[BACK]Return to bfct CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2000 / lib

Annotation of OpenXM_contrib2/asir2000/lib/bfct, Revision 1.6

1.2       noro        1: /*
                      2:  * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
                      3:  * All rights reserved.
                      4:  *
                      5:  * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
                      6:  * non-exclusive and royalty-free license to use, copy, modify and
                      7:  * redistribute, solely for non-commercial and non-profit purposes, the
                      8:  * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
                      9:  * conditions of this Agreement. For the avoidance of doubt, you acquire
                     10:  * only a limited right to use the SOFTWARE hereunder, and FLL or any
                     11:  * third party developer retains all rights, including but not limited to
                     12:  * copyrights, in and to the SOFTWARE.
                     13:  *
                     14:  * (1) FLL does not grant you a license in any way for commercial
                     15:  * purposes. You may use the SOFTWARE only for non-commercial and
                     16:  * non-profit purposes only, such as academic, research and internal
                     17:  * business use.
                     18:  * (2) The SOFTWARE is protected by the Copyright Law of Japan and
                     19:  * international copyright treaties. If you make copies of the SOFTWARE,
                     20:  * with or without modification, as permitted hereunder, you shall affix
                     21:  * to all such copies of the SOFTWARE the above copyright notice.
                     22:  * (3) An explicit reference to this SOFTWARE and its copyright owner
                     23:  * shall be made on your publication or presentation in any form of the
                     24:  * results obtained by use of the SOFTWARE.
                     25:  * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
1.3       noro       26:  * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
1.2       noro       27:  * for such modification or the source code of the modified part of the
                     28:  * SOFTWARE.
                     29:  *
                     30:  * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
                     31:  * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
                     32:  * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
                     33:  * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
                     34:  * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
                     35:  * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
                     36:  * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
                     37:  * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
                     38:  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
                     39:  * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
                     40:  * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
                     41:  * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
                     42:  * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
                     43:  * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
                     44:  * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
                     45:  * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
                     46:  * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
                     47:  *
1.6     ! noro       48:  * $OpenXM: OpenXM_contrib2/asir2000/lib/bfct,v 1.5 2000/12/11 02:00:42 noro Exp $
1.2       noro       49: */
1.1       noro       50: /* requires 'primdec' */
                     51:
1.6     ! noro       52: /* annihilating ideal of F^s */
1.1       noro       53:
                     54: def ann(F)
                     55: {
                     56:        V = vars(F);
                     57:        W = append([y1,y2,t],V);
                     58:        N = length(V);
                     59:        B = [1-y1*y2,t-y1*F];
                     60:        for ( I = N-1, DV = []; I >= 0; I-- )
                     61:                DV = cons(strtov("d"+rtostr(V[I])),DV);
                     62:        DW = append([dy1,dy2,dt],DV);
                     63:        for ( I = 0; I < N; I++ ) {
                     64:                B = cons(DV[I]+y1*diff(F,V[I])*dt,B);
                     65:        }
                     66:        dp_nelim(2);
1.4       noro       67:        G0 = dp_weyl_gr_main(B,append(W,DW),0,0,6);
1.1       noro       68:        G1 = [];
                     69:        for ( T = G0; T != []; T = cdr(T) ) {
                     70:                E = car(T); VL = vars(E);
                     71:                if ( !member(y1,VL) && !member(y2,VL) )
                     72:                        G1 = cons(E,G1);
                     73:        }
                     74:        G2 = map(subst,G1,dt,1);
                     75:        G3 = map(b_subst,G2,t);
                     76:        G4 = map(subst,G3,t,-1-s);
                     77:        return G4;
                     78: }
                     79:
1.6     ! noro       80: def indicial1(F)
        !            81: {
        !            82:        V = vars(F);
        !            83:        W = append([y1,t],V);
        !            84:        N = length(V);
        !            85:        B = [t-y1*F];
        !            86:        for ( I = N-1, DV = []; I >= 0; I-- )
        !            87:                DV = cons(strtov("d"+rtostr(V[I])),DV);
        !            88:        DW = append([dy1,dt],DV);
        !            89:        for ( I = 0; I < N; I++ ) {
        !            90:                B = cons(DV[I]+y1*diff(F,V[I])*dt,B);
        !            91:        }
        !            92:        dp_nelim(1);
        !            93:        G0 = dp_weyl_gr_main(B,append(W,DW),0,0,6);
        !            94:        G1 = map(subst,G0,y1,1);
        !            95:        Mat = newmat(2,2,[[-1,1],[0,1]]);
        !            96:        G2 = map(psi,G1,t,dt);
        !            97:        G3 = map(subst,G2,t,-s-1);
        !            98:        return G3;
        !            99: }
        !           100:
        !           101: def psi(F,T,DT)
        !           102: {
        !           103:        D = dp_ptod(F,[T,DT]);
        !           104:        Wmax = weight(D);
        !           105:        D1 = dp_rest(D);
        !           106:        for ( ; D1; D1 = dp_rest(D1) )
        !           107:                if ( weight(D1) > Wmax )
        !           108:                        Wmax = weight(D1);
        !           109:        for ( D1 = D, Dmax = 0; D1; D1 = dp_rest(D1) )
        !           110:                if ( weight(D1) == Wmax )
        !           111:                        Dmax += dp_hm(D1);
        !           112:        if ( Wmax >= 0 )
        !           113:                Dmax = dp_weyl_mul(<<Wmax,0>>,Dmax);
        !           114:        else
        !           115:                Dmax = dp_weyl_mul(<<0,-Wmax>>,Dmax);
        !           116:        Rmax = dp_dtop(Dmax,[T,DT]);
        !           117:        R = b_subst(subst(Rmax,DT,1),T);
        !           118:        return R;
        !           119: }
        !           120:
        !           121: def weight(D)
        !           122: {
        !           123:        V = dp_etov(D);
        !           124:        return V[1]-V[0];
        !           125: }
        !           126:
        !           127: def compare_first(A,B)
        !           128: {
        !           129:        A0 = car(A);
        !           130:        B0 = car(B);
        !           131:        if ( A0 > B0 )
        !           132:                return 1;
        !           133:        else if ( A0 < B0 )
        !           134:                return -1;
        !           135:        else
        !           136:                return 0;
        !           137: }
        !           138:
1.1       noro      139: /* b-function of F ? */
                    140:
                    141: def bfct(F)
                    142: {
1.6     ! noro      143:        G4 = indicial1(F);
1.1       noro      144:        V = vars(F);
                    145:        N = length(V);
1.6     ! noro      146:        D = newvect(N);
        !           147:        for ( I = 0; I < N; I++ )
        !           148:                D[I] = [deg(F,V[I]),V[I]];
        !           149:        qsort(D,compare_first);
        !           150:        for ( V = [], I = 0; I < N; I++ )
        !           151:                V = cons(D[I][1],V);
1.1       noro      152:        for ( I = N-1, DV = []; I >= 0; I-- )
                    153:                DV = cons(strtov("d"+rtostr(V[I])),DV);
1.6     ! noro      154:        V1 = cons(s,V); DV1 = cons(ds,DV);
        !           155:        G0 = dp_weyl_gr_main(G4,append(V1,DV1),0,1,0);
        !           156:        Minipoly = weyl_minipoly(G0,append(V1,DV1),0,s);
        !           157:        return Minipoly;
        !           158: }
        !           159:
        !           160: def weyl_minipolym(G,V,O,M,V0)
        !           161: {
        !           162:        N = length(V);
        !           163:        Len = length(G);
        !           164:        dp_ord(O);
        !           165:        setmod(M);
        !           166:        PS = newvect(Len);
        !           167:        PS0 = newvect(Len);
        !           168:
        !           169:        for ( I = 0, T = G; T != []; T = cdr(T), I++ )
        !           170:                PS0[I] = dp_ptod(car(T),V);
        !           171:        for ( I = 0, T = G; T != []; T = cdr(T), I++ )
        !           172:                PS[I] = dp_mod(dp_ptod(car(T),V),M,[]);
        !           173:
        !           174:        for ( I = Len - 1, GI = []; I >= 0; I-- )
        !           175:                GI = cons(I,GI);
        !           176:
        !           177:        U = dp_mod(dp_ptod(V0,V),M,[]);
        !           178:
        !           179:        T = dp_mod(<<0>>,M,[]);
        !           180:        TT = dp_mod(dp_ptod(1,V),M,[]);
        !           181:        G = H = [[TT,T]];
        !           182:
        !           183:        for ( I = 1; ; I++ ) {
        !           184:                T = dp_mod(<<I>>,M,[]);
        !           185:
        !           186:                TT = dp_weyl_nf_mod(GI,dp_weyl_mul_mod(TT,U,M),PS,1,M);
        !           187:                H = cons([TT,T],H);
        !           188:                L = dp_lnf_mod([TT,T],G,M);
        !           189:                if ( !L[0] )
        !           190:                        return dp_dtop(L[1],[V0]);
        !           191:                else
        !           192:                        G = insert(G,L);
        !           193:        }
        !           194: }
        !           195:
        !           196: def weyl_minipoly(G0,V0,O0,V)
        !           197: {
        !           198:        for ( I = 0; ; I++ ) {
        !           199:                Prime = lprime(I);
        !           200:                MP = weyl_minipolym(G0,V0,O0,Prime,V);
        !           201:                for ( D = deg(MP,V), TL = [], J = 0; J <= D; J++ )
        !           202:                        TL = cons(V^J,TL);
        !           203:                dp_ord(O0);
        !           204:                NF = weyl_gennf(G0,TL,V0,O0)[0];
        !           205:
        !           206:                LHS = weyl_nf_tab(-car(TL),NF,V0);
        !           207:                B = weyl_hen_ttob(cdr(TL),NF,LHS,V0,Prime);
        !           208:                if ( B ) {
        !           209:                        R = ptozp(B[1]*car(TL)+B[0]);
        !           210:                        return R;
        !           211:                }
        !           212:        }
        !           213: }
        !           214:
        !           215: def weyl_gennf(G,TL,V,O)
        !           216: {
        !           217:        N = length(V); Len = length(G); dp_ord(O); PS = newvect(Len);
        !           218:        for ( I = 0, T = G, HL = []; T != []; T = cdr(T), I++ ) {
        !           219:                PS[I] = dp_ptod(car(T),V); HL = cons(dp_ht(PS[I]),HL);
        !           220:        }
        !           221:        for ( I = 0, DTL = []; TL != []; TL = cdr(TL) )
        !           222:                DTL = cons(dp_ptod(car(TL),V),DTL);
        !           223:        for ( I = Len - 1, GI = []; I >= 0; I-- )
        !           224:                GI = cons(I,GI);
        !           225:        T = car(DTL); DTL = cdr(DTL);
        !           226:        H = [weyl_nf(GI,T,T,PS)];
1.1       noro      227:
1.6     ! noro      228:        T0 = time()[0];
        !           229:        while ( DTL != [] ) {
        !           230:                T = car(DTL); DTL = cdr(DTL);
        !           231:                if ( dp_gr_print() )
        !           232:                        print(".",2);
        !           233:                if ( L = search_redble(T,H) ) {
        !           234:                        DD = dp_subd(T,L[1]);
        !           235:                        NF = weyl_nf(GI,dp_weyl_mul(L[0],dp_subd(T,L[1])),dp_hc(L[1])*T,PS);
        !           236:                } else
        !           237:                        NF = weyl_nf(GI,T,T,PS);
        !           238:                NF = remove_cont(NF);
        !           239:                H = cons(NF,H);
        !           240:        }
        !           241:        print("");
        !           242:        TNF = time()[0]-T0;
        !           243:        if ( dp_gr_print() )
        !           244:                print("gennf(TAB="+rtostr(TTAB)+" NF="+rtostr(TNF)+")");
        !           245:        return [H,PS,GI];
        !           246: }
1.1       noro      247:
1.6     ! noro      248: def weyl_nf(B,G,M,PS)
        !           249: {
        !           250:        for ( D = 0; G; ) {
        !           251:                for ( U = 0, L = B; L != []; L = cdr(L) ) {
        !           252:                        if ( dp_redble(G,R=PS[car(L)]) > 0 ) {
        !           253:                                GCD = igcd(dp_hc(G),dp_hc(R));
        !           254:                                CG = idiv(dp_hc(R),GCD); CR = idiv(dp_hc(G),GCD);
        !           255:                                U = CG*G-dp_weyl_mul(CR*dp_subd(G,R),R);
        !           256:                                if ( !U )
        !           257:                                        return [D,M];
        !           258:                                D *= CG; M *= CG;
        !           259:                                break;
        !           260:                        }
        !           261:                }
        !           262:                if ( U )
        !           263:                        G = U;
        !           264:                else {
        !           265:                        D += dp_hm(G); G = dp_rest(G);
        !           266:                }
        !           267:        }
        !           268:        return [D,M];
        !           269: }
        !           270:
        !           271: def weyl_nf_mod(B,G,PS,Mod)
        !           272: {
        !           273:        for ( D = 0; G; ) {
        !           274:                for ( U = 0, L = B; L != []; L = cdr(L) ) {
        !           275:                        if ( dp_redble(G,R=PS[car(L)]) > 0 ) {
        !           276:                                CR = dp_hc(G)/dp_hc(R);
        !           277:                                U = G-dp_weyl_mul_mod(CR*dp_mod(dp_subd(G,R),Mod,[]),R,Mod);
        !           278:                                if ( !U )
        !           279:                                        return D;
1.1       noro      280:                                break;
1.6     ! noro      281:                        }
        !           282:                }
        !           283:                if ( U )
        !           284:                        G = U;
        !           285:                else {
        !           286:                        D += dp_hm(G); G = dp_rest(G);
1.1       noro      287:                }
                    288:        }
1.6     ! noro      289:        return D;
        !           290: }
        !           291:
        !           292: def weyl_hen_ttob(T,NF,LHS,V,MOD)
        !           293: {
        !           294:        if ( length(T) == 1 )
        !           295:                return car(T);
        !           296:        T0 = time()[0]; M = etom(weyl_leq_nf(T,NF,LHS,V)); TE = time()[0] - T0;
        !           297:        T0 = time()[0]; U = henleq(M,MOD); TH = time()[0] - T0;
        !           298:        if ( dp_gr_print() ) {
        !           299:                print("(etom="+rtostr(TE)+" hen="+rtostr(TH)+")");
        !           300:        }
        !           301:        return U ? vtop(T,U,LHS) : 0;
        !           302: }
        !           303:
        !           304: def weyl_leq_nf(TL,NF,LHS,V)
        !           305: {
        !           306:        TLen = length(NF);
        !           307:        T = newvect(TLen); M = newvect(TLen);
        !           308:        for ( I = 0; I < TLen; I++ ) {
        !           309:                T[I] = dp_ht(NF[I][1]);
        !           310:                M[I] = dp_hc(NF[I][1]);
        !           311:        }
        !           312:        Len = length(TL); INDEX = newvect(Len); COEF = newvect(Len);
        !           313:        for ( L = TL, J = 0; L != []; L = cdr(L), J++ ) {
        !           314:                D = dp_ptod(car(L),V);
        !           315:                for ( I = 0; I < TLen; I++ )
        !           316:                        if ( D == T[I] )
        !           317:                                break;
        !           318:                INDEX[J] = I; COEF[J] = strtov("u"+rtostr(J));
        !           319:        }
        !           320:        if ( !LHS ) {
        !           321:                COEF[0] = 1; NM = 0; DN = 1;
        !           322:        } else {
        !           323:                NM = LHS[0]; DN = LHS[1];
        !           324:        }
        !           325:        for ( J = 0, S = -NM; J < Len; J++ ) {
        !           326:                DNJ = M[INDEX[J]];
        !           327:                GCD = igcd(DN,DNJ); CS = DNJ/GCD; CJ = DN/GCD;
        !           328:                S = CS*S + CJ*NF[INDEX[J]][0]*COEF[J];
        !           329:                DN *= CS;
        !           330:        }
        !           331:        for ( D = S, E = []; D; D = dp_rest(D) )
        !           332:                E = cons(dp_hc(D),E);
        !           333:        BOUND = LHS ? 0 : 1;
        !           334:        for ( I = Len - 1, W = []; I >= BOUND; I-- )
        !           335:                        W = cons(COEF[I],W);
        !           336:        return [E,W];
        !           337: }
        !           338:
        !           339: def weyl_nf_tab(A,NF,V)
        !           340: {
        !           341:        TLen = length(NF);
        !           342:        T = newvect(TLen); M = newvect(TLen);
        !           343:        for ( I = 0; I < TLen; I++ ) {
        !           344:                T[I] = dp_ht(NF[I][1]);
        !           345:                M[I] = dp_hc(NF[I][1]);
        !           346:        }
        !           347:        A = dp_ptod(A,V);
        !           348:        for ( Z = A, Len = 0; Z; Z = dp_rest(Z), Len++ );
        !           349:        INDEX = newvect(Len); COEF = newvect(Len);
        !           350:        for ( Z = A, J = 0; Z; Z = dp_rest(Z), J++ ) {
        !           351:                D = dp_ht(Z);
        !           352:                for ( I = 0; I < TLen; I++ )
        !           353:                        if ( D == T[I] )
        !           354:                                break;
        !           355:                INDEX[J] = I; COEF[J] = dp_hc(Z);
        !           356:        }
        !           357:        for ( J = 0, S = 0, DN = 1; J < Len; J++ ) {
        !           358:                DNJ = M[INDEX[J]];
        !           359:                GCD = igcd(DN,DNJ); CS = DNJ/GCD; CJ = DN/GCD;
        !           360:                S = CS*S + CJ*NF[INDEX[J]][0]*COEF[J];
        !           361:                DN *= CS;
        !           362:        }
        !           363:        return [S,DN];
1.1       noro      364: }
                    365:
                    366: def remove_zero(L)
                    367: {
                    368:        for ( R = []; L != []; L = cdr(L) )
                    369:                if ( car(L) )
                    370:                        R = cons(car(L),R);
                    371:        return R;
                    372: }
                    373:
                    374: def z_subst(F,V)
                    375: {
                    376:        for ( ; V != []; V = cdr(V) )
                    377:                F = subst(F,car(V),0);
                    378:        return F;
                    379: }
                    380:
                    381: def flatmf(L) {
                    382:     for ( S = []; L != []; L = cdr(L) )
                    383:                if ( type(F=car(car(L))) != NUM )
                    384:                        S = append(S,[F]);
                    385:        return S;
                    386: }
                    387:
                    388: def member(A,L) {
                    389:     for ( ; L != []; L = cdr(L) )
                    390:                if ( A == car(L) )
                    391:                        return 1;
                    392:        return 0;
                    393: }
                    394:
                    395: def intersection(A,B)
                    396: {
                    397:        for ( L = []; A != []; A = cdr(A) )
                    398:        if ( member(car(A),B) )
                    399:                L = cons(car(A),L);
                    400:        return L;
                    401: }
                    402:
                    403: def b_subst(F,V)
                    404: {
                    405:        D = deg(F,V);
                    406:        C = newvect(D+1);
                    407:        for ( I = D; I >= 0; I-- )
                    408:                C[I] = coef(F,I,V);
                    409:        for ( I = 0, R = 0; I <= D; I++ )
                    410:                if ( C[I] )
                    411:                        R += C[I]*v_factorial(V,I);
                    412:        return R;
                    413: }
                    414:
                    415: def v_factorial(V,N)
                    416: {
                    417:        for ( J = N-1, R = 1; J >= 0; J-- )
                    418:                R *= V-J;
                    419:        return R;
                    420: }
                    421: end$
                    422:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>