Annotation of OpenXM_contrib2/asir2000/lib/cyclic, Revision 1.1
1.1 ! noro 1: /* $OpenXM: OpenXM/src/asir99/lib/cyclic,v 1.1.1.1 1999/11/10 08:12:30 noro Exp $ */
! 2: def mkc(L,N)
! 3: {
! 4: if (L >= N) L -= N;
! 5: if (L >= 0)
! 6: return strtov("c"+rtostr(L));
! 7: return 0;
! 8: }
! 9:
! 10: /* generate cyclic N-th roots systems */
! 11:
! 12: def cyclic(N)
! 13: {
! 14: R = [];
! 15: for (L = 1; L <= N; L++) {
! 16: for (A = 0, I = 0; I <= N-1; I++) {
! 17: for (B = 1,J = I; J < L+I; J++) {
! 18: B *= mkc(J,N);
! 19: }
! 20: A += B;
! 21: }
! 22: A = ptozp(A);
! 23: if (L == N)
! 24: A += -1;
! 25: R = cons(A,R);
! 26: }
! 27: return R;
! 28: }
! 29:
! 30: /* generate homogenized cyclic N-th roots systems */
! 31:
! 32: def hcyclic(N)
! 33: {
! 34: R = [];
! 35: for (L = 1; L <= N; L++) {
! 36: for (A = 0, I = 0; I <= N-1; I++) {
! 37: for (B = 1,J = I; J < L+I; J++) {
! 38: B *= mkc(J,N);
! 39: }
! 40: A += B;
! 41: }
! 42: A = ptozp(A);
! 43: if (L == N)
! 44: A += -c^N;
! 45: R = cons(A,R);
! 46: }
! 47: return R;
! 48: }
! 49:
! 50: def homo(X)
! 51: {
! 52: X=nm(red(subst(X,a,a/t,b,b/t,c,c/t)));
! 53: }
! 54:
! 55: BJ6 = [a^2*b*c+a*b^2*c+a*b*c^2+a*b+b*c+c*a,a^2*b^2*c+a*b^2*c^2+b*c^2+c+a+a^2*b,
! 56: a^2*b^2*c^2+b^2*c^2+c^2+1+a^2+a^2*b^2]$
! 57: HBJ6 = [homo(BJ6[0]),homo(BJ6[1]),homo(BJ6[2])]$
! 58: BJ7 = [nm(red(a+b+c+1+1/c+1/b+1/a)),nm(red(a*b+b*c+c+1/c+1/(b*c)+1/(a*b)+1)),
! 59: nm(red(a*b*c+b*c+1+1/(b*c)+1/(a*b*c)+1/b+b))]$
! 60: HBJ7 = [homo(BJ7[0]),homo(BJ7[1]),homo(BJ7[2])]$
! 61: end$
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>