=================================================================== RCS file: /home/cvs/OpenXM_contrib2/asir2000/lib/bfct,v retrieving revision 1.19 retrieving revision 1.22 diff -u -p -r1.19 -r1.22 --- OpenXM_contrib2/asir2000/lib/bfct 2002/01/29 02:03:41 1.19 +++ OpenXM_contrib2/asir2000/lib/bfct 2003/04/20 08:54:28 1.22 @@ -45,10 +45,32 @@ * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. * - * $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.18 2002/01/28 02:42:27 noro Exp $ + * $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.21 2002/01/30 02:12:58 noro Exp $ */ /* requires 'primdec' */ +extern LIBRARY_GR_LOADED$ +extern LIBRARY_PRIMDEC_LOADED$ + +if(!LIBRARY_GR_LOADED) load("gr"); else ; LIBRARY_GR_LOADED = 1$ +if(!LIBRARY_PRIMDEC_LOADED) load("primdec"); else ; LIBRARY_PRIMDEC_LOADED = 1$ + +/* toplevel */ + +def bfunction(F) +{ + V = vars(F); + N = length(V); + D = newvect(N); + + for ( I = 0; I < N; I++ ) + D[I] = [deg(F,V[I]),V[I]]; + qsort(D,compare_first); + for ( V = [], I = 0; I < N; I++ ) + V = cons(D[I][1],V); + return bfct_via_gbfct_weight(F,V); +} + /* annihilating ideal of F^s */ def ann(F) @@ -410,7 +432,7 @@ def bfct_via_gbfct(F) V1 = cons(t,V); DV1 = cons(dt,DV); W = newvect(N+1); W[0] = 1; - R = generic_bfct_1(B,V1,DV1,W); + R = generic_bfct(B,V1,DV1,W); return subst(R,s,-s-1); } @@ -484,7 +506,7 @@ def bfct_via_gbfct_weight_1(F,V) V1 = append(V,[t]); DV1 = append(DV,[dt]); W = newvect(N+1); W[N] = 1; - R = generic_bfct(B,V1,DV1,W); + R = generic_bfct_1(B,V1,DV1,W); dp_set_weight(0); return subst(R,s,-s-1); } @@ -572,7 +594,11 @@ def bfct_via_gbfct_weight_2(F,V) /* change of ordering from VDV to VDV2 */ VDV2 = append(V2,DV2); dp_set_weight(WtV2); - GIN2 = dp_weyl_gr_main(GIN,VDV2,0,-1,0); + for ( Pind = 0; ; Pind++ ) { + Prime = lprime(Pind); + GIN2 = dp_weyl_gr_main(GIN,VDV2,0,-Prime,0); + if ( GIN2 ) break; + } R = weyl_minipoly(GIN2,VDV2,0,T); /* M represents DRL order */ dp_set_weight(0); @@ -632,20 +658,28 @@ def weyl_minipoly(G0,V0,O0,P) PS[I] = dp_ptod(car(T),V0); for ( I = Len - 1, GI = []; I >= 0; I-- ) GI = cons(I,GI); + PSM = newvect(Len); DP = dp_ptod(P,V0); - for ( I = 0; ; I++ ) { - Prime = lprime(I); + for ( Pind = 0; ; Pind++ ) { + Prime = lprime(Pind); if ( !valid_modulus(HM,Prime) ) continue; - MP = weyl_minipolym(G0,V0,O0,Prime,P); - D = deg(MP,var(MP)); + setmod(Prime); + for ( I = 0, T = G0, HL = []; T != []; T = cdr(T), I++ ) + PSM[I] = dp_mod(dp_ptod(car(T),V0),Prime,[]); NFP = weyl_nf(GI,DP,1,PS); + NFPM = dp_mod(NFP[0],Prime,[])/ptomp(NFP[1],Prime); + NF = [[dp_ptod(1,V0),1]]; LCM = 1; - for ( J = 1; J <= D; J++ ) { + TM = dp_mod(<<0>>,Prime,[]); + TTM = dp_mod(dp_ptod(1,V0),Prime,[]); + GM = NFM = [[TTM,TM]]; + + for ( D = 1; ; D++ ) { if ( dp_gr_print() ) print(".",2); NFPrev = car(NF); @@ -654,7 +688,18 @@ def weyl_minipoly(G0,V0,O0,P) NFJ = remove_cont(NFJ); NF = cons(NFJ,NF); LCM = ilcm(LCM,NFJ[1]); + + /* modular computation */ + TM = dp_mod(<>,Prime,[]); + TTM = dp_mod(NFJ[0],Prime,[])/ptomp(NFJ[1],Prime); + NFM = cons([TTM,TM],NFM); + LM = dp_lnf_mod([TTM,TM],GM,Prime); + if ( !LM[0] ) + break; + else + GM = insert(GM,LM); } + if ( dp_gr_print() ) print(""); U = NF[0][0]*idiv(LCM,NF[0][1]);