[BACK]Return to bfct CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2000 / lib

Annotation of OpenXM_contrib2/asir2000/lib/bfct, Revision 1.24

1.2       noro        1: /*
                      2:  * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
                      3:  * All rights reserved.
                      4:  *
                      5:  * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
                      6:  * non-exclusive and royalty-free license to use, copy, modify and
                      7:  * redistribute, solely for non-commercial and non-profit purposes, the
                      8:  * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
                      9:  * conditions of this Agreement. For the avoidance of doubt, you acquire
                     10:  * only a limited right to use the SOFTWARE hereunder, and FLL or any
                     11:  * third party developer retains all rights, including but not limited to
                     12:  * copyrights, in and to the SOFTWARE.
                     13:  *
                     14:  * (1) FLL does not grant you a license in any way for commercial
                     15:  * purposes. You may use the SOFTWARE only for non-commercial and
                     16:  * non-profit purposes only, such as academic, research and internal
                     17:  * business use.
                     18:  * (2) The SOFTWARE is protected by the Copyright Law of Japan and
                     19:  * international copyright treaties. If you make copies of the SOFTWARE,
                     20:  * with or without modification, as permitted hereunder, you shall affix
                     21:  * to all such copies of the SOFTWARE the above copyright notice.
                     22:  * (3) An explicit reference to this SOFTWARE and its copyright owner
                     23:  * shall be made on your publication or presentation in any form of the
                     24:  * results obtained by use of the SOFTWARE.
                     25:  * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
1.3       noro       26:  * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
1.2       noro       27:  * for such modification or the source code of the modified part of the
                     28:  * SOFTWARE.
                     29:  *
                     30:  * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
                     31:  * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
                     32:  * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
                     33:  * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
                     34:  * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
                     35:  * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
                     36:  * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
                     37:  * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
                     38:  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
                     39:  * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
                     40:  * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
                     41:  * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
                     42:  * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
                     43:  * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
                     44:  * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
                     45:  * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
                     46:  * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
                     47:  *
1.24    ! noro       48:  * $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.23 2003/04/20 11:59:57 noro Exp $
1.10      noro       49:  */
1.1       noro       50: /* requires 'primdec' */
1.22      noro       51:
1.23      noro       52: #define TMP_S ssssssss
1.24    ! noro       53: #define TMP_DS dssssssss
        !            54: #define TMP_T dtttttttt
        !            55: #define TMP_DT tttttttt
1.23      noro       56: #define TMP_Y1 yyyyyyyy1
1.24    ! noro       57: #define TMP_DY1 dyyyyyyyy1
1.23      noro       58: #define TMP_Y2 yyyyyyyy2
1.24    ! noro       59: #define TMP_DY2 dyyyyyyyy2
1.23      noro       60:
1.22      noro       61: extern LIBRARY_GR_LOADED$
                     62: extern LIBRARY_PRIMDEC_LOADED$
                     63:
                     64: if(!LIBRARY_GR_LOADED) load("gr"); else ; LIBRARY_GR_LOADED = 1$
                     65: if(!LIBRARY_PRIMDEC_LOADED) load("primdec"); else ; LIBRARY_PRIMDEC_LOADED = 1$
                     66:
                     67: /* toplevel */
                     68:
                     69: def bfunction(F)
                     70: {
                     71:        V = vars(F);
                     72:        N = length(V);
                     73:        D = newvect(N);
                     74:
                     75:        for ( I = 0; I < N; I++ )
                     76:                D[I] = [deg(F,V[I]),V[I]];
                     77:        qsort(D,compare_first);
                     78:        for ( V = [], I = 0; I < N; I++ )
                     79:                V = cons(D[I][1],V);
                     80:        return bfct_via_gbfct_weight(F,V);
                     81: }
1.1       noro       82:
1.6       noro       83: /* annihilating ideal of F^s */
1.1       noro       84:
                     85: def ann(F)
                     86: {
1.24    ! noro       87:        if ( member(s,vars(F)) )
        !            88:                error("ann : the variable 's' is reserved.");
1.1       noro       89:        V = vars(F);
                     90:        N = length(V);
1.8       noro       91:        D = newvect(N);
                     92:
                     93:        for ( I = 0; I < N; I++ )
                     94:                D[I] = [deg(F,V[I]),V[I]];
                     95:        qsort(D,compare_first);
                     96:        for ( V = [], I = N-1; I >= 0; I-- )
                     97:                V = cons(D[I][1],V);
                     98:
1.1       noro       99:        for ( I = N-1, DV = []; I >= 0; I-- )
                    100:                DV = cons(strtov("d"+rtostr(V[I])),DV);
1.8       noro      101:
1.24    ! noro      102:        W = append([TMP_Y1,TMP_Y2,TMP_T],V);
        !           103:        DW = append([TMP_DY1,TMP_DY2,TMP_DT],DV);
1.8       noro      104:
1.24    ! noro      105:        B = [1-TMP_Y1*TMP_Y2,TMP_T-TMP_Y1*F];
1.1       noro      106:        for ( I = 0; I < N; I++ ) {
1.24    ! noro      107:                B = cons(DV[I]+TMP_Y1*diff(F,V[I])*TMP_DT,B);
1.1       noro      108:        }
1.10      noro      109:
                    110:        /* homogenized (heuristics) */
1.1       noro      111:        dp_nelim(2);
1.10      noro      112:        G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6);
1.1       noro      113:        G1 = [];
                    114:        for ( T = G0; T != []; T = cdr(T) ) {
                    115:                E = car(T); VL = vars(E);
1.24    ! noro      116:                if ( !member(TMP_Y1,VL) && !member(TMP_Y2,VL) )
1.1       noro      117:                        G1 = cons(E,G1);
                    118:        }
1.24    ! noro      119:        G2 = map(psi,G1,TMP_T,TMP_DT);
        !           120:        G3 = map(subst,G2,TMP_T,-1-s);
1.12      noro      121:        return G3;
1.1       noro      122: }
                    123:
1.10      noro      124: /*
                    125:  * compute J_f|s=r, where r = the minimal integral root of global b_f(s)
                    126:  * ann0(F) returns [MinRoot,Ideal]
                    127:  */
                    128:
                    129: def ann0(F)
                    130: {
                    131:        V = vars(F);
                    132:        N = length(V);
                    133:        D = newvect(N);
                    134:
                    135:        for ( I = 0; I < N; I++ )
                    136:                D[I] = [deg(F,V[I]),V[I]];
                    137:        qsort(D,compare_first);
                    138:        for ( V = [], I = 0; I < N; I++ )
                    139:                V = cons(D[I][1],V);
                    140:
                    141:        for ( I = N-1, DV = []; I >= 0; I-- )
                    142:                DV = cons(strtov("d"+rtostr(V[I])),DV);
                    143:
                    144:        /* XXX : heuristics */
1.24    ! noro      145:        W = append([TMP_Y1,TMP_Y2,TMP_T],reverse(V));
        !           146:        DW = append([TMP_DY1,TMP_DY2,TMP_DT],reverse(DV));
1.10      noro      147:        WDW = append(W,DW);
                    148:
1.24    ! noro      149:        B = [1-TMP_Y1*TMP_Y2,TMP_T-TMP_Y1*F];
1.10      noro      150:        for ( I = 0; I < N; I++ ) {
1.24    ! noro      151:                B = cons(DV[I]+TMP_Y1*diff(F,V[I])*TMP_DT,B);
1.10      noro      152:        }
                    153:
                    154:        /* homogenized (heuristics) */
                    155:        dp_nelim(2);
                    156:        G0 = dp_weyl_gr_main(B,WDW,1,0,6);
                    157:        G1 = [];
                    158:        for ( T = G0; T != []; T = cdr(T) ) {
                    159:                E = car(T); VL = vars(E);
1.24    ! noro      160:                if ( !member(TMP_Y1,VL) && !member(TMP_Y2,VL) )
1.10      noro      161:                        G1 = cons(E,G1);
                    162:        }
1.24    ! noro      163:        G2 = map(psi,G1,TMP_T,TMP_DT);
        !           164:        G3 = map(subst,G2,TMP_T,-1-TMP_S);
1.10      noro      165:
1.12      noro      166:        /* G3 = J_f(s) */
1.10      noro      167:
1.24    ! noro      168:        V1 = cons(TMP_S,V); DV1 = cons(TMP_DS,DV); V1DV1 = append(V1,DV1);
1.12      noro      169:        G4 = dp_weyl_gr_main(cons(F,G3),V1DV1,0,1,0);
1.24    ! noro      170:        Bf = weyl_minipoly(G4,V1DV1,0,TMP_S);
1.10      noro      171:
                    172:        FList = cdr(fctr(Bf));
                    173:        for ( T = FList, Min = 0; T != []; T = cdr(T) ) {
                    174:                LF = car(car(T));
                    175:                Root = -coef(LF,0)/coef(LF,1);
                    176:                if ( dn(Root) == 1 && Root < Min )
                    177:                        Min = Root;
                    178:        }
1.24    ! noro      179:        return [Min,map(subst,G3,TMP_S,Min)];
1.6       noro      180: }
                    181:
                    182: def psi(F,T,DT)
                    183: {
                    184:        D = dp_ptod(F,[T,DT]);
                    185:        Wmax = weight(D);
                    186:        D1 = dp_rest(D);
                    187:        for ( ; D1; D1 = dp_rest(D1) )
                    188:                if ( weight(D1) > Wmax )
                    189:                        Wmax = weight(D1);
                    190:        for ( D1 = D, Dmax = 0; D1; D1 = dp_rest(D1) )
                    191:                if ( weight(D1) == Wmax )
                    192:                        Dmax += dp_hm(D1);
                    193:        if ( Wmax >= 0 )
                    194:                Dmax = dp_weyl_mul(<<Wmax,0>>,Dmax);
                    195:        else
                    196:                Dmax = dp_weyl_mul(<<0,-Wmax>>,Dmax);
                    197:        Rmax = dp_dtop(Dmax,[T,DT]);
                    198:        R = b_subst(subst(Rmax,DT,1),T);
                    199:        return R;
                    200: }
                    201:
                    202: def weight(D)
                    203: {
                    204:        V = dp_etov(D);
                    205:        return V[1]-V[0];
                    206: }
                    207:
                    208: def compare_first(A,B)
                    209: {
                    210:        A0 = car(A);
                    211:        B0 = car(B);
                    212:        if ( A0 > B0 )
                    213:                return 1;
                    214:        else if ( A0 < B0 )
                    215:                return -1;
                    216:        else
                    217:                return 0;
                    218: }
                    219:
1.13      noro      220: /* generic b-function w.r.t. weight vector W */
                    221:
                    222: def generic_bfct(F,V,DV,W)
                    223: {
                    224:        N = length(V);
                    225:        N2 = N*2;
                    226:
1.16      noro      227:        /* If W is a list, convert it to a vector */
                    228:        if ( type(W) == 4 )
                    229:                W = newvect(length(W),W);
1.15      noro      230:        dp_weyl_set_weight(W);
                    231:
1.14      noro      232:        /* create a term order M in D<x,d> (DRL) */
1.13      noro      233:        M = newmat(N2,N2);
                    234:        for ( J = 0; J < N2; J++ )
                    235:                M[0][J] = 1;
                    236:        for ( I = 1; I < N2; I++ )
                    237:                M[I][N2-I] = -1;
                    238:
                    239:        VDV = append(V,DV);
                    240:
                    241:        /* create a non-term order MW in D<x,d> */
                    242:        MW = newmat(N2+1,N2);
                    243:        for ( J = 0; J < N; J++ )
                    244:                MW[0][J] = -W[J];
                    245:        for ( ; J < N2; J++ )
                    246:                MW[0][J] = W[J-N];
                    247:        for ( I = 1; I <= N2; I++ )
                    248:                for ( J = 0; J < N2; J++ )
                    249:                        MW[I][J] = M[I-1][J];
                    250:
                    251:        /* create a homogenized term order MWH in D<x,d,h> */
                    252:        MWH = newmat(N2+2,N2+1);
                    253:        for ( J = 0; J <= N2; J++ )
                    254:                MWH[0][J] = 1;
                    255:        for ( I = 1; I <= N2+1; I++ )
                    256:                for ( J = 0; J < N2; J++ )
                    257:                        MWH[I][J] = MW[I-1][J];
                    258:
                    259:        /* homogenize F */
                    260:        VDVH = append(VDV,[h]);
                    261:        FH = map(dp_dtop,map(dp_homo,map(dp_ptod,F,VDV)),VDVH);
                    262:
                    263:        /* compute a groebner basis of FH w.r.t. MWH */
1.21      noro      264:        dp_gr_flags(["Top",1,"NoRA",1]);
1.15      noro      265:        GH = dp_weyl_gr_main(FH,VDVH,0,1,11);
1.21      noro      266:        dp_gr_flags(["Top",0,"NoRA",0]);
1.13      noro      267:
                    268:        /* dehomigenize GH */
                    269:        G = map(subst,GH,h,1);
                    270:
                    271:        /* G is a groebner basis w.r.t. a non term order MW */
                    272:        /* take the initial part w.r.t. (-W,W) */
                    273:        GIN = map(initial_part,G,VDV,MW,W);
                    274:
                    275:        /* GIN is a groebner basis w.r.t. a term order M */
                    276:        /* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */
                    277:
                    278:        /* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */
                    279:        for ( I = 0, T = 0; I < N; I++ )
                    280:                T += W[I]*V[I]*DV[I];
1.14      noro      281:        B = weyl_minipoly(GIN,VDV,0,T); /* M represents DRL order */
1.13      noro      282:        return B;
                    283: }
                    284:
1.18      noro      285: /* all term reduction + interreduce */
                    286: def generic_bfct_1(F,V,DV,W)
                    287: {
                    288:        N = length(V);
                    289:        N2 = N*2;
                    290:
                    291:        /* If W is a list, convert it to a vector */
                    292:        if ( type(W) == 4 )
                    293:                W = newvect(length(W),W);
                    294:        dp_weyl_set_weight(W);
                    295:
                    296:        /* create a term order M in D<x,d> (DRL) */
                    297:        M = newmat(N2,N2);
                    298:        for ( J = 0; J < N2; J++ )
                    299:                M[0][J] = 1;
                    300:        for ( I = 1; I < N2; I++ )
                    301:                M[I][N2-I] = -1;
                    302:
                    303:        VDV = append(V,DV);
                    304:
                    305:        /* create a non-term order MW in D<x,d> */
                    306:        MW = newmat(N2+1,N2);
                    307:        for ( J = 0; J < N; J++ )
                    308:                MW[0][J] = -W[J];
                    309:        for ( ; J < N2; J++ )
                    310:                MW[0][J] = W[J-N];
                    311:        for ( I = 1; I <= N2; I++ )
                    312:                for ( J = 0; J < N2; J++ )
                    313:                        MW[I][J] = M[I-1][J];
                    314:
                    315:        /* create a homogenized term order MWH in D<x,d,h> */
                    316:        MWH = newmat(N2+2,N2+1);
                    317:        for ( J = 0; J <= N2; J++ )
                    318:                MWH[0][J] = 1;
                    319:        for ( I = 1; I <= N2+1; I++ )
                    320:                for ( J = 0; J < N2; J++ )
                    321:                        MWH[I][J] = MW[I-1][J];
                    322:
                    323:        /* homogenize F */
                    324:        VDVH = append(VDV,[h]);
                    325:        FH = map(dp_dtop,map(dp_homo,map(dp_ptod,F,VDV)),VDVH);
                    326:
                    327:        /* compute a groebner basis of FH w.r.t. MWH */
                    328: /*     dp_gr_flags(["Top",1,"NoRA",1]); */
                    329:        GH = dp_weyl_gr_main(FH,VDVH,0,1,11);
                    330: /*     dp_gr_flags(["Top",0,"NoRA",0]); */
                    331:
                    332:        /* dehomigenize GH */
                    333:        G = map(subst,GH,h,1);
                    334:
                    335:        /* G is a groebner basis w.r.t. a non term order MW */
                    336:        /* take the initial part w.r.t. (-W,W) */
                    337:        GIN = map(initial_part,G,VDV,MW,W);
                    338:
                    339:        /* GIN is a groebner basis w.r.t. a term order M */
                    340:        /* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */
                    341:
                    342:        /* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */
                    343:        for ( I = 0, T = 0; I < N; I++ )
                    344:                T += W[I]*V[I]*DV[I];
                    345:        B = weyl_minipoly(GIN,VDV,0,T); /* M represents DRL order */
                    346:        return B;
                    347: }
                    348:
1.13      noro      349: def initial_part(F,V,MW,W)
                    350: {
                    351:        N2 = length(V);
                    352:        N = N2/2;
                    353:        dp_ord(MW);
                    354:        DF = dp_ptod(F,V);
                    355:        R = dp_hm(DF);
                    356:        DF = dp_rest(DF);
                    357:
                    358:        E = dp_etov(R);
                    359:        for ( I = 0, TW = 0; I < N; I++ )
                    360:                TW += W[I]*(-E[I]+E[N+I]);
                    361:        RW = TW;
                    362:
                    363:        for ( ; DF; DF = dp_rest(DF) ) {
                    364:                E = dp_etov(DF);
                    365:                for ( I = 0, TW = 0; I < N; I++ )
                    366:                        TW += W[I]*(-E[I]+E[N+I]);
                    367:                if ( TW == RW )
                    368:                        R += dp_hm(DF);
                    369:                else if ( TW < RW )
                    370:                        break;
                    371:                else
                    372:                        error("initial_part : cannot happen");
                    373:        }
                    374:        return dp_dtop(R,V);
                    375:
                    376: }
                    377:
1.1       noro      378: /* b-function of F ? */
                    379:
                    380: def bfct(F)
                    381: {
1.23      noro      382:        /* XXX */
                    383:        F = replace_vars_f(F);
                    384:
1.1       noro      385:        V = vars(F);
                    386:        N = length(V);
1.6       noro      387:        D = newvect(N);
1.7       noro      388:
1.6       noro      389:        for ( I = 0; I < N; I++ )
                    390:                D[I] = [deg(F,V[I]),V[I]];
                    391:        qsort(D,compare_first);
                    392:        for ( V = [], I = 0; I < N; I++ )
                    393:                V = cons(D[I][1],V);
1.1       noro      394:        for ( I = N-1, DV = []; I >= 0; I-- )
                    395:                DV = cons(strtov("d"+rtostr(V[I])),DV);
1.6       noro      396:        V1 = cons(s,V); DV1 = cons(ds,DV);
1.7       noro      397:
                    398:        G0 = indicial1(F,reverse(V));
                    399:        G1 = dp_weyl_gr_main(G0,append(V1,DV1),0,1,0);
                    400:        Minipoly = weyl_minipoly(G1,append(V1,DV1),0,s);
1.6       noro      401:        return Minipoly;
                    402: }
                    403:
1.24    ! noro      404: /* called from bfct() only */
        !           405:
        !           406: def indicial1(F,V)
        !           407: {
        !           408:        W = append([y1,t],V);
        !           409:        N = length(V);
        !           410:        B = [t-y1*F];
        !           411:        for ( I = N-1, DV = []; I >= 0; I-- )
        !           412:                DV = cons(strtov("d"+rtostr(V[I])),DV);
        !           413:        DW = append([dy1,dt],DV);
        !           414:        for ( I = 0; I < N; I++ ) {
        !           415:                B = cons(DV[I]+y1*diff(F,V[I])*dt,B);
        !           416:        }
        !           417:        dp_nelim(1);
        !           418:
        !           419:        /* homogenized (heuristics) */
        !           420:        G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6);
        !           421:        G1 = map(subst,G0,y1,1);
        !           422:        G2 = map(psi,G1,t,dt);
        !           423:        G3 = map(subst,G2,t,-s-1);
        !           424:        return G3;
        !           425: }
        !           426:
1.14      noro      427: /* b-function computation via generic_bfct() (experimental) */
                    428:
                    429: def bfct_via_gbfct(F)
                    430: {
                    431:        V = vars(F);
                    432:        N = length(V);
                    433:        D = newvect(N);
                    434:
                    435:        for ( I = 0; I < N; I++ )
                    436:                D[I] = [deg(F,V[I]),V[I]];
                    437:        qsort(D,compare_first);
                    438:        for ( V = [], I = 0; I < N; I++ )
                    439:                V = cons(D[I][1],V);
                    440:        V = reverse(V);
                    441:        for ( I = N-1, DV = []; I >= 0; I-- )
                    442:                DV = cons(strtov("d"+rtostr(V[I])),DV);
                    443:
1.24    ! noro      444:        B = [TMP_T-F];
1.14      noro      445:        for ( I = 0; I < N; I++ ) {
1.24    ! noro      446:                B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
1.14      noro      447:        }
1.24    ! noro      448:        V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV);
1.14      noro      449:        W = newvect(N+1);
                    450:        W[0] = 1;
1.21      noro      451:        R = generic_bfct(B,V1,DV1,W);
1.14      noro      452:
                    453:        return subst(R,s,-s-1);
                    454: }
                    455:
1.17      noro      456: /* use an order s.t. [t,x,y,z,...,dt,dx,dy,dz,...,h] */
                    457:
                    458: def bfct_via_gbfct_weight(F,V)
                    459: {
                    460:        N = length(V);
                    461:        D = newvect(N);
                    462:        Wt = getopt(weight);
1.18      noro      463:        if ( type(Wt) != 4 ) {
                    464:                for ( I = 0, Wt = []; I < N; I++ )
                    465:                        Wt = cons(1,Wt);
                    466:        }
                    467:        Tdeg = w_tdeg(F,V,Wt);
                    468:        WtV = newvect(2*(N+1)+1);
                    469:        WtV[0] = Tdeg;
                    470:        WtV[N+1] = 1;
                    471:        /* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */
                    472:        for ( I = 1; I <= N; I++ ) {
                    473:                WtV[I] = Wt[I-1];
                    474:                WtV[N+1+I] = Tdeg-Wt[I-1]+1;
1.17      noro      475:        }
1.18      noro      476:        WtV[2*(N+1)] = 1;
                    477:        dp_set_weight(WtV);
1.17      noro      478:        for ( I = N-1, DV = []; I >= 0; I-- )
                    479:                DV = cons(strtov("d"+rtostr(V[I])),DV);
                    480:
1.24    ! noro      481:        B = [TMP_T-F];
1.17      noro      482:        for ( I = 0; I < N; I++ ) {
1.24    ! noro      483:                B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
1.17      noro      484:        }
1.24    ! noro      485:        V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV);
1.17      noro      486:        W = newvect(N+1);
                    487:        W[0] = 1;
1.18      noro      488:        R = generic_bfct_1(B,V1,DV1,W);
                    489:        dp_set_weight(0);
1.17      noro      490:        return subst(R,s,-s-1);
                    491: }
                    492:
                    493: /* use an order s.t. [x,y,z,...,t,dx,dy,dz,...,dt,h] */
                    494:
                    495: def bfct_via_gbfct_weight_1(F,V)
                    496: {
                    497:        N = length(V);
                    498:        D = newvect(N);
                    499:        Wt = getopt(weight);
1.18      noro      500:        if ( type(Wt) != 4 ) {
                    501:                for ( I = 0, Wt = []; I < N; I++ )
                    502:                        Wt = cons(1,Wt);
                    503:        }
                    504:        Tdeg = w_tdeg(F,V,Wt);
                    505:        WtV = newvect(2*(N+1)+1);
                    506:        /* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */
                    507:        for ( I = 0; I < N; I++ ) {
                    508:                WtV[I] = Wt[I];
                    509:                WtV[N+1+I] = Tdeg-Wt[I]+1;
1.17      noro      510:        }
1.18      noro      511:        WtV[N] = Tdeg;
                    512:        WtV[2*N+1] = 1;
                    513:        WtV[2*(N+1)] = 1;
                    514:        dp_set_weight(WtV);
1.17      noro      515:        for ( I = N-1, DV = []; I >= 0; I-- )
                    516:                DV = cons(strtov("d"+rtostr(V[I])),DV);
                    517:
1.24    ! noro      518:        B = [TMP_T-F];
1.17      noro      519:        for ( I = 0; I < N; I++ ) {
1.24    ! noro      520:                B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
1.17      noro      521:        }
1.24    ! noro      522:        V1 = append(V,[TMP_T]); DV1 = append(DV,[TMP_DT]);
1.17      noro      523:        W = newvect(N+1);
                    524:        W[N] = 1;
1.21      noro      525:        R = generic_bfct_1(B,V1,DV1,W);
1.19      noro      526:        dp_set_weight(0);
                    527:        return subst(R,s,-s-1);
                    528: }
                    529:
                    530: def bfct_via_gbfct_weight_2(F,V)
                    531: {
                    532:        N = length(V);
                    533:        D = newvect(N);
                    534:        Wt = getopt(weight);
                    535:        if ( type(Wt) != 4 ) {
                    536:                for ( I = 0, Wt = []; I < N; I++ )
                    537:                        Wt = cons(1,Wt);
                    538:        }
                    539:        Tdeg = w_tdeg(F,V,Wt);
                    540:
                    541:        /* a weight for the first GB computation */
                    542:        /* [t,x1,...,xn,dt,dx1,...,dxn,h] */
                    543:        WtV = newvect(2*(N+1)+1);
                    544:        WtV[0] = Tdeg;
                    545:        WtV[N+1] = 1;
                    546:        WtV[2*(N+1)] = 1;
                    547:        /* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */
                    548:        for ( I = 1; I <= N; I++ ) {
                    549:                WtV[I] = Wt[I-1];
                    550:                WtV[N+1+I] = Tdeg-Wt[I-1]+1;
                    551:        }
                    552:        dp_set_weight(WtV);
                    553:
                    554:        /* a weight for the second GB computation */
                    555:        /* [x1,...,xn,t,dx1,...,dxn,dt,h] */
                    556:        WtV2 = newvect(2*(N+1)+1);
                    557:        WtV2[N] = Tdeg;
                    558:        WtV2[2*N+1] = 1;
                    559:        WtV2[2*(N+1)] = 1;
                    560:        for ( I = 0; I < N; I++ ) {
                    561:                WtV2[I] = Wt[I];
                    562:                WtV2[N+1+I] = Tdeg-Wt[I]+1;
                    563:        }
                    564:
                    565:        for ( I = N-1, DV = []; I >= 0; I-- )
                    566:                DV = cons(strtov("d"+rtostr(V[I])),DV);
                    567:
1.24    ! noro      568:        B = [TMP_T-F];
1.19      noro      569:        for ( I = 0; I < N; I++ ) {
1.24    ! noro      570:                B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
1.19      noro      571:        }
1.24    ! noro      572:        V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV);
        !           573:        V2 = append(V,[TMP_T]); DV2 = append(DV,[TMP_DT]);
1.19      noro      574:        W = newvect(N+1,[1]);
                    575:        dp_weyl_set_weight(W);
                    576:
                    577:        VDV = append(V1,DV1);
                    578:        N1 = length(V1);
                    579:        N2 = N1*2;
                    580:
                    581:        /* create a non-term order MW in D<x,d> */
                    582:        MW = newmat(N2+1,N2);
                    583:        for ( J = 0; J < N1; J++ ) {
                    584:                MW[0][J] = -W[J]; MW[0][N1+J] = W[J];
                    585:        }
                    586:        for ( J = 0; J < N2; J++ ) MW[1][J] = 1;
                    587:        for ( I = 2; I <= N2; I++ ) MW[I][N2-I+1] = -1;
                    588:
                    589:        /* homogenize F */
                    590:        VDVH = append(VDV,[h]);
                    591:        FH = map(dp_dtop,map(dp_homo,map(dp_ptod,B,VDV)),VDVH);
                    592:
                    593:        /* compute a groebner basis of FH w.r.t. MWH */
                    594:        GH = dp_weyl_gr_main(FH,VDVH,0,1,11);
                    595:
                    596:        /* dehomigenize GH */
                    597:        G = map(subst,GH,h,1);
                    598:
                    599:        /* G is a groebner basis w.r.t. a non term order MW */
                    600:        /* take the initial part w.r.t. (-W,W) */
                    601:        GIN = map(initial_part,G,VDV,MW,W);
                    602:
                    603:        /* GIN is a groebner basis w.r.t. a term order M */
                    604:        /* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */
                    605:
                    606:        /* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */
                    607:        for ( I = 0, T = 0; I < N1; I++ )
                    608:                T += W[I]*V1[I]*DV1[I];
                    609:
                    610:        /* change of ordering from VDV to VDV2 */
                    611:        VDV2 = append(V2,DV2);
                    612:        dp_set_weight(WtV2);
1.20      noro      613:        for ( Pind = 0; ; Pind++ ) {
                    614:                Prime = lprime(Pind);
                    615:                GIN2 = dp_weyl_gr_main(GIN,VDV2,0,-Prime,0);
                    616:                if ( GIN2 ) break;
                    617:        }
1.19      noro      618:
                    619:        R = weyl_minipoly(GIN2,VDV2,0,T); /* M represents DRL order */
1.18      noro      620:        dp_set_weight(0);
1.17      noro      621:        return subst(R,s,-s-1);
                    622: }
                    623:
1.24    ! noro      624: /* minimal polynomial of s; modular computation */
        !           625:
1.6       noro      626: def weyl_minipolym(G,V,O,M,V0)
                    627: {
                    628:        N = length(V);
                    629:        Len = length(G);
                    630:        dp_ord(O);
                    631:        setmod(M);
                    632:        PS = newvect(Len);
                    633:        PS0 = newvect(Len);
                    634:
                    635:        for ( I = 0, T = G; T != []; T = cdr(T), I++ )
                    636:                PS0[I] = dp_ptod(car(T),V);
                    637:        for ( I = 0, T = G; T != []; T = cdr(T), I++ )
                    638:                PS[I] = dp_mod(dp_ptod(car(T),V),M,[]);
                    639:
                    640:        for ( I = Len - 1, GI = []; I >= 0; I-- )
                    641:                GI = cons(I,GI);
                    642:
                    643:        U = dp_mod(dp_ptod(V0,V),M,[]);
1.17      noro      644:        U = dp_weyl_nf_mod(GI,U,PS,1,M);
1.6       noro      645:
                    646:        T = dp_mod(<<0>>,M,[]);
                    647:        TT = dp_mod(dp_ptod(1,V),M,[]);
                    648:        G = H = [[TT,T]];
                    649:
                    650:        for ( I = 1; ; I++ ) {
1.14      noro      651:                if ( dp_gr_print() )
                    652:                        print(".",2);
1.6       noro      653:                T = dp_mod(<<I>>,M,[]);
                    654:
                    655:                TT = dp_weyl_nf_mod(GI,dp_weyl_mul_mod(TT,U,M),PS,1,M);
                    656:                H = cons([TT,T],H);
                    657:                L = dp_lnf_mod([TT,T],G,M);
1.14      noro      658:                if ( !L[0] ) {
                    659:                        if ( dp_gr_print() )
                    660:                                print("");
1.13      noro      661:                        return dp_dtop(L[1],[t]); /* XXX */
1.14      noro      662:                } else
1.6       noro      663:                        G = insert(G,L);
                    664:        }
                    665: }
                    666:
1.24    ! noro      667: /* minimal polynomial of s over Q */
        !           668:
1.13      noro      669: def weyl_minipoly(G0,V0,O0,P)
1.6       noro      670: {
1.11      noro      671:        HM = hmlist(G0,V0,O0);
1.13      noro      672:
                    673:        N = length(V0);
                    674:        Len = length(G0);
                    675:        dp_ord(O0);
                    676:        PS = newvect(Len);
                    677:        for ( I = 0, T = G0, HL = []; T != []; T = cdr(T), I++ )
                    678:                PS[I] = dp_ptod(car(T),V0);
                    679:        for ( I = Len - 1, GI = []; I >= 0; I-- )
                    680:                GI = cons(I,GI);
1.20      noro      681:        PSM = newvect(Len);
1.13      noro      682:        DP = dp_ptod(P,V0);
                    683:
1.20      noro      684:        for ( Pind = 0; ; Pind++ ) {
                    685:                Prime = lprime(Pind);
1.11      noro      686:                if ( !valid_modulus(HM,Prime) )
                    687:                        continue;
1.20      noro      688:                setmod(Prime);
                    689:                for ( I = 0, T = G0, HL = []; T != []; T = cdr(T), I++ )
                    690:                        PSM[I] = dp_mod(dp_ptod(car(T),V0),Prime,[]);
1.13      noro      691:
                    692:                NFP = weyl_nf(GI,DP,1,PS);
1.20      noro      693:                NFPM = dp_mod(NFP[0],Prime,[])/ptomp(NFP[1],Prime);
                    694:
1.13      noro      695:                NF = [[dp_ptod(1,V0),1]];
                    696:                LCM = 1;
                    697:
1.20      noro      698:                TM = dp_mod(<<0>>,Prime,[]);
                    699:                TTM = dp_mod(dp_ptod(1,V0),Prime,[]);
                    700:                GM = NFM = [[TTM,TM]];
                    701:
                    702:                for ( D = 1; ; D++ ) {
1.14      noro      703:                        if ( dp_gr_print() )
                    704:                                print(".",2);
1.13      noro      705:                        NFPrev = car(NF);
                    706:                        NFJ = weyl_nf(GI,
                    707:                                dp_weyl_mul(NFP[0],NFPrev[0]),NFP[1]*NFPrev[1],PS);
                    708:                        NFJ = remove_cont(NFJ);
                    709:                        NF = cons(NFJ,NF);
                    710:                        LCM = ilcm(LCM,NFJ[1]);
1.20      noro      711:
                    712:                        /* modular computation */
                    713:                        TM = dp_mod(<<D>>,Prime,[]);
                    714:                        TTM = dp_mod(NFJ[0],Prime,[])/ptomp(NFJ[1],Prime);
                    715:                        NFM = cons([TTM,TM],NFM);
                    716:                        LM = dp_lnf_mod([TTM,TM],GM,Prime);
                    717:                        if ( !LM[0] )
                    718:                                break;
                    719:                        else
                    720:                                GM = insert(GM,LM);
1.13      noro      721:                }
1.20      noro      722:
1.14      noro      723:                if ( dp_gr_print() )
                    724:                        print("");
1.13      noro      725:                U = NF[0][0]*idiv(LCM,NF[0][1]);
                    726:                Coef = [];
                    727:                for ( J = D-1; J >= 0; J-- ) {
                    728:                        Coef = cons(strtov("u"+rtostr(J)),Coef);
                    729:                        U += car(Coef)*NF[D-J][0]*idiv(LCM,NF[D-J][1]);
                    730:                }
1.6       noro      731:
1.13      noro      732:                for ( UU = U, Eq = []; UU; UU = dp_rest(UU) )
                    733:                        Eq = cons(dp_hc(UU),Eq);
                    734:                M = etom([Eq,Coef]);
                    735:                B = henleq(M,Prime);
                    736:                if ( dp_gr_print() )
                    737:                        print("");
1.6       noro      738:                if ( B ) {
1.13      noro      739:                        R = 0;
                    740:                        for ( I = 0; I < D; I++ )
                    741:                                R += B[0][I]*s^I;
                    742:                        R += B[1]*s^D;
1.6       noro      743:                        return R;
                    744:                }
                    745:        }
                    746: }
                    747:
                    748: def weyl_nf(B,G,M,PS)
                    749: {
                    750:        for ( D = 0; G; ) {
                    751:                for ( U = 0, L = B; L != []; L = cdr(L) ) {
                    752:                        if ( dp_redble(G,R=PS[car(L)]) > 0 ) {
                    753:                                GCD = igcd(dp_hc(G),dp_hc(R));
                    754:                                CG = idiv(dp_hc(R),GCD); CR = idiv(dp_hc(G),GCD);
                    755:                                U = CG*G-dp_weyl_mul(CR*dp_subd(G,R),R);
                    756:                                if ( !U )
                    757:                                        return [D,M];
                    758:                                D *= CG; M *= CG;
                    759:                                break;
                    760:                        }
                    761:                }
                    762:                if ( U )
                    763:                        G = U;
                    764:                else {
                    765:                        D += dp_hm(G); G = dp_rest(G);
                    766:                }
                    767:        }
                    768:        return [D,M];
                    769: }
                    770:
                    771: def weyl_nf_mod(B,G,PS,Mod)
                    772: {
                    773:        for ( D = 0; G; ) {
                    774:                for ( U = 0, L = B; L != []; L = cdr(L) ) {
                    775:                        if ( dp_redble(G,R=PS[car(L)]) > 0 ) {
                    776:                                CR = dp_hc(G)/dp_hc(R);
                    777:                                U = G-dp_weyl_mul_mod(CR*dp_mod(dp_subd(G,R),Mod,[]),R,Mod);
                    778:                                if ( !U )
                    779:                                        return D;
1.1       noro      780:                                break;
1.6       noro      781:                        }
                    782:                }
                    783:                if ( U )
                    784:                        G = U;
                    785:                else {
                    786:                        D += dp_hm(G); G = dp_rest(G);
1.1       noro      787:                }
                    788:        }
1.6       noro      789:        return D;
1.1       noro      790: }
                    791:
                    792: def remove_zero(L)
                    793: {
                    794:        for ( R = []; L != []; L = cdr(L) )
                    795:                if ( car(L) )
                    796:                        R = cons(car(L),R);
                    797:        return R;
                    798: }
                    799:
                    800: def z_subst(F,V)
                    801: {
                    802:        for ( ; V != []; V = cdr(V) )
                    803:                F = subst(F,car(V),0);
                    804:        return F;
                    805: }
                    806:
                    807: def flatmf(L) {
                    808:     for ( S = []; L != []; L = cdr(L) )
                    809:                if ( type(F=car(car(L))) != NUM )
                    810:                        S = append(S,[F]);
                    811:        return S;
                    812: }
                    813:
                    814: def intersection(A,B)
                    815: {
                    816:        for ( L = []; A != []; A = cdr(A) )
                    817:        if ( member(car(A),B) )
                    818:                L = cons(car(A),L);
                    819:        return L;
                    820: }
                    821:
                    822: def b_subst(F,V)
                    823: {
                    824:        D = deg(F,V);
                    825:        C = newvect(D+1);
                    826:        for ( I = D; I >= 0; I-- )
                    827:                C[I] = coef(F,I,V);
                    828:        for ( I = 0, R = 0; I <= D; I++ )
                    829:                if ( C[I] )
                    830:                        R += C[I]*v_factorial(V,I);
                    831:        return R;
                    832: }
                    833:
                    834: def v_factorial(V,N)
                    835: {
                    836:        for ( J = N-1, R = 1; J >= 0; J-- )
                    837:                R *= V-J;
1.17      noro      838:        return R;
                    839: }
                    840:
                    841: def w_tdeg(F,V,W)
                    842: {
                    843:        dp_set_weight(newvect(length(W),W));
                    844:        T = dp_ptod(F,V);
                    845:        for ( R = 0; T; T = cdr(T) ) {
                    846:                D = dp_td(T);
                    847:                if ( D > R ) R = D;
1.23      noro      848:        }
                    849:        return R;
                    850: }
                    851:
                    852: def replace_vars_f(F)
                    853: {
                    854:        return subst(F,s,TMP_S,t,TMP_T,y1,TMP_Y1,y2,TMP_Y2);
                    855: }
                    856:
                    857: def replace_vars_v(V)
                    858: {
                    859:        V = replace_var(V,s,TMP_S);
                    860:        V = replace_var(V,t,TMP_T);
                    861:        V = replace_var(V,y1,TMP_Y1);
                    862:        V = replace_var(V,y2,TMP_Y2);
                    863:        return V;
                    864: }
                    865:
                    866: def replace_var(V,X,Y)
                    867: {
                    868:        V = reverse(V);
                    869:        for ( R = []; V != []; V = cdr(V) ) {
                    870:                Z = car(V);
                    871:                if ( Z == X )
                    872:                        R = cons(Y,R);
                    873:                else
                    874:                        R = cons(Z,R);
1.17      noro      875:        }
1.1       noro      876:        return R;
                    877: }
                    878: end$
                    879:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>