version 1.1.1.1, 1999/12/03 07:39:11 |
version 1.12, 2001/11/01 10:00:19 |
|
|
/* $OpenXM: OpenXM/src/asir99/lib/gr,v 1.1.1.1 1999/11/10 08:12:31 noro Exp $ */ |
/* |
|
* Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED |
|
* All rights reserved. |
|
* |
|
* FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited, |
|
* non-exclusive and royalty-free license to use, copy, modify and |
|
* redistribute, solely for non-commercial and non-profit purposes, the |
|
* computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and |
|
* conditions of this Agreement. For the avoidance of doubt, you acquire |
|
* only a limited right to use the SOFTWARE hereunder, and FLL or any |
|
* third party developer retains all rights, including but not limited to |
|
* copyrights, in and to the SOFTWARE. |
|
* |
|
* (1) FLL does not grant you a license in any way for commercial |
|
* purposes. You may use the SOFTWARE only for non-commercial and |
|
* non-profit purposes only, such as academic, research and internal |
|
* business use. |
|
* (2) The SOFTWARE is protected by the Copyright Law of Japan and |
|
* international copyright treaties. If you make copies of the SOFTWARE, |
|
* with or without modification, as permitted hereunder, you shall affix |
|
* to all such copies of the SOFTWARE the above copyright notice. |
|
* (3) An explicit reference to this SOFTWARE and its copyright owner |
|
* shall be made on your publication or presentation in any form of the |
|
* results obtained by use of the SOFTWARE. |
|
* (4) In the event that you modify the SOFTWARE, you shall notify FLL by |
|
* e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification |
|
* for such modification or the source code of the modified part of the |
|
* SOFTWARE. |
|
* |
|
* THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL |
|
* MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND |
|
* EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS |
|
* FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES' |
|
* RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY |
|
* MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY. |
|
* UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT, |
|
* OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY |
|
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL |
|
* DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES |
|
* ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES |
|
* FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY |
|
* DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF |
|
* SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART |
|
* OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY |
|
* DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE, |
|
* PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE. |
|
* |
|
* $OpenXM: OpenXM_contrib2/asir2000/lib/gr,v 1.11 2001/09/28 00:41:16 noro Exp $ |
|
*/ |
extern INIT_COUNT,ITOR_FAIL$ |
extern INIT_COUNT,ITOR_FAIL$ |
extern REMOTE_MATRIX,REMOTE_NF,REMOTE_VARS$ |
extern REMOTE_MATRIX,REMOTE_NF,REMOTE_VARS$ |
|
|
Line 206 def tolex_gsl_main(G0,V,O,W,NFL,NPOSV,GM,M,MB) |
|
Line 254 def tolex_gsl_main(G0,V,O,W,NFL,NPOSV,GM,M,MB) |
|
R += B[0][K]*TERMS[K]; |
R += B[0][K]*TERMS[K]; |
LCM *= B[1]; |
LCM *= B[1]; |
SL = cons(cons(V1,[R,LCM]),SL); |
SL = cons(cons(V1,[R,LCM]),SL); |
print(["DN",B[1]]); |
if ( dp_gr_print() ) |
|
print(["DN",B[1]]); |
} |
} |
return SL; |
return SL; |
} |
} |
Line 217 def hen_ttob_gsl(LHS,RHS,TERMS,M) |
|
Line 266 def hen_ttob_gsl(LHS,RHS,TERMS,M) |
|
L1 = idiv(LCM,LDN); R1 = idiv(LCM,RDN); |
L1 = idiv(LCM,LDN); R1 = idiv(LCM,RDN); |
T0 = time()[0]; |
T0 = time()[0]; |
S = henleq_gsl(RHS[0],LHS[0]*L1,M); |
S = henleq_gsl(RHS[0],LHS[0]*L1,M); |
print(["henleq_gsl",time()[0]-T0]); |
if ( dp_gr_print() ) |
|
print(["henleq_gsl",time()[0]-T0]); |
N = length(TERMS); |
N = length(TERMS); |
return [S[0],S[1]*R1]; |
return [S[0],S[1]*R1]; |
} |
} |
Line 282 def tolex_main(V,O,NF,GM,M,MB) |
|
Line 332 def tolex_main(V,O,NF,GM,M,MB) |
|
U += B[0][I-1]*S[I]; |
U += B[0][I-1]*S[I]; |
R = ptozp(U); |
R = ptozp(U); |
SL = cons(R,SL); |
SL = cons(R,SL); |
print(["DN",B[1]]); |
if ( dp_gr_print() ) |
|
print(["DN",B[1]]); |
} |
} |
return SL; |
return SL; |
} |
} |
Line 351 def gennf(G,TL,V,O,V0,FLAG) |
|
Line 402 def gennf(G,TL,V,O,V0,FLAG) |
|
if ( dp_gr_print() ) |
if ( dp_gr_print() ) |
print(".",2); |
print(".",2); |
} |
} |
print(""); |
if ( dp_gr_print() ) |
|
print(""); |
TTAB = time()[0]-T0; |
TTAB = time()[0]-T0; |
} |
} |
|
|
Line 506 def tolexm_main(PS,HL,V,W,M,FLAG) |
|
Line 558 def tolexm_main(PS,HL,V,W,M,FLAG) |
|
print(".",2); |
print(".",2); |
UTAB[I] = [MB[I],dp_nf_mod(GI,U*dp_mod(MB[I],M,[]),PS,1,M)]; |
UTAB[I] = [MB[I],dp_nf_mod(GI,U*dp_mod(MB[I],M,[]),PS,1,M)]; |
} |
} |
print(""); |
if ( dp_gr_print() ) |
|
print(""); |
T = dp_mod(dp_ptod(dp_dtop(dp_vtoe(D),W),V),M,[]); |
T = dp_mod(dp_ptod(dp_dtop(dp_vtoe(D),W),V),M,[]); |
H = G = [[T,T]]; |
H = G = [[T,T]]; |
DL = []; G2 = []; |
DL = []; G2 = []; |
Line 865 def p_true_nf(P,B,V,O) { |
|
Line 918 def p_true_nf(P,B,V,O) { |
|
return [dp_dtop(L[0],V),L[1]]; |
return [dp_dtop(L[0],V),L[1]]; |
} |
} |
|
|
|
def p_nf_mod(P,B,V,O,Mod) { |
|
setmod(Mod); |
|
dp_ord(O); DP = dp_mod(dp_ptod(P,V),Mod,[]); |
|
N = length(B); DB = newvect(N); |
|
for ( I = N-1, IL = []; I >= 0; I-- ) { |
|
DB[I] = dp_mod(dp_ptod(B[I],V),Mod,[]); |
|
IL = cons(I,IL); |
|
} |
|
return dp_dtop(dp_nf_mod(IL,DP,DB,1,Mod),V); |
|
} |
|
|
def p_terms(D,V,O) |
def p_terms(D,V,O) |
{ |
{ |
dp_ord(O); |
dp_ord(O); |
Line 882 def dp_terms(D,V) |
|
Line 946 def dp_terms(D,V) |
|
|
|
def gb_comp(A,B) |
def gb_comp(A,B) |
{ |
{ |
for ( T = A; T != []; T = cdr(T) ) { |
LA = length(A); |
for ( S = B, M = car(T), N = -M; S != []; S = cdr(S) ) |
LB = length(B); |
if ( car(S) == M || car(S) == N ) |
if ( LA != LB ) |
break; |
return 0; |
if ( S == [] ) |
A1 = qsort(newvect(LA,A)); |
|
B1 = qsort(newvect(LB,B)); |
|
for ( I = 0; I < LA; I++ ) |
|
if ( A1[I] != B1[I] && A1[I] != -B1[I] ) |
break; |
break; |
} |
return I == LA ? 1 : 0; |
return T == [] ? 1 : 0; |
|
} |
} |
|
|
def zero_dim(G,V,O) { |
def zero_dim(G,V,O) { |
Line 1086 def henleq_gsl(L,B,MOD) |
|
Line 1152 def henleq_gsl(L,B,MOD) |
|
if ( !COUNT ) |
if ( !COUNT ) |
COUNT = 1; |
COUNT = 1; |
MOD2 = idiv(MOD,2); |
MOD2 = idiv(MOD,2); |
for ( I = 0, C = BB, X = 0, PK = 1, CCC = 0, ITOR_FAIL = -1; ; |
X = newvect(size(AA)[0]); |
|
for ( I = 0, C = BB, PK = 1, CCC = 0, ITOR_FAIL = -1; ; |
I++, PK *= MOD ) { |
I++, PK *= MOD ) { |
if ( zerovector(C) ) |
if ( zerovector(C) ) |
if ( zerovector(RESTA*X+RESTB) ) { |
if ( zerovector(RESTA*X+RESTB) ) { |
Line 1258 def vs_dim(G,V,O) |
|
Line 1325 def vs_dim(G,V,O) |
|
error("vs_dim : ideal is not zero-dimensional!"); |
error("vs_dim : ideal is not zero-dimensional!"); |
} |
} |
|
|
def dgr(G,V,O,P) |
def dgr(G,V,O) |
{ |
{ |
|
P = getopt(proc); |
|
if ( type(P) == -1 ) |
|
return gr(G,V,O); |
P0 = P[0]; P1 = P[1]; P = [P0,P1]; |
P0 = P[0]; P1 = P[1]; P = [P0,P1]; |
flush(P0); flush(P1); |
map(ox_reset,P); |
rpc(P0,"dp_gr_main",G,V,0,1,O); |
ox_cmo_rpc(P0,"dp_gr_main",G,V,0,1,O); |
rpc(P1,"dp_gr_main",G,V,1,1,O); |
ox_cmo_rpc(P1,"dp_gr_main",G,V,1,1,O); |
F = select(P); |
map(ox_push_cmd,P,262); /* 262 = OX_popCMO */ |
R = rpcrecv(F[0]); flush(P0); flush(P1); |
F = ox_select(P); |
return R; |
R = ox_get(F[0]); |
|
if ( F[0] == P0 ) { |
|
Win = "nonhomo"; |
|
Lose = P1; |
|
} else { |
|
Win = "homo"; |
|
Lose = P0; |
|
} |
|
ox_reset(Lose); |
|
return [Win,R]; |
} |
} |
|
|
|
/* competitive Gbase computation : F4 vs. Bucbberger */ |
|
/* P : process list */ |
|
|
|
def dgrf4mod(G,V,M,O) |
|
{ |
|
P = getopt(proc); |
|
if ( type(P) == -1 ) |
|
return dp_f4_mod_main(G,V,M,O); |
|
P0 = P[0]; P1 = P[1]; P = [P0,P1]; |
|
map(ox_reset,P); |
|
ox_cmo_rpc(P0,"dp_f4_mod_main",G,V,M,O); |
|
ox_cmo_rpc(P1,"dp_gr_mod_main",G,V,0,M,O); |
|
map(ox_push_cmd,P,262); /* 262 = OX_popCMO */ |
|
F = ox_select(P); |
|
R = ox_get(F[0]); |
|
if ( F[0] == P0 ) { |
|
Win = "F4"; |
|
Lose = P1; |
|
} else { |
|
Win = "Buchberger"; |
|
Lose = P0; |
|
} |
|
ox_reset(Lose); |
|
return [Win,R]; |
|
} |
|
|
/* functions for rpc */ |
/* functions for rpc */ |
|
|
def register_matrix(M) |
def register_matrix(M) |
Line 1294 def r_ttob_gsl(L,M) |
|
Line 1399 def r_ttob_gsl(L,M) |
|
def get_matrix() |
def get_matrix() |
{ |
{ |
REMOTE_MATRIX; |
REMOTE_MATRIX; |
|
} |
|
|
|
extern NFArray$ |
|
|
|
/* |
|
* HL = [[c,i,m,d],...] |
|
* if c != 0 |
|
* g = 0 |
|
* g = (c*g + m*gi)/d |
|
* ... |
|
* finally compare g with NF |
|
* if g == NF then NFArray[NFIndex] = g |
|
* |
|
* if c = 0 then HL consists of single history [0,i,0,0], |
|
* which means that dehomogenization of NFArray[i] should be |
|
* eqall to NF. |
|
*/ |
|
|
|
def check_trace(NF,NFIndex,HL) |
|
{ |
|
if ( !car(HL)[0] ) { |
|
/* dehomogenization */ |
|
DH = dp_dehomo(NFArray[car(HL)[1]]); |
|
if ( NF == DH ) { |
|
realloc_NFArray(NFIndex); |
|
NFArray[NFIndex] = NF; |
|
return 0; |
|
} else |
|
error("check_trace(dehomo)"); |
|
} |
|
|
|
for ( G = 0, T = HL; T != []; T = cdr(T) ) { |
|
H = car(T); |
|
|
|
Coeff = H[0]; |
|
Index = H[1]; |
|
Monomial = H[2]; |
|
Denominator = H[3]; |
|
|
|
Reducer = NFArray[Index]; |
|
G = (Coeff*G+Monomial*Reducer)/Denominator; |
|
} |
|
if ( NF == G ) { |
|
realloc_NFArray(NFIndex); |
|
NFArray[NFIndex] = NF; |
|
return 0; |
|
} else |
|
error("check_trace"); |
|
} |
|
|
|
/* |
|
* realloc NFArray so that it can hold * an element as NFArray[Ind]. |
|
*/ |
|
|
|
def realloc_NFArray(Ind) |
|
{ |
|
if ( Ind == size(NFArray)[0] ) { |
|
New = newvect(Ind + 100); |
|
for ( I = 0; I < Ind; I++ ) |
|
New[I] = NFArray[I]; |
|
NFArray = New; |
|
} |
|
} |
|
|
|
/* |
|
* create NFArray and initialize it by List. |
|
*/ |
|
|
|
def register_input(List) |
|
{ |
|
Len = length(List); |
|
NFArray = newvect(Len+100,List); |
|
} |
|
|
|
/* |
|
tracetogen(): preliminary version |
|
|
|
dp_gr_main() returns [GB,GBIndex,Trace]. |
|
GB : groebner basis |
|
GBIndex : IndexList (corresponding to Trace) |
|
Trace : [InputList,Trace0,Trace1,...] |
|
TraceI : [Index,TraceList] |
|
TraceList : [[Coef,Index,Monomial,Denominator],...] |
|
Poly <- 0 |
|
Poly <- (Coef*Poly+Monomial*PolyList[Index])/Denominator |
|
*/ |
|
|
|
def tracetogen(G) |
|
{ |
|
GB = G[0]; GBIndex = G[1]; Trace = G[2]; |
|
|
|
InputList = Trace[0]; |
|
Trace = cdr(Trace); |
|
|
|
/* number of initial basis */ |
|
Nini = length(InputList); |
|
|
|
/* number of generated basis */ |
|
Ngen = length(Trace); |
|
|
|
N = Nini + Ngen; |
|
|
|
/* stores traces */ |
|
Tr = vector(N); |
|
|
|
/* stores coeffs */ |
|
Coef = vector(N); |
|
|
|
/* XXX create dp_ptod(1,V) */ |
|
HT = dp_ht(InputList[0]); |
|
One = dp_subd(HT,HT); |
|
|
|
for ( I = 0; I < Nini; I++ ) { |
|
Tr[I] = [1,I,One,1]; |
|
C = vector(Nini); |
|
C[I] = One; |
|
Coef[I] = C; |
|
} |
|
for ( ; I < N; I++ ) |
|
Tr[I] = Trace[I-Nini][1]; |
|
|
|
for ( T = GBIndex; T != []; T = cdr(T) ) |
|
compute_coef_by_trace(car(T),Tr,Coef); |
|
return Coef; |
|
} |
|
|
|
def compute_coef_by_trace(I,Tr,Coef) |
|
{ |
|
if ( Coef[I] ) |
|
return; |
|
|
|
/* XXX */ |
|
Nini = size(Coef[0])[0]; |
|
|
|
/* initialize coef vector */ |
|
CI = vector(Nini); |
|
|
|
for ( T = Tr[I]; T != []; T = cdr(T) ) { |
|
/* Trace = [Coef,Index,Monomial,Denominator] */ |
|
Trace = car(T); |
|
C = Trace[0]; |
|
Ind = Trace[1]; |
|
Mon = Trace[2]; |
|
Den = Trace[3]; |
|
if ( !Coef[Ind] ) |
|
compute_coef_by_trace(Ind,Tr,Coef); |
|
|
|
/* XXX */ |
|
CT = newvect(Nini); |
|
for ( J = 0; J < Nini; J++ ) |
|
CT[J] = (C*CI[J]+Mon*Coef[Ind][J])/Den; |
|
CI = CT; |
|
} |
|
Coef[I] = CI; |
} |
} |
end$ |
end$ |