[BACK]Return to bgk CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2000 / lib

Annotation of OpenXM_contrib2/asir2000/lib/bgk, Revision 1.1

1.1     ! noro        1: /* $OpenXM: OpenXM/src/asir99/lib/bgk,v 1.1.1.1 1999/11/10 08:12:30 noro Exp $ */
        !             2: /* examples for groebner basis computations by Boege, Gebauer, Kredel */
        !             3:
        !             4: /* $(hairer,runge-kutta 1,05.11.83)
        !             5: d=q
        !             6: r=d(c2,c3,b3,b2,b1,a21,a32,a31)
        !             7: opt=10 */
        !             8: Hairer1 = [
        !             9: [a31,a32,a21,b1,b2,b3,c3,c2],[
        !            10: (+c2-a21),
        !            11: (+c3-a31-a32),
        !            12: (+b1+b2+b3-1),
        !            13: (+b2*c2+b3*c3-1/2),
        !            14: (+b2*c2^2+b3*c3^2-1/3),
        !            15: (+b3*a32*c2-1/6)
        !            16: ]]$
        !            17:
        !            18: /*$(hairer,runge-kutta*2,05.11.1983)
        !            19: d=q
        !            20: r=d(c2,c3,c4,b4,b3,b2,b1,a21,a31,a32,a41,a42,a43)
        !            21: opt=10*/
        !            22: Hairer2 = [
        !            23: /* [a43,a42,a41,a32,a31,a21,b1,b2,b3,b4,c4,c3,c2],[ */
        !            24: [a21,a31,a41,b1,b2,a42,a32,a43,b3,b4,c4,c3,c2],[
        !            25: (+b1+b2+b3+b4-1),
        !            26: (+b2*c2+b3*c3+b4*c4-1/2),
        !            27: (+b2*c2^2+b3*c3^2+b4*c4^2-1/3),
        !            28: (+b3*a32*c2+b4*a42*c2+b4*a43*c3-1/6),
        !            29: (+b2*c2^3+b3*c3^3+b4*c4^3-1/4),
        !            30: (+b3*c3*a32*c2+b4*c4*a42*c2+b4*c4*a43*c3-1/8),
        !            31: (+b3*a32*c2^2+b4*a42*c2^2+b4*a43*c3^2-1/12),
        !            32: (+b4*a43*a32*c2-1/24),
        !            33: (+c2-a21),
        !            34: (+c3-a31-a32),
        !            35: (+c4-a41-a42-a43)
        !            36: ]]$
        !            37:
        !            38:
        !            39: /*$(hairer,runge-kutta 3,10.11.1983)
        !            40: d=q
        !            41: r=d(c2,c3,c4,c5,b2,b3,b4,b5,a32,a42,a43,a52,a53,a54)
        !            42: opt=g10*/
        !            43: Hairer3 = [
        !            44: /* [a54,a53,a52,a43,a42,a32,b5,b4,b3,b2,c5,c4,c3,c2], */
        !            45: [b2,b3,b4,b5,a52,a53,a42,a54,a32,a43,c5,c4,c3,c2],
        !            46: [
        !            47: (+b2*c2+b3*c3+b4*c4+b5*c5-1/2),
        !            48: (+b2*c2^2+b3*c3^2+b4*c4^2+b5*c5^2-1/3),
        !            49: (+b3*a32*c2+b4*a42*c2+b4*a43*c3+b5*a52*c2+b5*a53*c3+b5*a54*c4-1/6),
        !            50: (+b2*c2^3+b3*c3^3+b4*c4^3+b5*c5^3-1/4),
        !            51: (+b3*c3*a32*c2+b4*c4*a42*c2+b4*c4*a43*c3+b5*c5*a52*c2+b5*c5*a53*c3+b5*c5*a54*c4-1/8),
        !            52: (+b3*a32*c2^2+b4*a42*c2^2+b4*a43*c3^2+b5*a52*c2^2+b5*a53*c3^2+b5*a54*c4^2-1/12),
        !            53: (+b4*a43*a32*c2+b5*a53*a32*c2+b5*a54*a42*c2+b5*a54*a43*c3-1/24),
        !            54: (+b2*c2^4+b3*c3^4+b4*c4^4+b5*c5^4-1/5),
        !            55: (+b3*c3^2*a32*c2+b4*c4^2*a42*c2+b4*c4^2*a43*c3+b5*c5^2*a52*c2+b5*c5^2*a53*c3+b5*c5^2*a54*c4-1/10),
        !            56: (+b3*c2^2*a32*c3+b4*c2^2*a42*c4+b4*c3^2*a43*c4+b5*c2^2*a52*c2+b5*c3^2*a53*c5+b5*c4^2*a54*c5-1/15),
        !            57: (+b4*c4*a43*a32*c2+b5*c5*a53*a32*c2+b5*c5*a54*a42*c2+b5*c5*a54*a43*c3-1/30),
        !            58: (+b3*a32^2*c2^2+b4*a42^2*c2^2+2*b4*a42*c2*a43*c3+b4*a43^2*c3^2+b5*a52^2*c2^2+b5*a53^2*c3^2+b5*a54^2*c4^2+2*b5*a52*c2*a53*c3+2*b5*a52*c2*a54*c4+2*b5*a53*c3*a54*c4-1/20),
        !            59: (+b3*a32*c2^3+b4*a42*c2^3+b4*a43*c3^3+b5*a52*c2^3+b5*a53*c3^3+b5*a54*c4^3-1/20),
        !            60: (+b4*a43*c3*a32*c2+b5*a53*c3*a32*c2+b5*a54*c4*a42*c2+b5*a54*c4*a43*c3-1/40),
        !            61: (+b4*a43*a32*c2^2+b5*a53*a32*c2^2+b5*a54*a42*c2^2+b5*a54*a43*c3^2-1/60),
        !            62: (+b5*a54*a43*a32*c2-1/120)
        !            63: ]]$
        !            64:
        !            65: /*$(hairer,runge-kutta 4,p=5 s=6,20.12.1983)
        !            66: d=q
        !            67: r=d(c2,c3,c4,c5,c6,b2,b3,b4,b5,b6,a32,a42,a43,a52,a53,
        !            68: a54,a62,a63,a64,a65)
        !            69: opt=oil*/
        !            70: Hairer4 = [
        !            71: [a65,a64,a63,a62,a54,a53,a52,a43,a42,a32,b6,b5,b4,b3,b2,c6,c5,c4,c3,c2,c51],[
        !            72: (+b2*c2+b3*c3+b4*c4+b5*c5+b6*c6-1/2),
        !            73: (+b2*c2^2+b3*c3^2+b4*c4^2+b5*c5^2+b6*c6^2-1/3),
        !            74: (+b3*a32*c2+b4*a42*c2+b4*a43*c3+b5*a52*c2+b5*a53*c3+b6*a62*c2+b6*a63*c3+b6*a64*c4+b6*a65*c5+b5*a54*c4-1/6),
        !            75: (+b2*c2^3+b3*c3^3+b4*c4^3+b5*c51^3+b6*c6^3-1/4),
        !            76: (+b3*c3*a32*c2+b4*c4*a42*c2+b4*c4*a43*c3+b5*c5*a52*c2+b6*c6*a62*c2+b6*c6*a63*c3+b6*c6*a64*c4+b6*c6*a65*c5+b5*c5*a53*c3+b5*c5*a54*c4-1/8),
        !            77: (+b3*a32*c2^2+b4*a42*c2^2+b4*a43*c3^2+b5*a52*c2^2+b6*a62*c2^2+b6*a63*c3^2+b6*a64*c4^2+b6*a65*c5^2+b5*a53*c3^2+b5*a54*c4^2-1/12),
        !            78: (+b4*a43*a32*c2+b5*a53*a32*c2+b5*a54*a42*c2+b5*a54*a43*c3+b6*a63*a32*c2+b6*a64*a42*c2+b6*a64*a43*c3+b6*a65*a52*c2+b6*a65*a53*c3+b6*a65*a54*c4-1/24),
        !            79: (+b2*c2^4+b3*c3^4+b4*c4^4+b5*c5^4+b6*c6^4-1/5),
        !            80: (+b3*c3^2*a32*c2+b4*c4^2*a42*c2+b4*c4^2*a43*c3+b5*c5^2*a52*c2+b5*c5^2*a53*c3+b5*c5^2*a54*c4+b6*c6^2*a62*c2+b6*c6^2*a63*c3+b6*c6^2*a64*c4+b6*c6^2*a65*c5-1/10),
        !            81: (+b3*c2^2*a32*c3+b4*c2^2*a42*c4+b4*c3^2*a43*c4+b5*c2^2*a52*c5+b5*c3^2*a53*c5+b5*c4^2*a54*c5+b6*c2^2*a62*c6+b6*c3^2*a63*c6+b6*c4^2*a64*c6+b6*c5^2*a65*c6-1/15),
        !            82: (+b4*c4*a43*a32*c2+b5*c5*a53*a32*c2+b5*c5*a54*a42*c2+b5*c5*a54*a43*c3+b6*c6*a63*a32*c2+b6*c6*a64*a42*c2+b6*c6*a64*a43*c2+b6*c6*a65*a52*c2+b6*c6*a65*a53*c3+b6*c6*a65*a54*c4-1/30),
        !            83: (+b3*a32^2*c2^2+b4*a42^2*c2^2+2*b4*a42*c2*a43*c3+b4*a43^2*c3^2+b5*a52^2*c2^2+b5*a53^2*c3^2+b5*a54^2*c4^2+2*b5*a52*c2*a53*c3+2*b5*a52*c2*a54*c4+2*b5*a53*c3*a54*c4+b6*a62^2*c2^2+b6*a63^2*c3^2+b6*a64^2*c4^2+b6*a65^2*c5^2+2*b6*a62*c2*a63*c3+2*b6*a62*c2*a64*c4+2*b6*a62*c2*a65*c5+2*b6*a63*c3*a64*c4+2*b6*a63*c3*a65*c5+2*b6*a64*c4*a65*c5-1/20),
        !            84: (+b3*a32*c2^3+b4*a42*c2^3+b4*a43*c3^3+b5*a52*c2^3+b5*a53*c3^3+b5*a54*c4^3+b6*a62*c2^3+b6*a63*c3^3+b6*a64*c4^3+b6*a65*c5^3-1/20),
        !            85: (+b4*a43*c3*a32*c2+b5*a53*c3*a32*c2+b5*a54*c4*a42*c2+b5*a54*c4*a43*c3+b6*a63*c3*a32*c2+b6*a64*c4*a42*c2+b6*a64*c4*a43*c3+b6*a65*c5*a52*c2+b6*a65*c5*a53*c3+b6*a65*c5*a54*c4-1/40),
        !            86: (+b4*a43*a32*c2^2+b5*a53*a32*c2^2+b5*a54*a42*c2^2+b5*a54*a43*c3^2+b6*a63*a32*c2^2+b6*a63*a42*c2^2+b6*a64*a43*c3^2+b6*a65*a52*c2^2+b6*a65*a53*c3^2+b6*a65*a54*c4^2-1/60),
        !            87: (+b5*a54*a43*a32*c2+b6*a64*a43*a32*c2+b6*a65*a53*a32*c2+b6*a65*a54*a42*c2+b6*a65*a54*a43*c3-1/20)
        !            88: ]]$
        !            89:
        !            90: /*$(butcher,runge-kutta,20 1 1984 s=3 pt=4)
        !            91: d=q
        !            92: r=d(b,c2,c3,a,b3,b2,a32,b1)
        !            93: opt=liope10*/
        !            94: Butcher = [
        !            95: [b1,a32,b2,b3,a,c3,c2,b],[
        !            96: (b1+b2+b3
        !            97: -(a+b)),
        !            98: (b2*c2+b3*c3
        !            99: -(1/2+1/2*b+b^2-a*b)),
        !           100: (b2*c2^2+b3*c3^2
        !           101: -(a*(1/3+b^2)-4/3*b-b^2-b^3)),
        !           102: (b3*a32*c2
        !           103: -(a*(1/6+1/2*b+b^2)-2/3*b-b^2-b^3)),
        !           104: (b2*c2^3+b3*c3^3
        !           105: -(1/4+1/4*b+5/2*b^2+3/2*b^3+b^4
        !           106: -a*(b+b^3))),
        !           107: (b3*c3*a32*c2
        !           108: -(1/8+3/8*b+7/4*b^2+3/2*b^3+b^4
        !           109: -a*(1/2*b+1/2*b^2+b^3))),
        !           110: (b3*a32*c2^2
        !           111: -(1/12+1/12*b+7/6*b^2+3/2*b^3+b^4
        !           112: -a*(2/3*b+b^2+b^3))),
        !           113: (1/24+7/24*b+13/12*b^2+3/2*b^3+b^4
        !           114: -a*(1/3*b+b^2+b^3))
        !           115: ]]$
        !           116:
        !           117: /*$(gerdt,10.10.84)
        !           118: d=q
        !           119: r=d(l1,l2,l3,l4,l5,l6,l7)
        !           120: opt=oil pe10*/
        !           121: Gerdt = [
        !           122: [l7,l6,l5,l4,l3,l2,l1],[
        !           123: (l1*(l4-1/2*l5+l6)),
        !           124: ((2/7*l1^2-l4)*(-10*l1+5*l2-l3)),
        !           125: ((2/7*l1^2-l4)*(3*l4-l5+l6)),
        !           126: ((-2*l1^2+l1*l2+2*l1*l3-l2^2-7*l5+21*l6) *(-3*l1+2*l2)+21*(7*l7-2*l1*l4+3/7*l1^3)),
        !           127: ((-2*l1^2+l1*l2+2*l1*l3-l2^2-7*l5+21*l6) *(2*l4-2*l5)+(7*l7-2*l1*l4+3/7*l1^3) *(-45*l1+15*l2-3*l3)),
        !           128: (2*(-2*l1^2+l1*l2+2*l1*l3-l2^2-7*l5+21*l6) *l7+(7*l7-2*l1*l4+3/7*l1^3)* (12*l4-3*l5+2*l6)),
        !           129: ((l1*(5*l1-3*l2+l3))* (2*l2-l1) +7*(l1*(2*l6-4*l4))),
        !           130: ((l1*(5*l1-3*l2+l3))* l3+7*(l1*(2*l6-4*l4))),
        !           131: ((l1*(5*l1-3*l2+l3))* (-2*l4-2*l5)+(l1*(2*l6-4*l4))* (2*l2-8*l1)+84*1/2*l1*l7),
        !           132: ((l1*(5*l1-3*l2+l3))* (8/3*l5+6*l6)+(l1*(2*l6-4*l4))* (11*l1-17/3*l2+5/3*l3)-168*1/2*l1*l7),
        !           133: (15*l7* (l1*(5*l1-3*l2+l3)) +(l1*(2*l6-4*l4))*(5*l4-2*l5) +1/2*l1*l7*(-120*l1+30*l2-6*l3)),
        !           134: (-3*(l1*(5*l1-3*l2+l3))* l7+(l1*(2*l6-4*l4))* (-1/2*l4+1/4*l5-1/2*l6)+1/2*l1*l7* (24*l1-6*l2)),
        !           135: (3*(l1*(2*l6-4*l4))* l7+1/2*l1*l7* (40*l4-8*l5+4*l6))
        !           136: ]]$
        !           137:
        !           138:
        !           139: /*$(raksanyi 1,1983 rational*functions.)
        !           140: d=f(a1,a2,a3,a4)
        !           141: r=(x1,x2,x3,x4)
        !           142: opt=oil*/
        !           143: Raksanyi = [
        !           144: [x4,x3,x2,x1],[
        !           145: (x4-(a4-a2)),
        !           146: (x1+x2+x3+x4-(a1+a3+a4)),
        !           147: (x1*x3+x1*x4+x2*x3+x3*x4-(a1*a4+a1*a3+a3*a4)),
        !           148: (x1*x3*x4-(a1*a3*a4))
        !           149: ]]$
        !           150:
        !           151:
        !           152: /*$(rose,general equilibrium model,1984)
        !           153: d=q
        !           154: r=d(u3,u4,a46)
        !           155: opt=iog*/
        !           156: Rose = [
        !           157: [u3,u4,a46],[
        !           158: /*[a46,u4,u3],[*/
        !           159: (u4^4-20/7*a46^2),
        !           160: (a46^2*u3^4+7/10*a46*u3^4+7/48*u3^4-50/27
        !           161: *a46^2-35/27*a46-49/216),
        !           162: (a46^5*u4^3+7/5*a46^4*u4^3+609/1000*a46^3
        !           163: *u4^3+49/1250*a46^2*u4^3-27391/800000*a46*u4^3
        !           164: -1029/160000*u4^3+3/7*a46^5*u3*u4^2+3/5*a46^6
        !           165: *u3*u4^2+63/200*a46^3*u3*u4^2+147/2000*a46^2
        !           166: *u3*u4^2+4137/800000*a46*u3*u4^2-7/20*a46^4
        !           167: *u3^2*u4-77/125*a46^3*u3^2*u4-23863/60000*a46^2
        !           168: *u3^2*u4-1078/9375*a46*u3^2*u4-24353/1920000
        !           169: *u3^2*u4-3/20*a46^4*u3^3-21/100*a46^3*u3^3
        !           170: -91/800*a46^2*u3^3-5887/200000*a46*u3^3
        !           171: -343/128000*u3^3)
        !           172: ]]$
        !           173:
        !           174:
        !           175:
        !           176: /*$(university of waterloo,19.03,1984)
        !           177: d=q
        !           178: r=d(a0,a2,a3,a4,a5,b0,b1,b2,b3,b4,b5,c0,c1,c2,c3,c4,c5)
        !           179: opt=oil*pe10*/
        !           180: Waterloo = [
        !           181: [c5,c4,c3,c2,c1,c0,b5,b4,b3,b2,b1,b0,a5,a4,a3,a2,a0],[
        !           182: (a4*b4),
        !           183: (a5*b1+b5+a4*b3+a3*b4),
        !           184: (a2*b2),
        !           185: (a5*b5),
        !           186: (a0*b2+b2+a4*b2+a2*b4+c2+a2*b0+a2*b1),
        !           187: (a0*b0+a0*b1+a0*b4+a3*b2+b0+b1+b4+a4*b0 +a4*b1 +a2*b5+a4*b4+c1+c4+a5*b2+a2*b3+c0),
        !           188: (a3*b0+a0*b3+a0*b5+a5*b0+b3+b5+a5*b4+a4*b3+ a4*b5+a3*b4+a5*b1+a3*b1+c3+c5-1),
        !           189: (a5*b3+a5*b5+a3*b5+a3*b3),
        !           190: (a5*b3+2*a5*b5+a3*b5),
        !           191: (a0*b5+a5*b0+a3*b4+2*a5*b4+a5*b1+b5+a4*b3 +2*a4*b5+c5),
        !           192: (a4*b0+2*a4*b4+a2*b5+b4+a4*b1+a5*b2+a0*b4 +c4),
        !           193: (a2*b4+a4*b2),
        !           194: (a4*b5+a5*b4),
        !           195: (2*a3*b3+a5*b3+a3*b5),
        !           196: (c3+a0*b3+2*b3+b5+a4*b3+a3*b0+2*a3*b1+ a5*b1+a3*b4),
        !           197: (c1+a0*b1+2*b1+a4*b1+a2*b3+b0+a3*b2+b4),
        !           198: (a2*b1+b2),
        !           199: (a5*b3+a3*b5),
        !           200: (b4+a4*b1)
        !           201: ]]$
        !           202:
        !           203:
        !           204: /*$(trinks 1,ideal a. 09.12.1983)
        !           205: d=q
        !           206: r=d(b,s,t,z,p,w)
        !           207: opt=1*/
        !           208: Trinks1 = [
        !           209: /*[z,t,w,b,p,s],[*/
        !           210: [w,p,z,t,s,b],[
        !           211: (+45*p+35*s-165*b-36),
        !           212: (+35*p+40*z+25*t-27*s),
        !           213: (+15*w+25*p*s+30*z-18*t-165*b^2),
        !           214: (-9*w+15*p*t+20*z*s),
        !           215: (w*p+2*z*t-11*b^3),
        !           216: (99*w-11*s*b+3*b^2)
        !           217: ]]$
        !           218:
        !           219:
        !           220: /*$(trinks 2,ideal p=a+f7lr.10.12.1983)
        !           221: d=q
        !           222: r=d(b,s,t,z,p,w)
        !           223: opt=il*/
        !           224: Trinks2 = [
        !           225: [w,p,z,t,s,b],[
        !           226: +45*p+35*s-165*b-36,
        !           227: +35*p+40*z+25*t-27*s,
        !           228: +15*w+25*p*s+30*z-18*t-165*b^2,
        !           229: -9*w+15*p*t+20*z*s,
        !           230: w*p+2*z*t-11*b^3,
        !           231: 99*w-11*s*b+3*b^2,
        !           232: b^2+33/50*b+2673/10000
        !           233: ]]$
        !           234:
        !           235: Ge = [
        !           236: [x,y,z,t,u,v,w],[
        !           237: (w*(t-1/2*z+y)),
        !           238: ((2/7*w^2-t)*(-10*w+5*v-u)),
        !           239: ((2/7*w^2-t)*(3*t-z+y)),
        !           240: ((-2*w^2+w*v+2*w*u-v^2-7*z+21*y) *(-3*w+2*v)+21*(7*x-2*w*t+3/7*w^3)),
        !           241: ((-2*w^2+w*v+2*w*u-v^2-7*z+21*y) *(2*t-2*z)+(7*x-2*w*t+3/7*w^3) *(-45*w+15*v-3*u)),
        !           242: (2*(-2*w^2+w*v+2*w*u-v^2-7*z+21*y) *x+(7*x-2*w*t+3/7*w^3)* (12*t-3*z+2*y)),
        !           243: ((w*(5*w-3*v+u))* (2*v-w) +7*(w*(2*y-4*t))),
        !           244: ((w*(5*w-3*v+u))* u+7*(w*(2*y-4*t))),
        !           245: ((w*(5*w-3*v+u))* (-2*t-2*z)+(w*(2*y-4*t))* (2*v-8*w)+84*1/2*w*x),
        !           246: ((w*(5*w-3*v+u))* (8/3*z+6*y)+(w*(2*y-4*t))* (11*w-17/3*v+5/3*u)-168*1/2*w*x),
        !           247: (15*x* (w*(5*w-3*v+u)) +(w*(2*y-4*t))*(5*t-2*z) +1/2*w*x*(-120*w+30*v-6*u)),
        !           248: (-3*(w*(5*w-3*v+u))* x+(w*(2*y-4*t))* (-1/2*t+1/4*z-1/2*y)+1/2*w*x* (24*w-6*v)),
        !           249: (3*(w*(2*y-4*t))* x+1/2*w*x* (40*t-8*z+4*y))
        !           250: ]]$
        !           251: end$

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>