[BACK]Return to bfct CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2000 / lib

Annotation of OpenXM_contrib2/asir2000/lib/bfct, Revision 1.25

1.2       noro        1: /*
                      2:  * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
                      3:  * All rights reserved.
                      4:  *
                      5:  * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
                      6:  * non-exclusive and royalty-free license to use, copy, modify and
                      7:  * redistribute, solely for non-commercial and non-profit purposes, the
                      8:  * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
                      9:  * conditions of this Agreement. For the avoidance of doubt, you acquire
                     10:  * only a limited right to use the SOFTWARE hereunder, and FLL or any
                     11:  * third party developer retains all rights, including but not limited to
                     12:  * copyrights, in and to the SOFTWARE.
                     13:  *
                     14:  * (1) FLL does not grant you a license in any way for commercial
                     15:  * purposes. You may use the SOFTWARE only for non-commercial and
                     16:  * non-profit purposes only, such as academic, research and internal
                     17:  * business use.
                     18:  * (2) The SOFTWARE is protected by the Copyright Law of Japan and
                     19:  * international copyright treaties. If you make copies of the SOFTWARE,
                     20:  * with or without modification, as permitted hereunder, you shall affix
                     21:  * to all such copies of the SOFTWARE the above copyright notice.
                     22:  * (3) An explicit reference to this SOFTWARE and its copyright owner
                     23:  * shall be made on your publication or presentation in any form of the
                     24:  * results obtained by use of the SOFTWARE.
                     25:  * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
1.3       noro       26:  * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
1.2       noro       27:  * for such modification or the source code of the modified part of the
                     28:  * SOFTWARE.
                     29:  *
                     30:  * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
                     31:  * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
                     32:  * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
                     33:  * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
                     34:  * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
                     35:  * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
                     36:  * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
                     37:  * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
                     38:  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
                     39:  * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
                     40:  * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
                     41:  * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
                     42:  * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
                     43:  * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
                     44:  * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
                     45:  * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
                     46:  * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
                     47:  *
1.25    ! noro       48:  * $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.24 2003/04/28 02:15:30 noro Exp $
1.10      noro       49:  */
1.1       noro       50: /* requires 'primdec' */
1.22      noro       51:
1.23      noro       52: #define TMP_S ssssssss
1.24      noro       53: #define TMP_DS dssssssss
                     54: #define TMP_T dtttttttt
                     55: #define TMP_DT tttttttt
1.23      noro       56: #define TMP_Y1 yyyyyyyy1
1.24      noro       57: #define TMP_DY1 dyyyyyyyy1
1.23      noro       58: #define TMP_Y2 yyyyyyyy2
1.24      noro       59: #define TMP_DY2 dyyyyyyyy2
1.23      noro       60:
1.22      noro       61: extern LIBRARY_GR_LOADED$
                     62: extern LIBRARY_PRIMDEC_LOADED$
                     63:
                     64: if(!LIBRARY_GR_LOADED) load("gr"); else ; LIBRARY_GR_LOADED = 1$
                     65: if(!LIBRARY_PRIMDEC_LOADED) load("primdec"); else ; LIBRARY_PRIMDEC_LOADED = 1$
                     66:
                     67: /* toplevel */
                     68:
                     69: def bfunction(F)
                     70: {
                     71:        V = vars(F);
                     72:        N = length(V);
                     73:        D = newvect(N);
                     74:
                     75:        for ( I = 0; I < N; I++ )
                     76:                D[I] = [deg(F,V[I]),V[I]];
                     77:        qsort(D,compare_first);
                     78:        for ( V = [], I = 0; I < N; I++ )
                     79:                V = cons(D[I][1],V);
                     80:        return bfct_via_gbfct_weight(F,V);
                     81: }
1.1       noro       82:
1.6       noro       83: /* annihilating ideal of F^s */
1.1       noro       84:
                     85: def ann(F)
                     86: {
1.24      noro       87:        if ( member(s,vars(F)) )
                     88:                error("ann : the variable 's' is reserved.");
1.1       noro       89:        V = vars(F);
                     90:        N = length(V);
1.8       noro       91:        D = newvect(N);
                     92:
                     93:        for ( I = 0; I < N; I++ )
                     94:                D[I] = [deg(F,V[I]),V[I]];
                     95:        qsort(D,compare_first);
                     96:        for ( V = [], I = N-1; I >= 0; I-- )
                     97:                V = cons(D[I][1],V);
                     98:
1.1       noro       99:        for ( I = N-1, DV = []; I >= 0; I-- )
                    100:                DV = cons(strtov("d"+rtostr(V[I])),DV);
1.8       noro      101:
1.24      noro      102:        W = append([TMP_Y1,TMP_Y2,TMP_T],V);
                    103:        DW = append([TMP_DY1,TMP_DY2,TMP_DT],DV);
1.8       noro      104:
1.24      noro      105:        B = [1-TMP_Y1*TMP_Y2,TMP_T-TMP_Y1*F];
1.1       noro      106:        for ( I = 0; I < N; I++ ) {
1.24      noro      107:                B = cons(DV[I]+TMP_Y1*diff(F,V[I])*TMP_DT,B);
1.1       noro      108:        }
1.10      noro      109:
                    110:        /* homogenized (heuristics) */
1.1       noro      111:        dp_nelim(2);
1.10      noro      112:        G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6);
1.1       noro      113:        G1 = [];
                    114:        for ( T = G0; T != []; T = cdr(T) ) {
                    115:                E = car(T); VL = vars(E);
1.24      noro      116:                if ( !member(TMP_Y1,VL) && !member(TMP_Y2,VL) )
1.1       noro      117:                        G1 = cons(E,G1);
                    118:        }
1.24      noro      119:        G2 = map(psi,G1,TMP_T,TMP_DT);
                    120:        G3 = map(subst,G2,TMP_T,-1-s);
1.12      noro      121:        return G3;
1.1       noro      122: }
                    123:
1.10      noro      124: /*
                    125:  * compute J_f|s=r, where r = the minimal integral root of global b_f(s)
                    126:  * ann0(F) returns [MinRoot,Ideal]
                    127:  */
                    128:
                    129: def ann0(F)
                    130: {
1.25    ! noro      131:        F = subst(F,s,TMP_S);
        !           132:        Ann = ann(F);
        !           133:        Bf = bfunction(F);
1.10      noro      134:
                    135:        FList = cdr(fctr(Bf));
                    136:        for ( T = FList, Min = 0; T != []; T = cdr(T) ) {
                    137:                LF = car(car(T));
                    138:                Root = -coef(LF,0)/coef(LF,1);
                    139:                if ( dn(Root) == 1 && Root < Min )
                    140:                        Min = Root;
                    141:        }
1.25    ! noro      142:        return [Min,map(subst,Ann,s,Min,TMP_S,s,TMP_DS,ds)];
1.6       noro      143: }
                    144:
                    145: def psi(F,T,DT)
                    146: {
                    147:        D = dp_ptod(F,[T,DT]);
                    148:        Wmax = weight(D);
                    149:        D1 = dp_rest(D);
                    150:        for ( ; D1; D1 = dp_rest(D1) )
                    151:                if ( weight(D1) > Wmax )
                    152:                        Wmax = weight(D1);
                    153:        for ( D1 = D, Dmax = 0; D1; D1 = dp_rest(D1) )
                    154:                if ( weight(D1) == Wmax )
                    155:                        Dmax += dp_hm(D1);
                    156:        if ( Wmax >= 0 )
                    157:                Dmax = dp_weyl_mul(<<Wmax,0>>,Dmax);
                    158:        else
                    159:                Dmax = dp_weyl_mul(<<0,-Wmax>>,Dmax);
                    160:        Rmax = dp_dtop(Dmax,[T,DT]);
                    161:        R = b_subst(subst(Rmax,DT,1),T);
                    162:        return R;
                    163: }
                    164:
                    165: def weight(D)
                    166: {
                    167:        V = dp_etov(D);
                    168:        return V[1]-V[0];
                    169: }
                    170:
                    171: def compare_first(A,B)
                    172: {
                    173:        A0 = car(A);
                    174:        B0 = car(B);
                    175:        if ( A0 > B0 )
                    176:                return 1;
                    177:        else if ( A0 < B0 )
                    178:                return -1;
                    179:        else
                    180:                return 0;
                    181: }
                    182:
1.13      noro      183: /* generic b-function w.r.t. weight vector W */
                    184:
                    185: def generic_bfct(F,V,DV,W)
                    186: {
                    187:        N = length(V);
                    188:        N2 = N*2;
                    189:
1.16      noro      190:        /* If W is a list, convert it to a vector */
                    191:        if ( type(W) == 4 )
                    192:                W = newvect(length(W),W);
1.15      noro      193:        dp_weyl_set_weight(W);
                    194:
1.14      noro      195:        /* create a term order M in D<x,d> (DRL) */
1.13      noro      196:        M = newmat(N2,N2);
                    197:        for ( J = 0; J < N2; J++ )
                    198:                M[0][J] = 1;
                    199:        for ( I = 1; I < N2; I++ )
                    200:                M[I][N2-I] = -1;
                    201:
                    202:        VDV = append(V,DV);
                    203:
                    204:        /* create a non-term order MW in D<x,d> */
                    205:        MW = newmat(N2+1,N2);
                    206:        for ( J = 0; J < N; J++ )
                    207:                MW[0][J] = -W[J];
                    208:        for ( ; J < N2; J++ )
                    209:                MW[0][J] = W[J-N];
                    210:        for ( I = 1; I <= N2; I++ )
                    211:                for ( J = 0; J < N2; J++ )
                    212:                        MW[I][J] = M[I-1][J];
                    213:
                    214:        /* create a homogenized term order MWH in D<x,d,h> */
                    215:        MWH = newmat(N2+2,N2+1);
                    216:        for ( J = 0; J <= N2; J++ )
                    217:                MWH[0][J] = 1;
                    218:        for ( I = 1; I <= N2+1; I++ )
                    219:                for ( J = 0; J < N2; J++ )
                    220:                        MWH[I][J] = MW[I-1][J];
                    221:
                    222:        /* homogenize F */
                    223:        VDVH = append(VDV,[h]);
                    224:        FH = map(dp_dtop,map(dp_homo,map(dp_ptod,F,VDV)),VDVH);
                    225:
                    226:        /* compute a groebner basis of FH w.r.t. MWH */
1.21      noro      227:        dp_gr_flags(["Top",1,"NoRA",1]);
1.15      noro      228:        GH = dp_weyl_gr_main(FH,VDVH,0,1,11);
1.21      noro      229:        dp_gr_flags(["Top",0,"NoRA",0]);
1.13      noro      230:
                    231:        /* dehomigenize GH */
                    232:        G = map(subst,GH,h,1);
                    233:
                    234:        /* G is a groebner basis w.r.t. a non term order MW */
                    235:        /* take the initial part w.r.t. (-W,W) */
                    236:        GIN = map(initial_part,G,VDV,MW,W);
                    237:
                    238:        /* GIN is a groebner basis w.r.t. a term order M */
                    239:        /* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */
                    240:
                    241:        /* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */
                    242:        for ( I = 0, T = 0; I < N; I++ )
                    243:                T += W[I]*V[I]*DV[I];
1.14      noro      244:        B = weyl_minipoly(GIN,VDV,0,T); /* M represents DRL order */
1.13      noro      245:        return B;
                    246: }
                    247:
1.18      noro      248: /* all term reduction + interreduce */
                    249: def generic_bfct_1(F,V,DV,W)
                    250: {
                    251:        N = length(V);
                    252:        N2 = N*2;
                    253:
                    254:        /* If W is a list, convert it to a vector */
                    255:        if ( type(W) == 4 )
                    256:                W = newvect(length(W),W);
                    257:        dp_weyl_set_weight(W);
                    258:
                    259:        /* create a term order M in D<x,d> (DRL) */
                    260:        M = newmat(N2,N2);
                    261:        for ( J = 0; J < N2; J++ )
                    262:                M[0][J] = 1;
                    263:        for ( I = 1; I < N2; I++ )
                    264:                M[I][N2-I] = -1;
                    265:
                    266:        VDV = append(V,DV);
                    267:
                    268:        /* create a non-term order MW in D<x,d> */
                    269:        MW = newmat(N2+1,N2);
                    270:        for ( J = 0; J < N; J++ )
                    271:                MW[0][J] = -W[J];
                    272:        for ( ; J < N2; J++ )
                    273:                MW[0][J] = W[J-N];
                    274:        for ( I = 1; I <= N2; I++ )
                    275:                for ( J = 0; J < N2; J++ )
                    276:                        MW[I][J] = M[I-1][J];
                    277:
                    278:        /* create a homogenized term order MWH in D<x,d,h> */
                    279:        MWH = newmat(N2+2,N2+1);
                    280:        for ( J = 0; J <= N2; J++ )
                    281:                MWH[0][J] = 1;
                    282:        for ( I = 1; I <= N2+1; I++ )
                    283:                for ( J = 0; J < N2; J++ )
                    284:                        MWH[I][J] = MW[I-1][J];
                    285:
                    286:        /* homogenize F */
                    287:        VDVH = append(VDV,[h]);
                    288:        FH = map(dp_dtop,map(dp_homo,map(dp_ptod,F,VDV)),VDVH);
                    289:
                    290:        /* compute a groebner basis of FH w.r.t. MWH */
                    291: /*     dp_gr_flags(["Top",1,"NoRA",1]); */
                    292:        GH = dp_weyl_gr_main(FH,VDVH,0,1,11);
                    293: /*     dp_gr_flags(["Top",0,"NoRA",0]); */
                    294:
                    295:        /* dehomigenize GH */
                    296:        G = map(subst,GH,h,1);
                    297:
                    298:        /* G is a groebner basis w.r.t. a non term order MW */
                    299:        /* take the initial part w.r.t. (-W,W) */
                    300:        GIN = map(initial_part,G,VDV,MW,W);
                    301:
                    302:        /* GIN is a groebner basis w.r.t. a term order M */
                    303:        /* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */
                    304:
                    305:        /* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */
                    306:        for ( I = 0, T = 0; I < N; I++ )
                    307:                T += W[I]*V[I]*DV[I];
                    308:        B = weyl_minipoly(GIN,VDV,0,T); /* M represents DRL order */
                    309:        return B;
                    310: }
                    311:
1.13      noro      312: def initial_part(F,V,MW,W)
                    313: {
                    314:        N2 = length(V);
                    315:        N = N2/2;
                    316:        dp_ord(MW);
                    317:        DF = dp_ptod(F,V);
                    318:        R = dp_hm(DF);
                    319:        DF = dp_rest(DF);
                    320:
                    321:        E = dp_etov(R);
                    322:        for ( I = 0, TW = 0; I < N; I++ )
                    323:                TW += W[I]*(-E[I]+E[N+I]);
                    324:        RW = TW;
                    325:
                    326:        for ( ; DF; DF = dp_rest(DF) ) {
                    327:                E = dp_etov(DF);
                    328:                for ( I = 0, TW = 0; I < N; I++ )
                    329:                        TW += W[I]*(-E[I]+E[N+I]);
                    330:                if ( TW == RW )
                    331:                        R += dp_hm(DF);
                    332:                else if ( TW < RW )
                    333:                        break;
                    334:                else
                    335:                        error("initial_part : cannot happen");
                    336:        }
                    337:        return dp_dtop(R,V);
                    338:
                    339: }
                    340:
1.1       noro      341: /* b-function of F ? */
                    342:
                    343: def bfct(F)
                    344: {
1.23      noro      345:        /* XXX */
                    346:        F = replace_vars_f(F);
                    347:
1.1       noro      348:        V = vars(F);
                    349:        N = length(V);
1.6       noro      350:        D = newvect(N);
1.7       noro      351:
1.6       noro      352:        for ( I = 0; I < N; I++ )
                    353:                D[I] = [deg(F,V[I]),V[I]];
                    354:        qsort(D,compare_first);
                    355:        for ( V = [], I = 0; I < N; I++ )
                    356:                V = cons(D[I][1],V);
1.1       noro      357:        for ( I = N-1, DV = []; I >= 0; I-- )
                    358:                DV = cons(strtov("d"+rtostr(V[I])),DV);
1.6       noro      359:        V1 = cons(s,V); DV1 = cons(ds,DV);
1.7       noro      360:
                    361:        G0 = indicial1(F,reverse(V));
                    362:        G1 = dp_weyl_gr_main(G0,append(V1,DV1),0,1,0);
                    363:        Minipoly = weyl_minipoly(G1,append(V1,DV1),0,s);
1.6       noro      364:        return Minipoly;
                    365: }
                    366:
1.24      noro      367: /* called from bfct() only */
                    368:
                    369: def indicial1(F,V)
                    370: {
                    371:        W = append([y1,t],V);
                    372:        N = length(V);
                    373:        B = [t-y1*F];
                    374:        for ( I = N-1, DV = []; I >= 0; I-- )
                    375:                DV = cons(strtov("d"+rtostr(V[I])),DV);
                    376:        DW = append([dy1,dt],DV);
                    377:        for ( I = 0; I < N; I++ ) {
                    378:                B = cons(DV[I]+y1*diff(F,V[I])*dt,B);
                    379:        }
                    380:        dp_nelim(1);
                    381:
                    382:        /* homogenized (heuristics) */
                    383:        G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6);
                    384:        G1 = map(subst,G0,y1,1);
                    385:        G2 = map(psi,G1,t,dt);
                    386:        G3 = map(subst,G2,t,-s-1);
                    387:        return G3;
                    388: }
                    389:
1.14      noro      390: /* b-function computation via generic_bfct() (experimental) */
                    391:
                    392: def bfct_via_gbfct(F)
                    393: {
                    394:        V = vars(F);
                    395:        N = length(V);
                    396:        D = newvect(N);
                    397:
                    398:        for ( I = 0; I < N; I++ )
                    399:                D[I] = [deg(F,V[I]),V[I]];
                    400:        qsort(D,compare_first);
                    401:        for ( V = [], I = 0; I < N; I++ )
                    402:                V = cons(D[I][1],V);
                    403:        V = reverse(V);
                    404:        for ( I = N-1, DV = []; I >= 0; I-- )
                    405:                DV = cons(strtov("d"+rtostr(V[I])),DV);
                    406:
1.24      noro      407:        B = [TMP_T-F];
1.14      noro      408:        for ( I = 0; I < N; I++ ) {
1.24      noro      409:                B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
1.14      noro      410:        }
1.24      noro      411:        V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV);
1.14      noro      412:        W = newvect(N+1);
                    413:        W[0] = 1;
1.21      noro      414:        R = generic_bfct(B,V1,DV1,W);
1.14      noro      415:
                    416:        return subst(R,s,-s-1);
                    417: }
                    418:
1.17      noro      419: /* use an order s.t. [t,x,y,z,...,dt,dx,dy,dz,...,h] */
                    420:
                    421: def bfct_via_gbfct_weight(F,V)
                    422: {
                    423:        N = length(V);
                    424:        D = newvect(N);
                    425:        Wt = getopt(weight);
1.18      noro      426:        if ( type(Wt) != 4 ) {
                    427:                for ( I = 0, Wt = []; I < N; I++ )
                    428:                        Wt = cons(1,Wt);
                    429:        }
                    430:        Tdeg = w_tdeg(F,V,Wt);
                    431:        WtV = newvect(2*(N+1)+1);
                    432:        WtV[0] = Tdeg;
                    433:        WtV[N+1] = 1;
                    434:        /* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */
                    435:        for ( I = 1; I <= N; I++ ) {
                    436:                WtV[I] = Wt[I-1];
                    437:                WtV[N+1+I] = Tdeg-Wt[I-1]+1;
1.17      noro      438:        }
1.18      noro      439:        WtV[2*(N+1)] = 1;
                    440:        dp_set_weight(WtV);
1.17      noro      441:        for ( I = N-1, DV = []; I >= 0; I-- )
                    442:                DV = cons(strtov("d"+rtostr(V[I])),DV);
                    443:
1.24      noro      444:        B = [TMP_T-F];
1.17      noro      445:        for ( I = 0; I < N; I++ ) {
1.24      noro      446:                B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
1.17      noro      447:        }
1.24      noro      448:        V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV);
1.17      noro      449:        W = newvect(N+1);
                    450:        W[0] = 1;
1.18      noro      451:        R = generic_bfct_1(B,V1,DV1,W);
                    452:        dp_set_weight(0);
1.17      noro      453:        return subst(R,s,-s-1);
                    454: }
                    455:
                    456: /* use an order s.t. [x,y,z,...,t,dx,dy,dz,...,dt,h] */
                    457:
                    458: def bfct_via_gbfct_weight_1(F,V)
                    459: {
                    460:        N = length(V);
                    461:        D = newvect(N);
                    462:        Wt = getopt(weight);
1.18      noro      463:        if ( type(Wt) != 4 ) {
                    464:                for ( I = 0, Wt = []; I < N; I++ )
                    465:                        Wt = cons(1,Wt);
                    466:        }
                    467:        Tdeg = w_tdeg(F,V,Wt);
                    468:        WtV = newvect(2*(N+1)+1);
                    469:        /* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */
                    470:        for ( I = 0; I < N; I++ ) {
                    471:                WtV[I] = Wt[I];
                    472:                WtV[N+1+I] = Tdeg-Wt[I]+1;
1.17      noro      473:        }
1.18      noro      474:        WtV[N] = Tdeg;
                    475:        WtV[2*N+1] = 1;
                    476:        WtV[2*(N+1)] = 1;
                    477:        dp_set_weight(WtV);
1.17      noro      478:        for ( I = N-1, DV = []; I >= 0; I-- )
                    479:                DV = cons(strtov("d"+rtostr(V[I])),DV);
                    480:
1.24      noro      481:        B = [TMP_T-F];
1.17      noro      482:        for ( I = 0; I < N; I++ ) {
1.24      noro      483:                B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
1.17      noro      484:        }
1.24      noro      485:        V1 = append(V,[TMP_T]); DV1 = append(DV,[TMP_DT]);
1.17      noro      486:        W = newvect(N+1);
                    487:        W[N] = 1;
1.21      noro      488:        R = generic_bfct_1(B,V1,DV1,W);
1.19      noro      489:        dp_set_weight(0);
                    490:        return subst(R,s,-s-1);
                    491: }
                    492:
                    493: def bfct_via_gbfct_weight_2(F,V)
                    494: {
                    495:        N = length(V);
                    496:        D = newvect(N);
                    497:        Wt = getopt(weight);
                    498:        if ( type(Wt) != 4 ) {
                    499:                for ( I = 0, Wt = []; I < N; I++ )
                    500:                        Wt = cons(1,Wt);
                    501:        }
                    502:        Tdeg = w_tdeg(F,V,Wt);
                    503:
                    504:        /* a weight for the first GB computation */
                    505:        /* [t,x1,...,xn,dt,dx1,...,dxn,h] */
                    506:        WtV = newvect(2*(N+1)+1);
                    507:        WtV[0] = Tdeg;
                    508:        WtV[N+1] = 1;
                    509:        WtV[2*(N+1)] = 1;
                    510:        /* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */
                    511:        for ( I = 1; I <= N; I++ ) {
                    512:                WtV[I] = Wt[I-1];
                    513:                WtV[N+1+I] = Tdeg-Wt[I-1]+1;
                    514:        }
                    515:        dp_set_weight(WtV);
                    516:
                    517:        /* a weight for the second GB computation */
                    518:        /* [x1,...,xn,t,dx1,...,dxn,dt,h] */
                    519:        WtV2 = newvect(2*(N+1)+1);
                    520:        WtV2[N] = Tdeg;
                    521:        WtV2[2*N+1] = 1;
                    522:        WtV2[2*(N+1)] = 1;
                    523:        for ( I = 0; I < N; I++ ) {
                    524:                WtV2[I] = Wt[I];
                    525:                WtV2[N+1+I] = Tdeg-Wt[I]+1;
                    526:        }
                    527:
                    528:        for ( I = N-1, DV = []; I >= 0; I-- )
                    529:                DV = cons(strtov("d"+rtostr(V[I])),DV);
                    530:
1.24      noro      531:        B = [TMP_T-F];
1.19      noro      532:        for ( I = 0; I < N; I++ ) {
1.24      noro      533:                B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
1.19      noro      534:        }
1.24      noro      535:        V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV);
                    536:        V2 = append(V,[TMP_T]); DV2 = append(DV,[TMP_DT]);
1.19      noro      537:        W = newvect(N+1,[1]);
                    538:        dp_weyl_set_weight(W);
                    539:
                    540:        VDV = append(V1,DV1);
                    541:        N1 = length(V1);
                    542:        N2 = N1*2;
                    543:
                    544:        /* create a non-term order MW in D<x,d> */
                    545:        MW = newmat(N2+1,N2);
                    546:        for ( J = 0; J < N1; J++ ) {
                    547:                MW[0][J] = -W[J]; MW[0][N1+J] = W[J];
                    548:        }
                    549:        for ( J = 0; J < N2; J++ ) MW[1][J] = 1;
                    550:        for ( I = 2; I <= N2; I++ ) MW[I][N2-I+1] = -1;
                    551:
                    552:        /* homogenize F */
                    553:        VDVH = append(VDV,[h]);
                    554:        FH = map(dp_dtop,map(dp_homo,map(dp_ptod,B,VDV)),VDVH);
                    555:
                    556:        /* compute a groebner basis of FH w.r.t. MWH */
                    557:        GH = dp_weyl_gr_main(FH,VDVH,0,1,11);
                    558:
                    559:        /* dehomigenize GH */
                    560:        G = map(subst,GH,h,1);
                    561:
                    562:        /* G is a groebner basis w.r.t. a non term order MW */
                    563:        /* take the initial part w.r.t. (-W,W) */
                    564:        GIN = map(initial_part,G,VDV,MW,W);
                    565:
                    566:        /* GIN is a groebner basis w.r.t. a term order M */
                    567:        /* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */
                    568:
                    569:        /* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */
                    570:        for ( I = 0, T = 0; I < N1; I++ )
                    571:                T += W[I]*V1[I]*DV1[I];
                    572:
                    573:        /* change of ordering from VDV to VDV2 */
                    574:        VDV2 = append(V2,DV2);
                    575:        dp_set_weight(WtV2);
1.20      noro      576:        for ( Pind = 0; ; Pind++ ) {
                    577:                Prime = lprime(Pind);
                    578:                GIN2 = dp_weyl_gr_main(GIN,VDV2,0,-Prime,0);
                    579:                if ( GIN2 ) break;
                    580:        }
1.19      noro      581:
                    582:        R = weyl_minipoly(GIN2,VDV2,0,T); /* M represents DRL order */
1.18      noro      583:        dp_set_weight(0);
1.17      noro      584:        return subst(R,s,-s-1);
                    585: }
                    586:
1.24      noro      587: /* minimal polynomial of s; modular computation */
                    588:
1.6       noro      589: def weyl_minipolym(G,V,O,M,V0)
                    590: {
                    591:        N = length(V);
                    592:        Len = length(G);
                    593:        dp_ord(O);
                    594:        setmod(M);
                    595:        PS = newvect(Len);
                    596:        PS0 = newvect(Len);
                    597:
                    598:        for ( I = 0, T = G; T != []; T = cdr(T), I++ )
                    599:                PS0[I] = dp_ptod(car(T),V);
                    600:        for ( I = 0, T = G; T != []; T = cdr(T), I++ )
                    601:                PS[I] = dp_mod(dp_ptod(car(T),V),M,[]);
                    602:
                    603:        for ( I = Len - 1, GI = []; I >= 0; I-- )
                    604:                GI = cons(I,GI);
                    605:
                    606:        U = dp_mod(dp_ptod(V0,V),M,[]);
1.17      noro      607:        U = dp_weyl_nf_mod(GI,U,PS,1,M);
1.6       noro      608:
                    609:        T = dp_mod(<<0>>,M,[]);
                    610:        TT = dp_mod(dp_ptod(1,V),M,[]);
                    611:        G = H = [[TT,T]];
                    612:
                    613:        for ( I = 1; ; I++ ) {
1.14      noro      614:                if ( dp_gr_print() )
                    615:                        print(".",2);
1.6       noro      616:                T = dp_mod(<<I>>,M,[]);
                    617:
                    618:                TT = dp_weyl_nf_mod(GI,dp_weyl_mul_mod(TT,U,M),PS,1,M);
                    619:                H = cons([TT,T],H);
                    620:                L = dp_lnf_mod([TT,T],G,M);
1.14      noro      621:                if ( !L[0] ) {
                    622:                        if ( dp_gr_print() )
                    623:                                print("");
1.13      noro      624:                        return dp_dtop(L[1],[t]); /* XXX */
1.14      noro      625:                } else
1.6       noro      626:                        G = insert(G,L);
                    627:        }
                    628: }
                    629:
1.24      noro      630: /* minimal polynomial of s over Q */
                    631:
1.13      noro      632: def weyl_minipoly(G0,V0,O0,P)
1.6       noro      633: {
1.11      noro      634:        HM = hmlist(G0,V0,O0);
1.13      noro      635:
                    636:        N = length(V0);
                    637:        Len = length(G0);
                    638:        dp_ord(O0);
                    639:        PS = newvect(Len);
                    640:        for ( I = 0, T = G0, HL = []; T != []; T = cdr(T), I++ )
                    641:                PS[I] = dp_ptod(car(T),V0);
                    642:        for ( I = Len - 1, GI = []; I >= 0; I-- )
                    643:                GI = cons(I,GI);
1.20      noro      644:        PSM = newvect(Len);
1.13      noro      645:        DP = dp_ptod(P,V0);
                    646:
1.20      noro      647:        for ( Pind = 0; ; Pind++ ) {
                    648:                Prime = lprime(Pind);
1.11      noro      649:                if ( !valid_modulus(HM,Prime) )
                    650:                        continue;
1.20      noro      651:                setmod(Prime);
                    652:                for ( I = 0, T = G0, HL = []; T != []; T = cdr(T), I++ )
                    653:                        PSM[I] = dp_mod(dp_ptod(car(T),V0),Prime,[]);
1.13      noro      654:
                    655:                NFP = weyl_nf(GI,DP,1,PS);
1.20      noro      656:                NFPM = dp_mod(NFP[0],Prime,[])/ptomp(NFP[1],Prime);
                    657:
1.13      noro      658:                NF = [[dp_ptod(1,V0),1]];
                    659:                LCM = 1;
                    660:
1.20      noro      661:                TM = dp_mod(<<0>>,Prime,[]);
                    662:                TTM = dp_mod(dp_ptod(1,V0),Prime,[]);
                    663:                GM = NFM = [[TTM,TM]];
                    664:
                    665:                for ( D = 1; ; D++ ) {
1.14      noro      666:                        if ( dp_gr_print() )
                    667:                                print(".",2);
1.13      noro      668:                        NFPrev = car(NF);
                    669:                        NFJ = weyl_nf(GI,
                    670:                                dp_weyl_mul(NFP[0],NFPrev[0]),NFP[1]*NFPrev[1],PS);
                    671:                        NFJ = remove_cont(NFJ);
                    672:                        NF = cons(NFJ,NF);
                    673:                        LCM = ilcm(LCM,NFJ[1]);
1.20      noro      674:
                    675:                        /* modular computation */
                    676:                        TM = dp_mod(<<D>>,Prime,[]);
                    677:                        TTM = dp_mod(NFJ[0],Prime,[])/ptomp(NFJ[1],Prime);
                    678:                        NFM = cons([TTM,TM],NFM);
                    679:                        LM = dp_lnf_mod([TTM,TM],GM,Prime);
                    680:                        if ( !LM[0] )
                    681:                                break;
                    682:                        else
                    683:                                GM = insert(GM,LM);
1.13      noro      684:                }
1.20      noro      685:
1.14      noro      686:                if ( dp_gr_print() )
                    687:                        print("");
1.13      noro      688:                U = NF[0][0]*idiv(LCM,NF[0][1]);
                    689:                Coef = [];
                    690:                for ( J = D-1; J >= 0; J-- ) {
                    691:                        Coef = cons(strtov("u"+rtostr(J)),Coef);
                    692:                        U += car(Coef)*NF[D-J][0]*idiv(LCM,NF[D-J][1]);
                    693:                }
1.6       noro      694:
1.13      noro      695:                for ( UU = U, Eq = []; UU; UU = dp_rest(UU) )
                    696:                        Eq = cons(dp_hc(UU),Eq);
                    697:                M = etom([Eq,Coef]);
                    698:                B = henleq(M,Prime);
                    699:                if ( dp_gr_print() )
                    700:                        print("");
1.6       noro      701:                if ( B ) {
1.13      noro      702:                        R = 0;
                    703:                        for ( I = 0; I < D; I++ )
                    704:                                R += B[0][I]*s^I;
                    705:                        R += B[1]*s^D;
1.6       noro      706:                        return R;
                    707:                }
                    708:        }
                    709: }
                    710:
                    711: def weyl_nf(B,G,M,PS)
                    712: {
                    713:        for ( D = 0; G; ) {
                    714:                for ( U = 0, L = B; L != []; L = cdr(L) ) {
                    715:                        if ( dp_redble(G,R=PS[car(L)]) > 0 ) {
                    716:                                GCD = igcd(dp_hc(G),dp_hc(R));
                    717:                                CG = idiv(dp_hc(R),GCD); CR = idiv(dp_hc(G),GCD);
                    718:                                U = CG*G-dp_weyl_mul(CR*dp_subd(G,R),R);
                    719:                                if ( !U )
                    720:                                        return [D,M];
                    721:                                D *= CG; M *= CG;
                    722:                                break;
                    723:                        }
                    724:                }
                    725:                if ( U )
                    726:                        G = U;
                    727:                else {
                    728:                        D += dp_hm(G); G = dp_rest(G);
                    729:                }
                    730:        }
                    731:        return [D,M];
                    732: }
                    733:
                    734: def weyl_nf_mod(B,G,PS,Mod)
                    735: {
                    736:        for ( D = 0; G; ) {
                    737:                for ( U = 0, L = B; L != []; L = cdr(L) ) {
                    738:                        if ( dp_redble(G,R=PS[car(L)]) > 0 ) {
                    739:                                CR = dp_hc(G)/dp_hc(R);
                    740:                                U = G-dp_weyl_mul_mod(CR*dp_mod(dp_subd(G,R),Mod,[]),R,Mod);
                    741:                                if ( !U )
                    742:                                        return D;
1.1       noro      743:                                break;
1.6       noro      744:                        }
                    745:                }
                    746:                if ( U )
                    747:                        G = U;
                    748:                else {
                    749:                        D += dp_hm(G); G = dp_rest(G);
1.1       noro      750:                }
                    751:        }
1.6       noro      752:        return D;
1.1       noro      753: }
                    754:
                    755: def remove_zero(L)
                    756: {
                    757:        for ( R = []; L != []; L = cdr(L) )
                    758:                if ( car(L) )
                    759:                        R = cons(car(L),R);
                    760:        return R;
                    761: }
                    762:
                    763: def z_subst(F,V)
                    764: {
                    765:        for ( ; V != []; V = cdr(V) )
                    766:                F = subst(F,car(V),0);
                    767:        return F;
                    768: }
                    769:
                    770: def flatmf(L) {
                    771:     for ( S = []; L != []; L = cdr(L) )
                    772:                if ( type(F=car(car(L))) != NUM )
                    773:                        S = append(S,[F]);
                    774:        return S;
                    775: }
                    776:
                    777: def intersection(A,B)
                    778: {
                    779:        for ( L = []; A != []; A = cdr(A) )
                    780:        if ( member(car(A),B) )
                    781:                L = cons(car(A),L);
                    782:        return L;
                    783: }
                    784:
                    785: def b_subst(F,V)
                    786: {
                    787:        D = deg(F,V);
                    788:        C = newvect(D+1);
                    789:        for ( I = D; I >= 0; I-- )
                    790:                C[I] = coef(F,I,V);
                    791:        for ( I = 0, R = 0; I <= D; I++ )
                    792:                if ( C[I] )
                    793:                        R += C[I]*v_factorial(V,I);
                    794:        return R;
                    795: }
                    796:
                    797: def v_factorial(V,N)
                    798: {
                    799:        for ( J = N-1, R = 1; J >= 0; J-- )
                    800:                R *= V-J;
1.17      noro      801:        return R;
                    802: }
                    803:
                    804: def w_tdeg(F,V,W)
                    805: {
                    806:        dp_set_weight(newvect(length(W),W));
                    807:        T = dp_ptod(F,V);
                    808:        for ( R = 0; T; T = cdr(T) ) {
                    809:                D = dp_td(T);
                    810:                if ( D > R ) R = D;
1.23      noro      811:        }
                    812:        return R;
                    813: }
                    814:
                    815: def replace_vars_f(F)
                    816: {
                    817:        return subst(F,s,TMP_S,t,TMP_T,y1,TMP_Y1,y2,TMP_Y2);
                    818: }
                    819:
                    820: def replace_vars_v(V)
                    821: {
                    822:        V = replace_var(V,s,TMP_S);
                    823:        V = replace_var(V,t,TMP_T);
                    824:        V = replace_var(V,y1,TMP_Y1);
                    825:        V = replace_var(V,y2,TMP_Y2);
                    826:        return V;
                    827: }
                    828:
                    829: def replace_var(V,X,Y)
                    830: {
                    831:        V = reverse(V);
                    832:        for ( R = []; V != []; V = cdr(V) ) {
                    833:                Z = car(V);
                    834:                if ( Z == X )
                    835:                        R = cons(Y,R);
                    836:                else
                    837:                        R = cons(Z,R);
1.17      noro      838:        }
1.1       noro      839:        return R;
                    840: }
                    841: end$
                    842:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>