Annotation of OpenXM_contrib2/asir2000/lib/cyclic, Revision 1.1.1.1
1.1 noro 1: /* $OpenXM: OpenXM/src/asir99/lib/cyclic,v 1.1.1.1 1999/11/10 08:12:30 noro Exp $ */
2: def mkc(L,N)
3: {
4: if (L >= N) L -= N;
5: if (L >= 0)
6: return strtov("c"+rtostr(L));
7: return 0;
8: }
9:
10: /* generate cyclic N-th roots systems */
11:
12: def cyclic(N)
13: {
14: R = [];
15: for (L = 1; L <= N; L++) {
16: for (A = 0, I = 0; I <= N-1; I++) {
17: for (B = 1,J = I; J < L+I; J++) {
18: B *= mkc(J,N);
19: }
20: A += B;
21: }
22: A = ptozp(A);
23: if (L == N)
24: A += -1;
25: R = cons(A,R);
26: }
27: return R;
28: }
29:
30: /* generate homogenized cyclic N-th roots systems */
31:
32: def hcyclic(N)
33: {
34: R = [];
35: for (L = 1; L <= N; L++) {
36: for (A = 0, I = 0; I <= N-1; I++) {
37: for (B = 1,J = I; J < L+I; J++) {
38: B *= mkc(J,N);
39: }
40: A += B;
41: }
42: A = ptozp(A);
43: if (L == N)
44: A += -c^N;
45: R = cons(A,R);
46: }
47: return R;
48: }
49:
50: def homo(X)
51: {
52: X=nm(red(subst(X,a,a/t,b,b/t,c,c/t)));
53: }
54:
55: BJ6 = [a^2*b*c+a*b^2*c+a*b*c^2+a*b+b*c+c*a,a^2*b^2*c+a*b^2*c^2+b*c^2+c+a+a^2*b,
56: a^2*b^2*c^2+b^2*c^2+c^2+1+a^2+a^2*b^2]$
57: HBJ6 = [homo(BJ6[0]),homo(BJ6[1]),homo(BJ6[2])]$
58: BJ7 = [nm(red(a+b+c+1+1/c+1/b+1/a)),nm(red(a*b+b*c+c+1/c+1/(b*c)+1/(a*b)+1)),
59: nm(red(a*b*c+b*c+1+1/(b*c)+1/(a*b*c)+1/b+b))]$
60: HBJ7 = [homo(BJ7[0]),homo(BJ7[1]),homo(BJ7[2])]$
61: end$
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>