hblklist) and reclaim unmarked objects */
   /* or enqueue the block for later processing.                            */    /* or enqueue the block for later processing.                            */
     GC_apply_to_all_blocks(GC_reclaim_block, (word)abort_if_found);      GC_apply_to_all_blocks(GC_reclaim_block, (word)report_if_found);
   
   # ifdef EAGER_SWEEP
       /* This is a very stupid thing to do.  We make it possible anyway,  */
       /* so that you can convince yourself that it really is very stupid. */
       GC_reclaim_all((GC_stop_func)0, FALSE);
   # endif
   # if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC)
       GC_ASSERT(0 == GC_fl_builder_count);
   # endif
   
 }  }
   
Line 660  int kind;
Line 958  int kind;
   
     if (rlh == 0) return;       /* No blocks of this kind.      */      if (rlh == 0) return;       /* No blocks of this kind.      */
     rlh += sz;      rlh += sz;
         GC_timerstart();  
     while ((hbp = *rlh) != 0) {      while ((hbp = *rlh) != 0) {
         hhdr = HDR(hbp);          hhdr = HDR(hbp);
         *rlh = hhdr -> hb_next;          *rlh = hhdr -> hb_next;
         GC_reclaim_small_nonempty_block(hbp, FALSE);          GC_reclaim_small_nonempty_block(hbp, FALSE MEM_FOUND_ADDR);
         if (*flh != 0) break;          if (*flh != 0) break;
     }      }
         GC_timerstop();  
 }  }
   
 /*  /*
Line 675  int kind;
Line 971  int kind;
  * Abort and return FALSE when/if (*stop_func)() returns TRUE.   * Abort and return FALSE when/if (*stop_func)() returns TRUE.
  * If this returns TRUE, then it's safe to restart the world   * If this returns TRUE, then it's safe to restart the world
  * with incorrectly cleared mark bits.   * with incorrectly cleared mark bits.
  * If ignore_old is TRUE, then reclain only blocks that have been   * If ignore_old is TRUE, then reclaim only blocks that have been
  * recently reclaimed, and discard the rest.   * recently reclaimed, and discard the rest.
  * Stop_func may be 0.   * Stop_func may be 0.
  */   */
Line 696  GC_bool ignore_old;
Line 992  GC_bool ignore_old;
   
         GET_TIME(start_time);          GET_TIME(start_time);
 #   endif  #   endif
       GC_timerstart();
         GC_timerstart();  
     for (kind = 0; kind < GC_n_kinds; kind++) {      for (kind = 0; kind < GC_n_kinds; kind++) {
         ok = &(GC_obj_kinds[kind]);          ok = &(GC_obj_kinds[kind]);
         rlp = ok -> ok_reclaim_list;          rlp = ok -> ok_reclaim_list;
Line 714  GC_bool ignore_old;
Line 1010  GC_bool ignore_old;
                     /* It's likely we'll need it this time, too */                      /* It's likely we'll need it this time, too */
                     /* It's been touched recently, so this      */                      /* It's been touched recently, so this      */
                     /* shouldn't trigger paging.                */                      /* shouldn't trigger paging.                */
                     GC_reclaim_small_nonempty_block(hbp, FALSE);                      GC_reclaim_small_nonempty_block(hbp, FALSE MEM_FOUND_ADDR);
                 }                  }
             }              }
         }          }
     }      }
         GC_timerstop();      GC_timerstop();
 #   ifdef PRINTTIMES  #   ifdef PRINTTIMES
         GET_TIME(done_time);          GET_TIME(done_time);
         GC_printf1("Disposing of reclaim lists took %lu msecs\n",          GC_printf1("Disposing of reclaim lists took %lu msecs\n",

Legend:
Removed from v.1.1.1.1  
changed lines
  Added in v.1.8

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>