[BACK]Return to fff CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2000 / lib

Annotation of OpenXM_contrib2/asir2000/lib/fff, Revision 1.7

1.2       noro        1: /*
                      2:  * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
                      3:  * All rights reserved.
                      4:  *
                      5:  * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
                      6:  * non-exclusive and royalty-free license to use, copy, modify and
                      7:  * redistribute, solely for non-commercial and non-profit purposes, the
                      8:  * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
                      9:  * conditions of this Agreement. For the avoidance of doubt, you acquire
                     10:  * only a limited right to use the SOFTWARE hereunder, and FLL or any
                     11:  * third party developer retains all rights, including but not limited to
                     12:  * copyrights, in and to the SOFTWARE.
                     13:  *
                     14:  * (1) FLL does not grant you a license in any way for commercial
                     15:  * purposes. You may use the SOFTWARE only for non-commercial and
                     16:  * non-profit purposes only, such as academic, research and internal
                     17:  * business use.
                     18:  * (2) The SOFTWARE is protected by the Copyright Law of Japan and
                     19:  * international copyright treaties. If you make copies of the SOFTWARE,
                     20:  * with or without modification, as permitted hereunder, you shall affix
                     21:  * to all such copies of the SOFTWARE the above copyright notice.
                     22:  * (3) An explicit reference to this SOFTWARE and its copyright owner
                     23:  * shall be made on your publication or presentation in any form of the
                     24:  * results obtained by use of the SOFTWARE.
                     25:  * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
1.3       noro       26:  * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
1.2       noro       27:  * for such modification or the source code of the modified part of the
                     28:  * SOFTWARE.
                     29:  *
                     30:  * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
                     31:  * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
                     32:  * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
                     33:  * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
                     34:  * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
                     35:  * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
                     36:  * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
                     37:  * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
                     38:  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
                     39:  * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
                     40:  * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
                     41:  * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
                     42:  * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
                     43:  * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
                     44:  * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
                     45:  * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
                     46:  * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
                     47:  *
1.7     ! takayama   48:  * $OpenXM: OpenXM_contrib2/asir2000/lib/fff,v 1.6 2001/09/03 07:01:09 noro Exp $
1.2       noro       49: */
1.1       noro       50: /*
                     51:        fff : Univariate factorizer over a finite field.
                     52:
                     53:     Revision History:
                     54:
                     55:     99/05/18    noro    the first official version
                     56:     99/06/11    noro
                     57:     99/07/27    noro
                     58: */
1.7     ! takayama   59: module fff $
        !            60:   /* Empty for now. It will be used in a future. */
        !            61: endmodule $
1.1       noro       62:
                     63: #include "defs.h"
                     64:
                     65: extern TPMOD,TQMOD$
                     66:
                     67: /*
                     68:   Input : a univariate polynomial F
                     69:   Output: a list [[F1,M1],[F2,M2],...], where
                     70:           Fi is a monic irreducible factor, Mi is its multiplicity.
                     71:           The leading coefficient of F is abondoned.
                     72: */
                     73:
                     74: def fctr_ff(F)
                     75: {
                     76:        F = simp_ff(F);
                     77:        F = F/LCOEF(F);
                     78:        L = sqfr_ff(F);
                     79:        for ( R = [], T = L; T != []; T = cdr(T) ) {
                     80:                S = car(T); A = S[0]; E = S[1];
                     81:                B = ddd_ff(A);
                     82:                R = append(append_mult_ff(B,E),R);
                     83:        }
                     84:        return R;
                     85: }
                     86:
                     87: /*
                     88:   Input : a list of polynomial L; an integer E
                     89:   Output: a list s.t. [[L0,E],[L1,E],...]
                     90:           where Li = L[i]/leading coef of L[i]
                     91: */
                     92:
                     93: def append_mult_ff(L,E)
                     94: {
                     95:        for ( T = L, R = []; T != []; T = cdr(T) )
                     96:                R = cons([car(T)/LCOEF(car(T)),E],R);
                     97:        return R;
                     98: }
                     99:
                    100: /*
                    101:        Input : a polynomial F
                    102:        Output: a list [[F1,M1],[F2,M2],...]
                    103:                where Fi is a square free factor,
                    104:                Mi is its multiplicity.
                    105: */
                    106:
                    107: def sqfr_ff(F)
                    108: {
                    109:        V = var(F);
                    110:        F1 = diff(F,V);
                    111:        L = [];
                    112:        /* F=H*Fq^p => F'=H'*Fq^p => gcd(F,F')=gcd(H,H')*Fq^p */
                    113:        if ( F1 != 0 ) {
                    114:                F1 = F1/LCOEF(F1);
                    115:                F2 = ugcd(F,F1);
                    116:                /* FLAT = H/gcd(H,H') : square free part of H */
                    117:                FLAT = sdiv(F,F2);
1.4       noro      118:                FLAT /= LCOEF(FLAT);
1.1       noro      119:                I = 0;
                    120:                /* square free factorization of H */
                    121:                while ( deg(FLAT,V) ) {
                    122:                        while ( 1 ) {
                    123:                                QR = sqr(F,FLAT);
                    124:                                if ( !QR[1] ) {
                    125:                                        F = QR[0]; I++;
                    126:                                } else
                    127:                                        break;
                    128:                        }
                    129:                        if ( !deg(F,V) )
                    130:                                FLAT1 = simp_ff(1);
                    131:                        else
                    132:                                FLAT1 = ugcd(F,FLAT);
1.4       noro      133:                        FLAT1 /= LCOEF(FLAT1);
1.1       noro      134:                        G = sdiv(FLAT,FLAT1);
                    135:                        FLAT = FLAT1;
                    136:                        L = cons([G,I],L);
                    137:                }
                    138:        }
                    139:        /* now F = Fq^p */
                    140:        if ( deg(F,V) ) {
                    141:                Char = characteristic_ff();
                    142:                T = sqfr_ff(pthroot_p_ff(F));
                    143:                for ( R = []; T != []; T = cdr(T) ) {
                    144:                        H = car(T); R = cons([H[0],Char*H[1]],R);
                    145:                }
                    146:        } else
                    147:                R = [];
                    148:        return append(L,R);
                    149: }
                    150:
                    151: /*
                    152:        Input : a polynomial F
                    153:        Output: F^(1/char)
                    154: */
                    155:
                    156: def pthroot_p_ff(F)
                    157: {
                    158:        V = var(F);
                    159:        DVR = characteristic_ff();
                    160:        PWR = DVR^(extdeg_ff()-1);
                    161:        for ( T = F, R = 0; T; ) {
                    162:                D1 = deg(T,V); C = coef(T,D1,V); T -= C*V^D1;
                    163:                R += C^PWR*V^idiv(D1,DVR);
                    164:        }
                    165:        return R;
                    166: }
                    167:
                    168: /*
                    169:        Input : a polynomial F of degree N
                    170:        Output: a list [V^Ord mod F,Tab]
                    171:                where V = var(F), Ord = field order
                    172:                Tab[i] = V^(i*Ord) mod F (i=0,...,N-1)
                    173: */
                    174:
                    175: def tab_ff(F)
                    176: {
                    177:        V = var(F);
                    178:        N = deg(F,V);
                    179:        F = F/LCOEF(F);
                    180:        XP = pwrmod_ff(F);
                    181:        R = pwrtab_ff(F,XP);
                    182:        return R;
                    183: }
                    184:
                    185: /*
                    186:        Input : a square free polynomial F
                    187:        Output: a list [F1,F2,...]
                    188:                where Fi is an irreducible factor of F.
                    189: */
                    190:
                    191: def ddd_ff(F)
                    192: {
                    193:        V = var(F);
                    194:        if ( deg(F,V) == 1 )
                    195:                return [F];
                    196:        TAB = tab_ff(F);
                    197:        for ( I = 1, W = V, L = []; 2*I <= deg(F,V); I++ ) {
                    198:                lazy_lm(1);
                    199:                for ( T = 0, K = 0; K <= deg(W,V); K++ )
                    200:                        if ( C = coef(W,K,V) )
                    201:                                T += TAB[K]*C;
                    202:                lazy_lm(0);
                    203:                W = simp_ff(T);
                    204:                GCD = ugcd(F,W-V);
                    205:                if ( deg(GCD,V) ) {
                    206:                        L = append(berlekamp_ff(GCD,I,TAB),L);
                    207:                        F = sdiv(F,GCD);
                    208:                        W = urem(W,F);
                    209:                }
                    210:        }
                    211:        if ( deg(F,V) )
                    212:                return cons(F,L);
                    213:        else
                    214:                return L;
                    215: }
                    216:
                    217: /*
                    218:        Input : a polynomial
                    219:        Output: 1 if F is irreducible
                    220:                        0 otherwise
                    221: */
                    222:
                    223: def irredcheck_ff(F)
                    224: {
                    225:        V = var(F);
                    226:        if ( deg(F,V) <= 1 )
                    227:                return 1;
                    228:        F1 = diff(F,V);
                    229:        if ( !F1 )
                    230:                return 0;
                    231:        F1 = F1/LCOEF(F1);
                    232:        if ( deg(ugcd(F,F1),V) > 0 )
                    233:                return 0;
                    234:        TAB = tab_ff(F);
                    235:        for ( I = 1, W = V, L = []; 2*I <= deg(F,V); I++ ) {
                    236:                for ( T = 0, K = 0; K <= deg(W,V); K++ )
                    237:                        if ( C = coef(W,K,V) )
                    238:                                T += TAB[K]*C;
                    239:                W = T;
                    240:                GCD = ugcd(F,W-V);
                    241:                if ( deg(GCD,V) )
                    242:                        return 0;
                    243:        }
                    244:        return 1;
                    245: }
                    246:
                    247: /*
                    248:        Input : a square free (canonical) modular polynomial F
                    249:        Output: a list of polynomials [LF,CF,XP] where
                    250:                LF=the product of all the linear factors
                    251:                CF=F/LF
                    252:                XP=x^field_order mod CF
                    253: */
                    254:
                    255: def meq_linear_part_ff(F)
                    256: {
                    257:        F = simp_ff(F);
                    258:        F = F/LCOEF(F);
                    259:        V = var(F);
                    260:        if ( deg(F,V) == 1 )
                    261:                return [F,1,0];
                    262: T0 = time()[0];
                    263:        XP = pwrmod_ff(F);
                    264:        GCD = ugcd(F,XP-V);
                    265:        if ( deg(GCD,V) ) {
                    266:                GCD = GCD/LCOEF(GCD);
                    267:                F = sdiv(F,GCD);
                    268:                XP = srem(XP,F);
                    269:                R = GCD;
                    270:        } else
                    271:                R = 1;
                    272: TPMOD += time()[0]-T0;
                    273:        return [R,F,XP];
                    274: }
                    275:
                    276: /*
                    277:        Input : a square free polynomial F s.t.
                    278:                all the irreducible factors of F
                    279:                has the same degree D.
                    280:        Output: D
                    281: */
                    282:
                    283: def meq_ed_ff(F,XP)
                    284: {
                    285: T0 = time()[0];
                    286:        F = simp_ff(F);
                    287:        F = F/LCOEF(F);
                    288:        V = var(F);
                    289:
                    290:        TAB = pwrtab_ff(F,XP);
                    291:
                    292:        D = deg(F,V);
                    293:        for ( I = 1, W = V, L = []; 2*I <= D; I++ ) {
                    294:                lazy_lm(1);
                    295:                for ( T = 0, K = 0; K <= deg(W,V); K++ )
                    296:                        if ( C = coef(W,K,V) )
                    297:                                T += TAB[K]*C;
                    298:                lazy_lm(0);
                    299:                W = simp_ff(T);
                    300:                if ( W == V ) {
                    301:                        D = I; break;
                    302:                }
                    303:        }
                    304: TQMOD += time()[0]-T0;
                    305:        return D;
                    306: }
                    307:
                    308: /*
                    309:        Input : a square free polynomial F
                    310:                an integer E
                    311:             an array TAB
                    312:             where all the irreducible factors of F has degree E
                    313:             and TAB[i] = V^(i*Ord) mod F. (V=var(F), Ord=field order)
                    314:     Output: a list containing all the irreducible factors of F
                    315: */
                    316:
                    317: def berlekamp_ff(F,E,TAB)
                    318: {
                    319:        V = var(F);
                    320:        N = deg(F,V);
                    321:        Q = newmat(N,N);
                    322:        for ( J = 0; J < N; J++ ) {
                    323:                T = urem(TAB[J],F);
                    324:                for ( I = 0; I < N; I++ ) {
                    325:                        Q[I][J] = coef(T,I);
                    326:                }
                    327:        }
                    328:        for ( I = 0; I < N; I++ )
                    329:                Q[I][I] -= simp_ff(1);
                    330:        L = nullspace_ff(Q); MT = L[0]; IND = L[1];
                    331:        NF0 = N/E;
                    332:        PS = null_to_poly_ff(MT,IND,V);
                    333:        R = newvect(NF0); R[0] = F/LCOEF(F);
                    334:        for ( I = 1, NF = 1; NF < NF0 && I < NF0; I++ ) {
                    335:                PSI = PS[I];
                    336:                MP = minipoly_ff(PSI,F);
                    337:                ROOT = find_root_ff(MP); NR = length(ROOT);
                    338:                for ( J = 0; J < NF; J++ ) {
                    339:                        if ( deg(R[J],V) == E )
                    340:                                continue;
                    341:                        for ( K = 0; K < NR; K++ ) {
                    342:                                GCD = ugcd(R[J],PSI-ROOT[K]);
                    343:                                if ( deg(GCD,V) > 0 && deg(GCD,V) < deg(R[J],V) ) {
                    344:                                        Q = sdiv(R[J],GCD);
                    345:                                        R[J] = Q; R[NF++] = GCD;
                    346:                                }
                    347:                        }
                    348:                }
                    349:        }
                    350:        return vtol(R);
                    351: }
                    352:
                    353: /*
                    354:        Input : a matrix MT
                    355:                an array IND
                    356:                an indeterminate V
                    357:             MT is a matrix after Gaussian elimination
                    358:             IND[I] = 0 means that i-th column of MT represents a basis
                    359:             element of the null space.
                    360:        Output: an array R which contains all the basis element of
                    361:                 the null space of MT. Here, a basis element E is represented
                    362:                 as a polynomial P of V s.t. coef(P,i) = E[i].
                    363: */
                    364:
                    365: def null_to_poly_ff(MT,IND,V)
                    366: {
                    367:        N = size(MT)[0];
                    368:        for ( I = 0, J = 0; I < N; I++ )
                    369:                if ( IND[I] )
                    370:                        J++;
                    371:        R = newvect(J);
                    372:        for ( I = 0, L = 0; I < N; I++ ) {
                    373:                if ( !IND[I] )
                    374:                        continue;
                    375:                for ( J = K = 0, T = 0; J < N; J++ )
                    376:                        if ( !IND[J] )
                    377:                                T += MT[K++][I]*V^J;
                    378:                        else if ( J == I )
                    379:                                T -= V^I;
                    380:                R[L++] = simp_ff(T);
                    381:        }
                    382:        return R;
                    383: }
                    384:
                    385: /*
                    386:        Input : a polynomial P, a polynomial F
                    387:        Output: a minimal polynomial MP(V) of P mod F.
                    388: */
                    389:
                    390: def minipoly_ff(P,F)
                    391: {
                    392:        V = var(P);
                    393:        P0 = P1 = simp_ff(1);
                    394:        L = [[P0,P0]];
                    395:        while ( 1 ) {
                    396:                /* P0 = V^K, P1 = P^K mod F */
                    397:                P0 *= V;
                    398:                P1 = urem(P*P1,F);
                    399:                /*
                    400:                NP0 = P0-c1L1_0-c2L2_0-...,
                    401:             NP1 is a normal form w.r.t. [L1_1,L2_1,...]
                    402:                    NP1 = P1-c1L1_1-c2L2_1-...,
                    403:             NP0 represents the normal form computation.
                    404:             */
                    405:                L1 = lnf_ff(P0,P1,L,V); NP0 = L1[0]; NP1 = L1[1];
                    406:                if ( !NP1 )
                    407:                        return NP0;
                    408:                else
                    409:                        L = lnf_insert([NP0,NP1],L,V);
                    410:        }
                    411: }
                    412:
                    413: /*
                    414:        Input ; a list of polynomials [P0,P1] = [V^K,P^K mod F]
                    415:                a sorted list L=[[L1_0,L1_1],[L2_0,L2_1],...]
                    416:                of previously computed pairs of polynomials
                    417:                an indeterminate V
                    418:        Output: a list of polynomials [NP0,NP1]
                    419:                where NP1 = P1-c1L1_1-c2L2_1-...,
                    420:                      NP0 = P0-c1L1_0-c2L2_0-...,
                    421:             NP1 is a normal form w.r.t. [L1_1,L2_1,...]
                    422:             NP0 represents the normal form computation.
                    423:                [L1_1,L_2_1,...] is sorted so that it is a triangular
                    424:                linear basis s.t. deg(Li_1) > deg(Lj_1) for i<j.
                    425: */
                    426:
                    427: def lnf_ff(P0,P1,L,V)
                    428: {
                    429:        NP0 = P0; NP1 = P1;
                    430:        for ( T = L; T != []; T = cdr(T) ) {
                    431:                Q = car(T);
                    432:                D1 = deg(NP1,V);
                    433:                if ( D1 == deg(Q[1],V) ) {
                    434:                        H = -coef(NP1,D1,V)/coef(Q[1],D1,V);
                    435:                        NP0 += Q[0]*H;
                    436:                        NP1 += Q[1]*H;
                    437:                }
                    438:        }
                    439:        return [NP0,NP1];
                    440: }
                    441:
                    442: /*
                    443:        Input : a pair of polynomial P=[P0,P1],
                    444:                a list L,
                    445:                an indeterminate V
                    446:        Output: a list L1 s.t. L1 contains P and L
                    447:                and L1 is sorted in the decreasing order
                    448:                w.r.t. the degree of the second element
                    449:                of elements in L1.
                    450: */
                    451:
                    452: def lnf_insert(P,L,V)
                    453: {
                    454:        if ( L == [] )
                    455:                return [P];
                    456:        else {
                    457:                P0 = car(L);
                    458:                if ( deg(P0[1],V) > deg(P[1],V) )
                    459:                        return cons(P0,lnf_insert(P,cdr(L),V));
                    460:                else
                    461:                        return cons(P,L);
                    462:        }
                    463: }
                    464:
                    465: /*
                    466:        Input : a square free polynomial F s.t.
                    467:                all the irreducible factors of F
                    468:                has the degree E.
                    469:        Output: a list containing all the irreducible factors of F
                    470: */
                    471:
                    472: def c_z_ff(F,E)
                    473: {
                    474:        Type = field_type_ff();
1.6       noro      475:        if ( Type == 1 || Type == 3 || Type == 4 || Type == 5 )
1.1       noro      476:                return c_z_lm(F,E);
                    477:        else
                    478:                return c_z_gf2n(F,E);
                    479: }
                    480:
                    481: /*
                    482:        Input : a square free polynomial P s.t. P splits into linear factors
                    483:        Output: a list containing all the root of P
                    484: */
                    485:
                    486: def find_root_ff(P)
                    487: {
                    488:        V = var(P);
                    489:        L = c_z_ff(P,1);
                    490:        for ( T = L, U = []; T != []; T = cdr(T) ) {
                    491:                S = car(T)/LCOEF(car(T)); U = cons(-coef(S,0,V),U);
                    492:        }
                    493:        return U;
                    494: }
                    495:
                    496: /*
                    497:        Input : a square free polynomial F s.t.
                    498:                all the irreducible factors of F
                    499:                has the degree E.
                    500:        Output: an irreducible factor of F
                    501: */
                    502:
                    503: def c_z_one_ff(F,E)
                    504: {
                    505:        Type = field_type_ff();
1.6       noro      506:        if ( Type == 1 || Type == 3 || Type == 4 || Type == 5 )
1.1       noro      507:                return c_z_one_lm(F,E);
                    508:        else
                    509:                return c_z_one_gf2n(F,E);
                    510: }
                    511:
                    512: /*
                    513:        Input : a square free polynomial P s.t. P splits into linear factors
                    514:        Output: a list containing a root of P
                    515: */
                    516:
                    517: def find_one_root_ff(P)
                    518: {
                    519:        V = var(P);
                    520:        LF = c_z_one_ff(P,1);
                    521:        U = -coef(LF/LCOEF(LF),0,V);
                    522:        return [U];
                    523: }
                    524:
                    525: /*
                    526:        Input : an integer N; an indeterminate V
                    527:        Output: a polynomial F s.t. var(F) = V, deg(F) < N
                    528:                and its coefs are random numbers in
                    529:                the ground field.
                    530: */
                    531:
                    532: def randpoly_ff(N,V)
                    533: {
                    534:        for ( I = 0, S = 0; I < N; I++ )
                    535:                S += random_ff()*V^I;
                    536:        return S;
                    537: }
                    538:
                    539: /*
                    540:        Input : an integer N; an indeterminate V
                    541:        Output: a monic polynomial F s.t. var(F) = V, deg(F) = N-1
                    542:                and its coefs are random numbers in
                    543:                the ground field except for the leading term.
                    544: */
                    545:
                    546: def monic_randpoly_ff(N,V)
                    547: {
                    548:        for ( I = 0, N1 = N-1, S = 0; I < N1; I++ )
                    549:                S += random_ff()*V^I;
                    550:        return V^N1+S;
                    551: }
                    552:
                    553: /* GF(p) specific functions */
                    554:
                    555: /*
                    556:        Input : a square free polynomial F s.t.
                    557:                all the irreducible factors of F
                    558:                has the degree E.
                    559:        Output: a list containing all the irreducible factors of F
                    560: */
                    561:
                    562: def c_z_lm(F,E)
                    563: {
                    564:        V = var(F);
                    565:        N = deg(F,V);
                    566:        if ( N == E )
                    567:                return [F];
                    568:        M = field_order_ff();
                    569:        K = idiv(N,E);
                    570:        L = [F];
                    571:        while ( 1 ) {
                    572:                W = monic_randpoly_ff(2*E,V);
                    573:                T = generic_pwrmod_ff(W,F,idiv(M^E-1,2));
                    574:                W = T-1;
                    575:                if ( !W )
                    576:                        continue;
                    577:                G = ugcd(F,W);
                    578:                if ( deg(G,V) && deg(G,V) < N ) {
                    579:                        L1 = c_z_lm(G,E);
                    580:                        L2 = c_z_lm(sdiv(F,G),E);
                    581:                        return append(L1,L2);
                    582:                }
                    583:        }
                    584: }
                    585:
                    586: /*
                    587:        Input : a square free polynomial F s.t.
                    588:                all the irreducible factors of F
                    589:                has the degree E.
                    590:        Output: an irreducible factor of F
                    591: */
                    592:
                    593: def c_z_one_lm(F,E)
                    594: {
                    595:        V = var(F);
                    596:        N = deg(F,V);
                    597:        if ( N == E )
                    598:                return F;
                    599:        M = field_order_ff();
                    600:        K = idiv(N,E);
                    601:        while ( 1 ) {
                    602:                W = monic_randpoly_ff(2*E,V);
                    603:                T = generic_pwrmod_ff(W,F,idiv(M^E-1,2));
                    604:                W = T-1;
                    605:                if ( W ) {
                    606:                        G = ugcd(F,W);
                    607:                        D = deg(G,V);
                    608:                        if ( D && D < N ) {
                    609:                                if ( 2*D <= N ) {
                    610:                                        F1 = G; F2 = sdiv(F,G);
                    611:                                } else {
                    612:                                        F2 = G; F1 = sdiv(F,G);
                    613:                                }
                    614:                                return c_z_one_lm(F1,E);
                    615:                        }
                    616:                }
                    617:        }
                    618: }
                    619:
                    620: /* GF(2^n) specific functions */
                    621:
                    622: /*
                    623:        Input : a square free polynomial F s.t.
                    624:                all the irreducible factors of F
                    625:                has the degree E.
                    626:        Output: a list containing all the irreducible factors of F
                    627: */
                    628:
                    629: def c_z_gf2n(F,E)
                    630: {
                    631:        V = var(F);
                    632:        N = deg(F,V);
                    633:        if ( N == E )
                    634:                return [F];
                    635:        K = idiv(N,E);
                    636:        L = [F];
                    637:        while ( 1 ) {
                    638:                W = randpoly_ff(2*E,V);
                    639:                T = tracemod_gf2n(W,F,E);
                    640:                W = T-1;
                    641:                if ( !W )
                    642:                        continue;
                    643:                G = ugcd(F,W);
                    644:                if ( deg(G,V) && deg(G,V) < N ) {
                    645:                        L1 = c_z_gf2n(G,E);
                    646:                        L2 = c_z_gf2n(sdiv(F,G),E);
                    647:                        return append(L1,L2);
                    648:                }
                    649:        }
                    650: }
                    651:
                    652: /*
                    653:        Input : a square free polynomial F s.t.
                    654:                all the irreducible factors of F
                    655:                has the degree E.
                    656:        Output: an irreducible factor of F
                    657: */
                    658:
                    659: def c_z_one_gf2n(F,E)
                    660: {
                    661:        V = var(F);
                    662:        N = deg(F,V);
                    663:        if ( N == E )
                    664:                return F;
                    665:        K = idiv(N,E);
                    666:        while ( 1 ) {
                    667:                W = randpoly_ff(2*E,V);
                    668:                T = tracemod_gf2n(W,F,E);
                    669:                W = T-1;
                    670:                if ( W ) {
                    671:                        G = ugcd(F,W);
                    672:                        D = deg(G,V);
                    673:                        if ( D && D < N ) {
                    674:                                if ( 2*D <= N ) {
                    675:                                        F1 = G; F2 = sdiv(F,G);
                    676:                                } else {
                    677:                                        F2 = G; F1 = sdiv(F,G);
                    678:                                }
                    679:                                return c_z_one_gf2n(F1,E);
                    680:                        }
                    681:                }
                    682:        }
                    683: }
                    684:
                    685: /*
                    686:        Input : an integer D
                    687:        Output: an irreducible polynomial F over GF(2)
                    688:                of degree D.
                    689: */
                    690:
                    691: def defpoly_mod2(D)
                    692: {
                    693:        return gf2ntop(irredpoly_up2(D,0));
                    694: }
                    695:
                    696: def dummy_time() {
                    697:        return [0,0,0,0];
                    698: }
                    699: end$

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>