[BACK]Return to fff CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2000 / lib

Annotation of OpenXM_contrib2/asir2000/lib/fff, Revision 1.4

1.2       noro        1: /*
                      2:  * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
                      3:  * All rights reserved.
                      4:  *
                      5:  * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
                      6:  * non-exclusive and royalty-free license to use, copy, modify and
                      7:  * redistribute, solely for non-commercial and non-profit purposes, the
                      8:  * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
                      9:  * conditions of this Agreement. For the avoidance of doubt, you acquire
                     10:  * only a limited right to use the SOFTWARE hereunder, and FLL or any
                     11:  * third party developer retains all rights, including but not limited to
                     12:  * copyrights, in and to the SOFTWARE.
                     13:  *
                     14:  * (1) FLL does not grant you a license in any way for commercial
                     15:  * purposes. You may use the SOFTWARE only for non-commercial and
                     16:  * non-profit purposes only, such as academic, research and internal
                     17:  * business use.
                     18:  * (2) The SOFTWARE is protected by the Copyright Law of Japan and
                     19:  * international copyright treaties. If you make copies of the SOFTWARE,
                     20:  * with or without modification, as permitted hereunder, you shall affix
                     21:  * to all such copies of the SOFTWARE the above copyright notice.
                     22:  * (3) An explicit reference to this SOFTWARE and its copyright owner
                     23:  * shall be made on your publication or presentation in any form of the
                     24:  * results obtained by use of the SOFTWARE.
                     25:  * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
1.3       noro       26:  * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
1.2       noro       27:  * for such modification or the source code of the modified part of the
                     28:  * SOFTWARE.
                     29:  *
                     30:  * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
                     31:  * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
                     32:  * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
                     33:  * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
                     34:  * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
                     35:  * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
                     36:  * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
                     37:  * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
                     38:  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
                     39:  * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
                     40:  * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
                     41:  * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
                     42:  * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
                     43:  * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
                     44:  * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
                     45:  * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
                     46:  * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
                     47:  *
1.4     ! noro       48:  * $OpenXM: OpenXM_contrib2/asir2000/lib/fff,v 1.3 2000/08/22 05:04:21 noro Exp $
1.2       noro       49: */
1.1       noro       50: /*
                     51:        fff : Univariate factorizer over a finite field.
                     52:
                     53:     Revision History:
                     54:
                     55:     99/05/18    noro    the first official version
                     56:     99/06/11    noro
                     57:     99/07/27    noro
                     58: */
                     59:
                     60: #include "defs.h"
                     61:
                     62: extern TPMOD,TQMOD$
                     63:
                     64: /*
                     65:   Input : a univariate polynomial F
                     66:   Output: a list [[F1,M1],[F2,M2],...], where
                     67:           Fi is a monic irreducible factor, Mi is its multiplicity.
                     68:           The leading coefficient of F is abondoned.
                     69: */
                     70:
                     71: def fctr_ff(F)
                     72: {
                     73:        F = simp_ff(F);
                     74:        F = F/LCOEF(F);
                     75:        L = sqfr_ff(F);
                     76:        for ( R = [], T = L; T != []; T = cdr(T) ) {
                     77:                S = car(T); A = S[0]; E = S[1];
                     78:                B = ddd_ff(A);
                     79:                R = append(append_mult_ff(B,E),R);
                     80:        }
                     81:        return R;
                     82: }
                     83:
                     84: /*
                     85:   Input : a list of polynomial L; an integer E
                     86:   Output: a list s.t. [[L0,E],[L1,E],...]
                     87:           where Li = L[i]/leading coef of L[i]
                     88: */
                     89:
                     90: def append_mult_ff(L,E)
                     91: {
                     92:        for ( T = L, R = []; T != []; T = cdr(T) )
                     93:                R = cons([car(T)/LCOEF(car(T)),E],R);
                     94:        return R;
                     95: }
                     96:
                     97: /*
                     98:        Input : a polynomial F
                     99:        Output: a list [[F1,M1],[F2,M2],...]
                    100:                where Fi is a square free factor,
                    101:                Mi is its multiplicity.
                    102: */
                    103:
                    104: def sqfr_ff(F)
                    105: {
                    106:        V = var(F);
                    107:        F1 = diff(F,V);
                    108:        L = [];
                    109:        /* F=H*Fq^p => F'=H'*Fq^p => gcd(F,F')=gcd(H,H')*Fq^p */
                    110:        if ( F1 != 0 ) {
                    111:                F1 = F1/LCOEF(F1);
                    112:                F2 = ugcd(F,F1);
                    113:                /* FLAT = H/gcd(H,H') : square free part of H */
                    114:                FLAT = sdiv(F,F2);
1.4     ! noro      115:                FLAT /= LCOEF(FLAT);
1.1       noro      116:                I = 0;
                    117:                /* square free factorization of H */
                    118:                while ( deg(FLAT,V) ) {
                    119:                        while ( 1 ) {
                    120:                                QR = sqr(F,FLAT);
                    121:                                if ( !QR[1] ) {
                    122:                                        F = QR[0]; I++;
                    123:                                } else
                    124:                                        break;
                    125:                        }
                    126:                        if ( !deg(F,V) )
                    127:                                FLAT1 = simp_ff(1);
                    128:                        else
                    129:                                FLAT1 = ugcd(F,FLAT);
1.4     ! noro      130:                        FLAT1 /= LCOEF(FLAT1);
1.1       noro      131:                        G = sdiv(FLAT,FLAT1);
                    132:                        FLAT = FLAT1;
                    133:                        L = cons([G,I],L);
                    134:                }
                    135:        }
                    136:        /* now F = Fq^p */
                    137:        if ( deg(F,V) ) {
                    138:                Char = characteristic_ff();
                    139:                T = sqfr_ff(pthroot_p_ff(F));
                    140:                for ( R = []; T != []; T = cdr(T) ) {
                    141:                        H = car(T); R = cons([H[0],Char*H[1]],R);
                    142:                }
                    143:        } else
                    144:                R = [];
                    145:        return append(L,R);
                    146: }
                    147:
                    148: /*
                    149:        Input : a polynomial F
                    150:        Output: F^(1/char)
                    151: */
                    152:
                    153: def pthroot_p_ff(F)
                    154: {
                    155:        V = var(F);
                    156:        DVR = characteristic_ff();
                    157:        PWR = DVR^(extdeg_ff()-1);
                    158:        for ( T = F, R = 0; T; ) {
                    159:                D1 = deg(T,V); C = coef(T,D1,V); T -= C*V^D1;
                    160:                R += C^PWR*V^idiv(D1,DVR);
                    161:        }
                    162:        return R;
                    163: }
                    164:
                    165: /*
                    166:        Input : a polynomial F of degree N
                    167:        Output: a list [V^Ord mod F,Tab]
                    168:                where V = var(F), Ord = field order
                    169:                Tab[i] = V^(i*Ord) mod F (i=0,...,N-1)
                    170: */
                    171:
                    172: def tab_ff(F)
                    173: {
                    174:        V = var(F);
                    175:        N = deg(F,V);
                    176:        F = F/LCOEF(F);
                    177:        XP = pwrmod_ff(F);
                    178:        R = pwrtab_ff(F,XP);
                    179:        return R;
                    180: }
                    181:
                    182: /*
                    183:        Input : a square free polynomial F
                    184:        Output: a list [F1,F2,...]
                    185:                where Fi is an irreducible factor of F.
                    186: */
                    187:
                    188: def ddd_ff(F)
                    189: {
                    190:        V = var(F);
                    191:        if ( deg(F,V) == 1 )
                    192:                return [F];
                    193:        TAB = tab_ff(F);
                    194:        for ( I = 1, W = V, L = []; 2*I <= deg(F,V); I++ ) {
                    195:                lazy_lm(1);
                    196:                for ( T = 0, K = 0; K <= deg(W,V); K++ )
                    197:                        if ( C = coef(W,K,V) )
                    198:                                T += TAB[K]*C;
                    199:                lazy_lm(0);
                    200:                W = simp_ff(T);
                    201:                GCD = ugcd(F,W-V);
                    202:                if ( deg(GCD,V) ) {
                    203:                        L = append(berlekamp_ff(GCD,I,TAB),L);
                    204:                        F = sdiv(F,GCD);
                    205:                        W = urem(W,F);
                    206:                }
                    207:        }
                    208:        if ( deg(F,V) )
                    209:                return cons(F,L);
                    210:        else
                    211:                return L;
                    212: }
                    213:
                    214: /*
                    215:        Input : a polynomial
                    216:        Output: 1 if F is irreducible
                    217:                        0 otherwise
                    218: */
                    219:
                    220: def irredcheck_ff(F)
                    221: {
                    222:        V = var(F);
                    223:        if ( deg(F,V) <= 1 )
                    224:                return 1;
                    225:        F1 = diff(F,V);
                    226:        if ( !F1 )
                    227:                return 0;
                    228:        F1 = F1/LCOEF(F1);
                    229:        if ( deg(ugcd(F,F1),V) > 0 )
                    230:                return 0;
                    231:        TAB = tab_ff(F);
                    232:        for ( I = 1, W = V, L = []; 2*I <= deg(F,V); I++ ) {
                    233:                for ( T = 0, K = 0; K <= deg(W,V); K++ )
                    234:                        if ( C = coef(W,K,V) )
                    235:                                T += TAB[K]*C;
                    236:                W = T;
                    237:                GCD = ugcd(F,W-V);
                    238:                if ( deg(GCD,V) )
                    239:                        return 0;
                    240:        }
                    241:        return 1;
                    242: }
                    243:
                    244: /*
                    245:        Input : a square free (canonical) modular polynomial F
                    246:        Output: a list of polynomials [LF,CF,XP] where
                    247:                LF=the product of all the linear factors
                    248:                CF=F/LF
                    249:                XP=x^field_order mod CF
                    250: */
                    251:
                    252: def meq_linear_part_ff(F)
                    253: {
                    254:        F = simp_ff(F);
                    255:        F = F/LCOEF(F);
                    256:        V = var(F);
                    257:        if ( deg(F,V) == 1 )
                    258:                return [F,1,0];
                    259: T0 = time()[0];
                    260:        XP = pwrmod_ff(F);
                    261:        GCD = ugcd(F,XP-V);
                    262:        if ( deg(GCD,V) ) {
                    263:                GCD = GCD/LCOEF(GCD);
                    264:                F = sdiv(F,GCD);
                    265:                XP = srem(XP,F);
                    266:                R = GCD;
                    267:        } else
                    268:                R = 1;
                    269: TPMOD += time()[0]-T0;
                    270:        return [R,F,XP];
                    271: }
                    272:
                    273: /*
                    274:        Input : a square free polynomial F s.t.
                    275:                all the irreducible factors of F
                    276:                has the same degree D.
                    277:        Output: D
                    278: */
                    279:
                    280: def meq_ed_ff(F,XP)
                    281: {
                    282: T0 = time()[0];
                    283:        F = simp_ff(F);
                    284:        F = F/LCOEF(F);
                    285:        V = var(F);
                    286:
                    287:        TAB = pwrtab_ff(F,XP);
                    288:
                    289:        D = deg(F,V);
                    290:        for ( I = 1, W = V, L = []; 2*I <= D; I++ ) {
                    291:                lazy_lm(1);
                    292:                for ( T = 0, K = 0; K <= deg(W,V); K++ )
                    293:                        if ( C = coef(W,K,V) )
                    294:                                T += TAB[K]*C;
                    295:                lazy_lm(0);
                    296:                W = simp_ff(T);
                    297:                if ( W == V ) {
                    298:                        D = I; break;
                    299:                }
                    300:        }
                    301: TQMOD += time()[0]-T0;
                    302:        return D;
                    303: }
                    304:
                    305: /*
                    306:        Input : a square free polynomial F
                    307:                an integer E
                    308:             an array TAB
                    309:             where all the irreducible factors of F has degree E
                    310:             and TAB[i] = V^(i*Ord) mod F. (V=var(F), Ord=field order)
                    311:     Output: a list containing all the irreducible factors of F
                    312: */
                    313:
                    314: def berlekamp_ff(F,E,TAB)
                    315: {
                    316:        V = var(F);
                    317:        N = deg(F,V);
                    318:        Q = newmat(N,N);
                    319:        for ( J = 0; J < N; J++ ) {
                    320:                T = urem(TAB[J],F);
                    321:                for ( I = 0; I < N; I++ ) {
                    322:                        Q[I][J] = coef(T,I);
                    323:                }
                    324:        }
                    325:        for ( I = 0; I < N; I++ )
                    326:                Q[I][I] -= simp_ff(1);
                    327:        L = nullspace_ff(Q); MT = L[0]; IND = L[1];
                    328:        NF0 = N/E;
                    329:        PS = null_to_poly_ff(MT,IND,V);
                    330:        R = newvect(NF0); R[0] = F/LCOEF(F);
                    331:        for ( I = 1, NF = 1; NF < NF0 && I < NF0; I++ ) {
                    332:                PSI = PS[I];
                    333:                MP = minipoly_ff(PSI,F);
                    334:                ROOT = find_root_ff(MP); NR = length(ROOT);
                    335:                for ( J = 0; J < NF; J++ ) {
                    336:                        if ( deg(R[J],V) == E )
                    337:                                continue;
                    338:                        for ( K = 0; K < NR; K++ ) {
                    339:                                GCD = ugcd(R[J],PSI-ROOT[K]);
                    340:                                if ( deg(GCD,V) > 0 && deg(GCD,V) < deg(R[J],V) ) {
                    341:                                        Q = sdiv(R[J],GCD);
                    342:                                        R[J] = Q; R[NF++] = GCD;
                    343:                                }
                    344:                        }
                    345:                }
                    346:        }
                    347:        return vtol(R);
                    348: }
                    349:
                    350: /*
                    351:        Input : a matrix MT
                    352:                an array IND
                    353:                an indeterminate V
                    354:             MT is a matrix after Gaussian elimination
                    355:             IND[I] = 0 means that i-th column of MT represents a basis
                    356:             element of the null space.
                    357:        Output: an array R which contains all the basis element of
                    358:                 the null space of MT. Here, a basis element E is represented
                    359:                 as a polynomial P of V s.t. coef(P,i) = E[i].
                    360: */
                    361:
                    362: def null_to_poly_ff(MT,IND,V)
                    363: {
                    364:        N = size(MT)[0];
                    365:        for ( I = 0, J = 0; I < N; I++ )
                    366:                if ( IND[I] )
                    367:                        J++;
                    368:        R = newvect(J);
                    369:        for ( I = 0, L = 0; I < N; I++ ) {
                    370:                if ( !IND[I] )
                    371:                        continue;
                    372:                for ( J = K = 0, T = 0; J < N; J++ )
                    373:                        if ( !IND[J] )
                    374:                                T += MT[K++][I]*V^J;
                    375:                        else if ( J == I )
                    376:                                T -= V^I;
                    377:                R[L++] = simp_ff(T);
                    378:        }
                    379:        return R;
                    380: }
                    381:
                    382: /*
                    383:        Input : a polynomial P, a polynomial F
                    384:        Output: a minimal polynomial MP(V) of P mod F.
                    385: */
                    386:
                    387: def minipoly_ff(P,F)
                    388: {
                    389:        V = var(P);
                    390:        P0 = P1 = simp_ff(1);
                    391:        L = [[P0,P0]];
                    392:        while ( 1 ) {
                    393:                /* P0 = V^K, P1 = P^K mod F */
                    394:                P0 *= V;
                    395:                P1 = urem(P*P1,F);
                    396:                /*
                    397:                NP0 = P0-c1L1_0-c2L2_0-...,
                    398:             NP1 is a normal form w.r.t. [L1_1,L2_1,...]
                    399:                    NP1 = P1-c1L1_1-c2L2_1-...,
                    400:             NP0 represents the normal form computation.
                    401:             */
                    402:                L1 = lnf_ff(P0,P1,L,V); NP0 = L1[0]; NP1 = L1[1];
                    403:                if ( !NP1 )
                    404:                        return NP0;
                    405:                else
                    406:                        L = lnf_insert([NP0,NP1],L,V);
                    407:        }
                    408: }
                    409:
                    410: /*
                    411:        Input ; a list of polynomials [P0,P1] = [V^K,P^K mod F]
                    412:                a sorted list L=[[L1_0,L1_1],[L2_0,L2_1],...]
                    413:                of previously computed pairs of polynomials
                    414:                an indeterminate V
                    415:        Output: a list of polynomials [NP0,NP1]
                    416:                where NP1 = P1-c1L1_1-c2L2_1-...,
                    417:                      NP0 = P0-c1L1_0-c2L2_0-...,
                    418:             NP1 is a normal form w.r.t. [L1_1,L2_1,...]
                    419:             NP0 represents the normal form computation.
                    420:                [L1_1,L_2_1,...] is sorted so that it is a triangular
                    421:                linear basis s.t. deg(Li_1) > deg(Lj_1) for i<j.
                    422: */
                    423:
                    424: def lnf_ff(P0,P1,L,V)
                    425: {
                    426:        NP0 = P0; NP1 = P1;
                    427:        for ( T = L; T != []; T = cdr(T) ) {
                    428:                Q = car(T);
                    429:                D1 = deg(NP1,V);
                    430:                if ( D1 == deg(Q[1],V) ) {
                    431:                        H = -coef(NP1,D1,V)/coef(Q[1],D1,V);
                    432:                        NP0 += Q[0]*H;
                    433:                        NP1 += Q[1]*H;
                    434:                }
                    435:        }
                    436:        return [NP0,NP1];
                    437: }
                    438:
                    439: /*
                    440:        Input : a pair of polynomial P=[P0,P1],
                    441:                a list L,
                    442:                an indeterminate V
                    443:        Output: a list L1 s.t. L1 contains P and L
                    444:                and L1 is sorted in the decreasing order
                    445:                w.r.t. the degree of the second element
                    446:                of elements in L1.
                    447: */
                    448:
                    449: def lnf_insert(P,L,V)
                    450: {
                    451:        if ( L == [] )
                    452:                return [P];
                    453:        else {
                    454:                P0 = car(L);
                    455:                if ( deg(P0[1],V) > deg(P[1],V) )
                    456:                        return cons(P0,lnf_insert(P,cdr(L),V));
                    457:                else
                    458:                        return cons(P,L);
                    459:        }
                    460: }
                    461:
                    462: /*
                    463:        Input : a square free polynomial F s.t.
                    464:                all the irreducible factors of F
                    465:                has the degree E.
                    466:        Output: a list containing all the irreducible factors of F
                    467: */
                    468:
                    469: def c_z_ff(F,E)
                    470: {
                    471:        Type = field_type_ff();
                    472:        if ( Type == 1 || Type == 3 )
                    473:                return c_z_lm(F,E);
                    474:        else
                    475:                return c_z_gf2n(F,E);
                    476: }
                    477:
                    478: /*
                    479:        Input : a square free polynomial P s.t. P splits into linear factors
                    480:        Output: a list containing all the root of P
                    481: */
                    482:
                    483: def find_root_ff(P)
                    484: {
                    485:        V = var(P);
                    486:        L = c_z_ff(P,1);
                    487:        for ( T = L, U = []; T != []; T = cdr(T) ) {
                    488:                S = car(T)/LCOEF(car(T)); U = cons(-coef(S,0,V),U);
                    489:        }
                    490:        return U;
                    491: }
                    492:
                    493: /*
                    494:        Input : a square free polynomial F s.t.
                    495:                all the irreducible factors of F
                    496:                has the degree E.
                    497:        Output: an irreducible factor of F
                    498: */
                    499:
                    500: def c_z_one_ff(F,E)
                    501: {
                    502:        Type = field_type_ff();
                    503:        if ( Type == 1 || Type == 3 )
                    504:                return c_z_one_lm(F,E);
                    505:        else
                    506:                return c_z_one_gf2n(F,E);
                    507: }
                    508:
                    509: /*
                    510:        Input : a square free polynomial P s.t. P splits into linear factors
                    511:        Output: a list containing a root of P
                    512: */
                    513:
                    514: def find_one_root_ff(P)
                    515: {
                    516:        V = var(P);
                    517:        LF = c_z_one_ff(P,1);
                    518:        U = -coef(LF/LCOEF(LF),0,V);
                    519:        return [U];
                    520: }
                    521:
                    522: /*
                    523:        Input : an integer N; an indeterminate V
                    524:        Output: a polynomial F s.t. var(F) = V, deg(F) < N
                    525:                and its coefs are random numbers in
                    526:                the ground field.
                    527: */
                    528:
                    529: def randpoly_ff(N,V)
                    530: {
                    531:        for ( I = 0, S = 0; I < N; I++ )
                    532:                S += random_ff()*V^I;
                    533:        return S;
                    534: }
                    535:
                    536: /*
                    537:        Input : an integer N; an indeterminate V
                    538:        Output: a monic polynomial F s.t. var(F) = V, deg(F) = N-1
                    539:                and its coefs are random numbers in
                    540:                the ground field except for the leading term.
                    541: */
                    542:
                    543: def monic_randpoly_ff(N,V)
                    544: {
                    545:        for ( I = 0, N1 = N-1, S = 0; I < N1; I++ )
                    546:                S += random_ff()*V^I;
                    547:        return V^N1+S;
                    548: }
                    549:
                    550: /* GF(p) specific functions */
                    551:
                    552: /*
                    553:        Input : a square free polynomial F s.t.
                    554:                all the irreducible factors of F
                    555:                has the degree E.
                    556:        Output: a list containing all the irreducible factors of F
                    557: */
                    558:
                    559: def c_z_lm(F,E)
                    560: {
                    561:        V = var(F);
                    562:        N = deg(F,V);
                    563:        if ( N == E )
                    564:                return [F];
                    565:        M = field_order_ff();
                    566:        K = idiv(N,E);
                    567:        L = [F];
                    568:        while ( 1 ) {
                    569:                W = monic_randpoly_ff(2*E,V);
                    570:                T = generic_pwrmod_ff(W,F,idiv(M^E-1,2));
                    571:                W = T-1;
                    572:                if ( !W )
                    573:                        continue;
                    574:                G = ugcd(F,W);
                    575:                if ( deg(G,V) && deg(G,V) < N ) {
                    576:                        L1 = c_z_lm(G,E);
                    577:                        L2 = c_z_lm(sdiv(F,G),E);
                    578:                        return append(L1,L2);
                    579:                }
                    580:        }
                    581: }
                    582:
                    583: /*
                    584:        Input : a square free polynomial F s.t.
                    585:                all the irreducible factors of F
                    586:                has the degree E.
                    587:        Output: an irreducible factor of F
                    588: */
                    589:
                    590: def c_z_one_lm(F,E)
                    591: {
                    592:        V = var(F);
                    593:        N = deg(F,V);
                    594:        if ( N == E )
                    595:                return F;
                    596:        M = field_order_ff();
                    597:        K = idiv(N,E);
                    598:        while ( 1 ) {
                    599:                W = monic_randpoly_ff(2*E,V);
                    600:                T = generic_pwrmod_ff(W,F,idiv(M^E-1,2));
                    601:                W = T-1;
                    602:                if ( W ) {
                    603:                        G = ugcd(F,W);
                    604:                        D = deg(G,V);
                    605:                        if ( D && D < N ) {
                    606:                                if ( 2*D <= N ) {
                    607:                                        F1 = G; F2 = sdiv(F,G);
                    608:                                } else {
                    609:                                        F2 = G; F1 = sdiv(F,G);
                    610:                                }
                    611:                                return c_z_one_lm(F1,E);
                    612:                        }
                    613:                }
                    614:        }
                    615: }
                    616:
                    617: /* GF(2^n) specific functions */
                    618:
                    619: /*
                    620:        Input : a square free polynomial F s.t.
                    621:                all the irreducible factors of F
                    622:                has the degree E.
                    623:        Output: a list containing all the irreducible factors of F
                    624: */
                    625:
                    626: def c_z_gf2n(F,E)
                    627: {
                    628:        V = var(F);
                    629:        N = deg(F,V);
                    630:        if ( N == E )
                    631:                return [F];
                    632:        K = idiv(N,E);
                    633:        L = [F];
                    634:        while ( 1 ) {
                    635:                W = randpoly_ff(2*E,V);
                    636:                T = tracemod_gf2n(W,F,E);
                    637:                W = T-1;
                    638:                if ( !W )
                    639:                        continue;
                    640:                G = ugcd(F,W);
                    641:                if ( deg(G,V) && deg(G,V) < N ) {
                    642:                        L1 = c_z_gf2n(G,E);
                    643:                        L2 = c_z_gf2n(sdiv(F,G),E);
                    644:                        return append(L1,L2);
                    645:                }
                    646:        }
                    647: }
                    648:
                    649: /*
                    650:        Input : a square free polynomial F s.t.
                    651:                all the irreducible factors of F
                    652:                has the degree E.
                    653:        Output: an irreducible factor of F
                    654: */
                    655:
                    656: def c_z_one_gf2n(F,E)
                    657: {
                    658:        V = var(F);
                    659:        N = deg(F,V);
                    660:        if ( N == E )
                    661:                return F;
                    662:        K = idiv(N,E);
                    663:        while ( 1 ) {
                    664:                W = randpoly_ff(2*E,V);
                    665:                T = tracemod_gf2n(W,F,E);
                    666:                W = T-1;
                    667:                if ( W ) {
                    668:                        G = ugcd(F,W);
                    669:                        D = deg(G,V);
                    670:                        if ( D && D < N ) {
                    671:                                if ( 2*D <= N ) {
                    672:                                        F1 = G; F2 = sdiv(F,G);
                    673:                                } else {
                    674:                                        F2 = G; F1 = sdiv(F,G);
                    675:                                }
                    676:                                return c_z_one_gf2n(F1,E);
                    677:                        }
                    678:                }
                    679:        }
                    680: }
                    681:
                    682: /*
                    683:        Input : an integer D
                    684:        Output: an irreducible polynomial F over GF(2)
                    685:                of degree D.
                    686: */
                    687:
                    688: def defpoly_mod2(D)
                    689: {
                    690:        return gf2ntop(irredpoly_up2(D,0));
                    691: }
                    692:
                    693: def dummy_time() {
                    694:        return [0,0,0,0];
                    695: }
                    696: end$

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>