[BACK]Return to fff CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2000 / lib

Annotation of OpenXM_contrib2/asir2000/lib/fff, Revision 1.2

1.2     ! noro        1: /*
        !             2:  * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
        !             3:  * All rights reserved.
        !             4:  *
        !             5:  * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
        !             6:  * non-exclusive and royalty-free license to use, copy, modify and
        !             7:  * redistribute, solely for non-commercial and non-profit purposes, the
        !             8:  * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
        !             9:  * conditions of this Agreement. For the avoidance of doubt, you acquire
        !            10:  * only a limited right to use the SOFTWARE hereunder, and FLL or any
        !            11:  * third party developer retains all rights, including but not limited to
        !            12:  * copyrights, in and to the SOFTWARE.
        !            13:  *
        !            14:  * (1) FLL does not grant you a license in any way for commercial
        !            15:  * purposes. You may use the SOFTWARE only for non-commercial and
        !            16:  * non-profit purposes only, such as academic, research and internal
        !            17:  * business use.
        !            18:  * (2) The SOFTWARE is protected by the Copyright Law of Japan and
        !            19:  * international copyright treaties. If you make copies of the SOFTWARE,
        !            20:  * with or without modification, as permitted hereunder, you shall affix
        !            21:  * to all such copies of the SOFTWARE the above copyright notice.
        !            22:  * (3) An explicit reference to this SOFTWARE and its copyright owner
        !            23:  * shall be made on your publication or presentation in any form of the
        !            24:  * results obtained by use of the SOFTWARE.
        !            25:  * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
        !            26:  * e-mail at risa-admin@flab.fujitsu.co.jp of the detailed specification
        !            27:  * for such modification or the source code of the modified part of the
        !            28:  * SOFTWARE.
        !            29:  *
        !            30:  * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
        !            31:  * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
        !            32:  * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
        !            33:  * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
        !            34:  * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
        !            35:  * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
        !            36:  * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
        !            37:  * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
        !            38:  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
        !            39:  * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
        !            40:  * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
        !            41:  * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
        !            42:  * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
        !            43:  * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
        !            44:  * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
        !            45:  * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
        !            46:  * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
        !            47:  *
        !            48:  * $OpenXM: OpenXM_contrib2/asir2000/lib/fff,v 1.1.1.1 1999/12/03 07:39:11 noro Exp $
        !            49: */
1.1       noro       50: /*
                     51:        fff : Univariate factorizer over a finite field.
                     52:
                     53:     Revision History:
                     54:
                     55:     99/05/18    noro    the first official version
                     56:     99/06/11    noro
                     57:     99/07/27    noro
                     58: */
                     59:
                     60: #include "defs.h"
                     61:
                     62: extern TPMOD,TQMOD$
                     63:
                     64: /*
                     65:   Input : a univariate polynomial F
                     66:   Output: a list [[F1,M1],[F2,M2],...], where
                     67:           Fi is a monic irreducible factor, Mi is its multiplicity.
                     68:           The leading coefficient of F is abondoned.
                     69: */
                     70:
                     71: def fctr_ff(F)
                     72: {
                     73:        F = simp_ff(F);
                     74:        F = F/LCOEF(F);
                     75:        L = sqfr_ff(F);
                     76:        for ( R = [], T = L; T != []; T = cdr(T) ) {
                     77:                S = car(T); A = S[0]; E = S[1];
                     78:                B = ddd_ff(A);
                     79:                R = append(append_mult_ff(B,E),R);
                     80:        }
                     81:        return R;
                     82: }
                     83:
                     84: /*
                     85:   Input : a list of polynomial L; an integer E
                     86:   Output: a list s.t. [[L0,E],[L1,E],...]
                     87:           where Li = L[i]/leading coef of L[i]
                     88: */
                     89:
                     90: def append_mult_ff(L,E)
                     91: {
                     92:        for ( T = L, R = []; T != []; T = cdr(T) )
                     93:                R = cons([car(T)/LCOEF(car(T)),E],R);
                     94:        return R;
                     95: }
                     96:
                     97: /*
                     98:        Input : a polynomial F
                     99:        Output: a list [[F1,M1],[F2,M2],...]
                    100:                where Fi is a square free factor,
                    101:                Mi is its multiplicity.
                    102: */
                    103:
                    104: def sqfr_ff(F)
                    105: {
                    106:        V = var(F);
                    107:        F1 = diff(F,V);
                    108:        L = [];
                    109:        /* F=H*Fq^p => F'=H'*Fq^p => gcd(F,F')=gcd(H,H')*Fq^p */
                    110:        if ( F1 != 0 ) {
                    111:                F1 = F1/LCOEF(F1);
                    112:                F2 = ugcd(F,F1);
                    113:                /* FLAT = H/gcd(H,H') : square free part of H */
                    114:                FLAT = sdiv(F,F2);
                    115:                I = 0;
                    116:                /* square free factorization of H */
                    117:                while ( deg(FLAT,V) ) {
                    118:                        while ( 1 ) {
                    119:                                QR = sqr(F,FLAT);
                    120:                                if ( !QR[1] ) {
                    121:                                        F = QR[0]; I++;
                    122:                                } else
                    123:                                        break;
                    124:                        }
                    125:                        if ( !deg(F,V) )
                    126:                                FLAT1 = simp_ff(1);
                    127:                        else
                    128:                                FLAT1 = ugcd(F,FLAT);
                    129:                        G = sdiv(FLAT,FLAT1);
                    130:                        FLAT = FLAT1;
                    131:                        L = cons([G,I],L);
                    132:                }
                    133:        }
                    134:        /* now F = Fq^p */
                    135:        if ( deg(F,V) ) {
                    136:                Char = characteristic_ff();
                    137:                T = sqfr_ff(pthroot_p_ff(F));
                    138:                for ( R = []; T != []; T = cdr(T) ) {
                    139:                        H = car(T); R = cons([H[0],Char*H[1]],R);
                    140:                }
                    141:        } else
                    142:                R = [];
                    143:        return append(L,R);
                    144: }
                    145:
                    146: /*
                    147:        Input : a polynomial F
                    148:        Output: F^(1/char)
                    149: */
                    150:
                    151: def pthroot_p_ff(F)
                    152: {
                    153:        V = var(F);
                    154:        DVR = characteristic_ff();
                    155:        PWR = DVR^(extdeg_ff()-1);
                    156:        for ( T = F, R = 0; T; ) {
                    157:                D1 = deg(T,V); C = coef(T,D1,V); T -= C*V^D1;
                    158:                R += C^PWR*V^idiv(D1,DVR);
                    159:        }
                    160:        return R;
                    161: }
                    162:
                    163: /*
                    164:        Input : a polynomial F of degree N
                    165:        Output: a list [V^Ord mod F,Tab]
                    166:                where V = var(F), Ord = field order
                    167:                Tab[i] = V^(i*Ord) mod F (i=0,...,N-1)
                    168: */
                    169:
                    170: def tab_ff(F)
                    171: {
                    172:        V = var(F);
                    173:        N = deg(F,V);
                    174:        F = F/LCOEF(F);
                    175:        XP = pwrmod_ff(F);
                    176:        R = pwrtab_ff(F,XP);
                    177:        return R;
                    178: }
                    179:
                    180: /*
                    181:        Input : a square free polynomial F
                    182:        Output: a list [F1,F2,...]
                    183:                where Fi is an irreducible factor of F.
                    184: */
                    185:
                    186: def ddd_ff(F)
                    187: {
                    188:        V = var(F);
                    189:        if ( deg(F,V) == 1 )
                    190:                return [F];
                    191:        TAB = tab_ff(F);
                    192:        for ( I = 1, W = V, L = []; 2*I <= deg(F,V); I++ ) {
                    193:                lazy_lm(1);
                    194:                for ( T = 0, K = 0; K <= deg(W,V); K++ )
                    195:                        if ( C = coef(W,K,V) )
                    196:                                T += TAB[K]*C;
                    197:                lazy_lm(0);
                    198:                W = simp_ff(T);
                    199:                GCD = ugcd(F,W-V);
                    200:                if ( deg(GCD,V) ) {
                    201:                        L = append(berlekamp_ff(GCD,I,TAB),L);
                    202:                        F = sdiv(F,GCD);
                    203:                        W = urem(W,F);
                    204:                }
                    205:        }
                    206:        if ( deg(F,V) )
                    207:                return cons(F,L);
                    208:        else
                    209:                return L;
                    210: }
                    211:
                    212: /*
                    213:        Input : a polynomial
                    214:        Output: 1 if F is irreducible
                    215:                        0 otherwise
                    216: */
                    217:
                    218: def irredcheck_ff(F)
                    219: {
                    220:        V = var(F);
                    221:        if ( deg(F,V) <= 1 )
                    222:                return 1;
                    223:        F1 = diff(F,V);
                    224:        if ( !F1 )
                    225:                return 0;
                    226:        F1 = F1/LCOEF(F1);
                    227:        if ( deg(ugcd(F,F1),V) > 0 )
                    228:                return 0;
                    229:        TAB = tab_ff(F);
                    230:        for ( I = 1, W = V, L = []; 2*I <= deg(F,V); I++ ) {
                    231:                for ( T = 0, K = 0; K <= deg(W,V); K++ )
                    232:                        if ( C = coef(W,K,V) )
                    233:                                T += TAB[K]*C;
                    234:                W = T;
                    235:                GCD = ugcd(F,W-V);
                    236:                if ( deg(GCD,V) )
                    237:                        return 0;
                    238:        }
                    239:        return 1;
                    240: }
                    241:
                    242: /*
                    243:        Input : a square free (canonical) modular polynomial F
                    244:        Output: a list of polynomials [LF,CF,XP] where
                    245:                LF=the product of all the linear factors
                    246:                CF=F/LF
                    247:                XP=x^field_order mod CF
                    248: */
                    249:
                    250: def meq_linear_part_ff(F)
                    251: {
                    252:        F = simp_ff(F);
                    253:        F = F/LCOEF(F);
                    254:        V = var(F);
                    255:        if ( deg(F,V) == 1 )
                    256:                return [F,1,0];
                    257: T0 = time()[0];
                    258:        XP = pwrmod_ff(F);
                    259:        GCD = ugcd(F,XP-V);
                    260:        if ( deg(GCD,V) ) {
                    261:                GCD = GCD/LCOEF(GCD);
                    262:                F = sdiv(F,GCD);
                    263:                XP = srem(XP,F);
                    264:                R = GCD;
                    265:        } else
                    266:                R = 1;
                    267: TPMOD += time()[0]-T0;
                    268:        return [R,F,XP];
                    269: }
                    270:
                    271: /*
                    272:        Input : a square free polynomial F s.t.
                    273:                all the irreducible factors of F
                    274:                has the same degree D.
                    275:        Output: D
                    276: */
                    277:
                    278: def meq_ed_ff(F,XP)
                    279: {
                    280: T0 = time()[0];
                    281:        F = simp_ff(F);
                    282:        F = F/LCOEF(F);
                    283:        V = var(F);
                    284:
                    285:        TAB = pwrtab_ff(F,XP);
                    286:
                    287:        D = deg(F,V);
                    288:        for ( I = 1, W = V, L = []; 2*I <= D; I++ ) {
                    289:                lazy_lm(1);
                    290:                for ( T = 0, K = 0; K <= deg(W,V); K++ )
                    291:                        if ( C = coef(W,K,V) )
                    292:                                T += TAB[K]*C;
                    293:                lazy_lm(0);
                    294:                W = simp_ff(T);
                    295:                if ( W == V ) {
                    296:                        D = I; break;
                    297:                }
                    298:        }
                    299: TQMOD += time()[0]-T0;
                    300:        return D;
                    301: }
                    302:
                    303: /*
                    304:        Input : a square free polynomial F
                    305:                an integer E
                    306:             an array TAB
                    307:             where all the irreducible factors of F has degree E
                    308:             and TAB[i] = V^(i*Ord) mod F. (V=var(F), Ord=field order)
                    309:     Output: a list containing all the irreducible factors of F
                    310: */
                    311:
                    312: def berlekamp_ff(F,E,TAB)
                    313: {
                    314:        V = var(F);
                    315:        N = deg(F,V);
                    316:        Q = newmat(N,N);
                    317:        for ( J = 0; J < N; J++ ) {
                    318:                T = urem(TAB[J],F);
                    319:                for ( I = 0; I < N; I++ ) {
                    320:                        Q[I][J] = coef(T,I);
                    321:                }
                    322:        }
                    323:        for ( I = 0; I < N; I++ )
                    324:                Q[I][I] -= simp_ff(1);
                    325:        L = nullspace_ff(Q); MT = L[0]; IND = L[1];
                    326:        NF0 = N/E;
                    327:        PS = null_to_poly_ff(MT,IND,V);
                    328:        R = newvect(NF0); R[0] = F/LCOEF(F);
                    329:        for ( I = 1, NF = 1; NF < NF0 && I < NF0; I++ ) {
                    330:                PSI = PS[I];
                    331:                MP = minipoly_ff(PSI,F);
                    332:                ROOT = find_root_ff(MP); NR = length(ROOT);
                    333:                for ( J = 0; J < NF; J++ ) {
                    334:                        if ( deg(R[J],V) == E )
                    335:                                continue;
                    336:                        for ( K = 0; K < NR; K++ ) {
                    337:                                GCD = ugcd(R[J],PSI-ROOT[K]);
                    338:                                if ( deg(GCD,V) > 0 && deg(GCD,V) < deg(R[J],V) ) {
                    339:                                        Q = sdiv(R[J],GCD);
                    340:                                        R[J] = Q; R[NF++] = GCD;
                    341:                                }
                    342:                        }
                    343:                }
                    344:        }
                    345:        return vtol(R);
                    346: }
                    347:
                    348: /*
                    349:        Input : a matrix MT
                    350:                an array IND
                    351:                an indeterminate V
                    352:             MT is a matrix after Gaussian elimination
                    353:             IND[I] = 0 means that i-th column of MT represents a basis
                    354:             element of the null space.
                    355:        Output: an array R which contains all the basis element of
                    356:                 the null space of MT. Here, a basis element E is represented
                    357:                 as a polynomial P of V s.t. coef(P,i) = E[i].
                    358: */
                    359:
                    360: def null_to_poly_ff(MT,IND,V)
                    361: {
                    362:        N = size(MT)[0];
                    363:        for ( I = 0, J = 0; I < N; I++ )
                    364:                if ( IND[I] )
                    365:                        J++;
                    366:        R = newvect(J);
                    367:        for ( I = 0, L = 0; I < N; I++ ) {
                    368:                if ( !IND[I] )
                    369:                        continue;
                    370:                for ( J = K = 0, T = 0; J < N; J++ )
                    371:                        if ( !IND[J] )
                    372:                                T += MT[K++][I]*V^J;
                    373:                        else if ( J == I )
                    374:                                T -= V^I;
                    375:                R[L++] = simp_ff(T);
                    376:        }
                    377:        return R;
                    378: }
                    379:
                    380: /*
                    381:        Input : a polynomial P, a polynomial F
                    382:        Output: a minimal polynomial MP(V) of P mod F.
                    383: */
                    384:
                    385: def minipoly_ff(P,F)
                    386: {
                    387:        V = var(P);
                    388:        P0 = P1 = simp_ff(1);
                    389:        L = [[P0,P0]];
                    390:        while ( 1 ) {
                    391:                /* P0 = V^K, P1 = P^K mod F */
                    392:                P0 *= V;
                    393:                P1 = urem(P*P1,F);
                    394:                /*
                    395:                NP0 = P0-c1L1_0-c2L2_0-...,
                    396:             NP1 is a normal form w.r.t. [L1_1,L2_1,...]
                    397:                    NP1 = P1-c1L1_1-c2L2_1-...,
                    398:             NP0 represents the normal form computation.
                    399:             */
                    400:                L1 = lnf_ff(P0,P1,L,V); NP0 = L1[0]; NP1 = L1[1];
                    401:                if ( !NP1 )
                    402:                        return NP0;
                    403:                else
                    404:                        L = lnf_insert([NP0,NP1],L,V);
                    405:        }
                    406: }
                    407:
                    408: /*
                    409:        Input ; a list of polynomials [P0,P1] = [V^K,P^K mod F]
                    410:                a sorted list L=[[L1_0,L1_1],[L2_0,L2_1],...]
                    411:                of previously computed pairs of polynomials
                    412:                an indeterminate V
                    413:        Output: a list of polynomials [NP0,NP1]
                    414:                where NP1 = P1-c1L1_1-c2L2_1-...,
                    415:                      NP0 = P0-c1L1_0-c2L2_0-...,
                    416:             NP1 is a normal form w.r.t. [L1_1,L2_1,...]
                    417:             NP0 represents the normal form computation.
                    418:                [L1_1,L_2_1,...] is sorted so that it is a triangular
                    419:                linear basis s.t. deg(Li_1) > deg(Lj_1) for i<j.
                    420: */
                    421:
                    422: def lnf_ff(P0,P1,L,V)
                    423: {
                    424:        NP0 = P0; NP1 = P1;
                    425:        for ( T = L; T != []; T = cdr(T) ) {
                    426:                Q = car(T);
                    427:                D1 = deg(NP1,V);
                    428:                if ( D1 == deg(Q[1],V) ) {
                    429:                        H = -coef(NP1,D1,V)/coef(Q[1],D1,V);
                    430:                        NP0 += Q[0]*H;
                    431:                        NP1 += Q[1]*H;
                    432:                }
                    433:        }
                    434:        return [NP0,NP1];
                    435: }
                    436:
                    437: /*
                    438:        Input : a pair of polynomial P=[P0,P1],
                    439:                a list L,
                    440:                an indeterminate V
                    441:        Output: a list L1 s.t. L1 contains P and L
                    442:                and L1 is sorted in the decreasing order
                    443:                w.r.t. the degree of the second element
                    444:                of elements in L1.
                    445: */
                    446:
                    447: def lnf_insert(P,L,V)
                    448: {
                    449:        if ( L == [] )
                    450:                return [P];
                    451:        else {
                    452:                P0 = car(L);
                    453:                if ( deg(P0[1],V) > deg(P[1],V) )
                    454:                        return cons(P0,lnf_insert(P,cdr(L),V));
                    455:                else
                    456:                        return cons(P,L);
                    457:        }
                    458: }
                    459:
                    460: /*
                    461:        Input : a square free polynomial F s.t.
                    462:                all the irreducible factors of F
                    463:                has the degree E.
                    464:        Output: a list containing all the irreducible factors of F
                    465: */
                    466:
                    467: def c_z_ff(F,E)
                    468: {
                    469:        Type = field_type_ff();
                    470:        if ( Type == 1 || Type == 3 )
                    471:                return c_z_lm(F,E);
                    472:        else
                    473:                return c_z_gf2n(F,E);
                    474: }
                    475:
                    476: /*
                    477:        Input : a square free polynomial P s.t. P splits into linear factors
                    478:        Output: a list containing all the root of P
                    479: */
                    480:
                    481: def find_root_ff(P)
                    482: {
                    483:        V = var(P);
                    484:        L = c_z_ff(P,1);
                    485:        for ( T = L, U = []; T != []; T = cdr(T) ) {
                    486:                S = car(T)/LCOEF(car(T)); U = cons(-coef(S,0,V),U);
                    487:        }
                    488:        return U;
                    489: }
                    490:
                    491: /*
                    492:        Input : a square free polynomial F s.t.
                    493:                all the irreducible factors of F
                    494:                has the degree E.
                    495:        Output: an irreducible factor of F
                    496: */
                    497:
                    498: def c_z_one_ff(F,E)
                    499: {
                    500:        Type = field_type_ff();
                    501:        if ( Type == 1 || Type == 3 )
                    502:                return c_z_one_lm(F,E);
                    503:        else
                    504:                return c_z_one_gf2n(F,E);
                    505: }
                    506:
                    507: /*
                    508:        Input : a square free polynomial P s.t. P splits into linear factors
                    509:        Output: a list containing a root of P
                    510: */
                    511:
                    512: def find_one_root_ff(P)
                    513: {
                    514:        V = var(P);
                    515:        LF = c_z_one_ff(P,1);
                    516:        U = -coef(LF/LCOEF(LF),0,V);
                    517:        return [U];
                    518: }
                    519:
                    520: /*
                    521:        Input : an integer N; an indeterminate V
                    522:        Output: a polynomial F s.t. var(F) = V, deg(F) < N
                    523:                and its coefs are random numbers in
                    524:                the ground field.
                    525: */
                    526:
                    527: def randpoly_ff(N,V)
                    528: {
                    529:        for ( I = 0, S = 0; I < N; I++ )
                    530:                S += random_ff()*V^I;
                    531:        return S;
                    532: }
                    533:
                    534: /*
                    535:        Input : an integer N; an indeterminate V
                    536:        Output: a monic polynomial F s.t. var(F) = V, deg(F) = N-1
                    537:                and its coefs are random numbers in
                    538:                the ground field except for the leading term.
                    539: */
                    540:
                    541: def monic_randpoly_ff(N,V)
                    542: {
                    543:        for ( I = 0, N1 = N-1, S = 0; I < N1; I++ )
                    544:                S += random_ff()*V^I;
                    545:        return V^N1+S;
                    546: }
                    547:
                    548: /* GF(p) specific functions */
                    549:
                    550: /*
                    551:        Input : a square free polynomial F s.t.
                    552:                all the irreducible factors of F
                    553:                has the degree E.
                    554:        Output: a list containing all the irreducible factors of F
                    555: */
                    556:
                    557: def c_z_lm(F,E)
                    558: {
                    559:        V = var(F);
                    560:        N = deg(F,V);
                    561:        if ( N == E )
                    562:                return [F];
                    563:        M = field_order_ff();
                    564:        K = idiv(N,E);
                    565:        L = [F];
                    566:        while ( 1 ) {
                    567:                W = monic_randpoly_ff(2*E,V);
                    568:                T = generic_pwrmod_ff(W,F,idiv(M^E-1,2));
                    569:                W = T-1;
                    570:                if ( !W )
                    571:                        continue;
                    572:                G = ugcd(F,W);
                    573:                if ( deg(G,V) && deg(G,V) < N ) {
                    574:                        L1 = c_z_lm(G,E);
                    575:                        L2 = c_z_lm(sdiv(F,G),E);
                    576:                        return append(L1,L2);
                    577:                }
                    578:        }
                    579: }
                    580:
                    581: /*
                    582:        Input : a square free polynomial F s.t.
                    583:                all the irreducible factors of F
                    584:                has the degree E.
                    585:        Output: an irreducible factor of F
                    586: */
                    587:
                    588: def c_z_one_lm(F,E)
                    589: {
                    590:        V = var(F);
                    591:        N = deg(F,V);
                    592:        if ( N == E )
                    593:                return F;
                    594:        M = field_order_ff();
                    595:        K = idiv(N,E);
                    596:        while ( 1 ) {
                    597:                W = monic_randpoly_ff(2*E,V);
                    598:                T = generic_pwrmod_ff(W,F,idiv(M^E-1,2));
                    599:                W = T-1;
                    600:                if ( W ) {
                    601:                        G = ugcd(F,W);
                    602:                        D = deg(G,V);
                    603:                        if ( D && D < N ) {
                    604:                                if ( 2*D <= N ) {
                    605:                                        F1 = G; F2 = sdiv(F,G);
                    606:                                } else {
                    607:                                        F2 = G; F1 = sdiv(F,G);
                    608:                                }
                    609:                                return c_z_one_lm(F1,E);
                    610:                        }
                    611:                }
                    612:        }
                    613: }
                    614:
                    615: /* GF(2^n) specific functions */
                    616:
                    617: /*
                    618:        Input : a square free polynomial F s.t.
                    619:                all the irreducible factors of F
                    620:                has the degree E.
                    621:        Output: a list containing all the irreducible factors of F
                    622: */
                    623:
                    624: def c_z_gf2n(F,E)
                    625: {
                    626:        V = var(F);
                    627:        N = deg(F,V);
                    628:        if ( N == E )
                    629:                return [F];
                    630:        K = idiv(N,E);
                    631:        L = [F];
                    632:        while ( 1 ) {
                    633:                W = randpoly_ff(2*E,V);
                    634:                T = tracemod_gf2n(W,F,E);
                    635:                W = T-1;
                    636:                if ( !W )
                    637:                        continue;
                    638:                G = ugcd(F,W);
                    639:                if ( deg(G,V) && deg(G,V) < N ) {
                    640:                        L1 = c_z_gf2n(G,E);
                    641:                        L2 = c_z_gf2n(sdiv(F,G),E);
                    642:                        return append(L1,L2);
                    643:                }
                    644:        }
                    645: }
                    646:
                    647: /*
                    648:        Input : a square free polynomial F s.t.
                    649:                all the irreducible factors of F
                    650:                has the degree E.
                    651:        Output: an irreducible factor of F
                    652: */
                    653:
                    654: def c_z_one_gf2n(F,E)
                    655: {
                    656:        V = var(F);
                    657:        N = deg(F,V);
                    658:        if ( N == E )
                    659:                return F;
                    660:        K = idiv(N,E);
                    661:        while ( 1 ) {
                    662:                W = randpoly_ff(2*E,V);
                    663:                T = tracemod_gf2n(W,F,E);
                    664:                W = T-1;
                    665:                if ( W ) {
                    666:                        G = ugcd(F,W);
                    667:                        D = deg(G,V);
                    668:                        if ( D && D < N ) {
                    669:                                if ( 2*D <= N ) {
                    670:                                        F1 = G; F2 = sdiv(F,G);
                    671:                                } else {
                    672:                                        F2 = G; F1 = sdiv(F,G);
                    673:                                }
                    674:                                return c_z_one_gf2n(F1,E);
                    675:                        }
                    676:                }
                    677:        }
                    678: }
                    679:
                    680: /*
                    681:        Input : an integer D
                    682:        Output: an irreducible polynomial F over GF(2)
                    683:                of degree D.
                    684: */
                    685:
                    686: def defpoly_mod2(D)
                    687: {
                    688:        return gf2ntop(irredpoly_up2(D,0));
                    689: }
                    690:
                    691: def dummy_time() {
                    692:        return [0,0,0,0];
                    693: }
                    694: end$

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>