version 1.8, 2003/04/21 02:02:16 |
version 1.11, 2003/08/05 05:56:19 |
|
|
/* $OpenXM: OpenXM_contrib2/asir2000/lib/primdec_mod,v 1.7 2003/04/21 02:00:13 noro Exp $ */ |
/* $OpenXM: OpenXM_contrib2/asir2000/lib/primdec_mod,v 1.10 2003/05/07 06:26:51 noro Exp $ */ |
|
|
extern Hom,GBTime$ |
extern Hom,GBTime$ |
extern DIVLIST,INTIDEAL,ORIGINAL,ORIGINALDIMENSION,STOP,Trials,REM$ |
extern DIVLIST,INTIDEAL,ORIGINAL,ORIGINALDIMENSION,STOP,Trials,REM$ |
Line 2092 def convertsmallfield(PP,VSet,Ord) |
|
Line 2092 def convertsmallfield(PP,VSet,Ord) |
|
MPP=map(sfptopsfp,MPP,NewV); |
MPP=map(sfptopsfp,MPP,NewV); |
|
|
DefPoly=setmod_ff()[1]; |
DefPoly=setmod_ff()[1]; |
|
/* GF(p) case */ |
|
if ( !DefPoly ) |
|
return MPP; |
|
|
MinPoly=subst(DefPoly,var(DefPoly),NewV); |
MinPoly=subst(DefPoly,var(DefPoly),NewV); |
XSet=cons(NewV,VSet); |
XSet=cons(NewV,VSet); |
|
|
Line 2200 def partial_decomp(B,V) |
|
Line 2204 def partial_decomp(B,V) |
|
map(ox_cmo_rpc,ParallelMinipoly,"setmod_ff",characteristic_ff(),extdeg_ff()); |
map(ox_cmo_rpc,ParallelMinipoly,"setmod_ff",characteristic_ff(),extdeg_ff()); |
map(ox_pop_cmo,ParallelMinipoly); |
map(ox_pop_cmo,ParallelMinipoly); |
} |
} |
B = map(ptosfp,B); |
B = map(simp_ff,B); |
B = dp_gr_f_main(B,V,0,0); |
B = dp_gr_f_main(B,V,0,0); |
R = partial_decomp0(B,V,length(V)-1); |
R = partial_decomp0(B,V,length(V)-1); |
if ( PartialDecompByLex ) { |
if ( PartialDecompByLex ) { |
Line 2373 def minipoly_sf_by_buchberger(G,V,O,F,V0,Server) |
|
Line 2377 def minipoly_sf_by_buchberger(G,V,O,F,V0,Server) |
|
if ( Server ) |
if ( Server ) |
ox_sync(0); |
ox_sync(0); |
Vc = cons(V0,setminus(vars(G),V)); |
Vc = cons(V0,setminus(vars(G),V)); |
Gf = cons(ptosfp(V0-F),G); |
Gf = cons(simp_ff(V0-F),G); |
Vf = append(V,Vc); |
Vf = append(V,Vc); |
Gelim = dp_gr_f_main(Gf,Vf,1,[[0,length(V)],[0,length(Vc)]]); |
Gelim = dp_gr_f_main(Gf,Vf,1,[[0,length(V)],[0,length(Vc)]]); |
for ( Gc = [], T = Gelim; T != []; T = cdr(T) ) { |
for ( Gc = [], T = Gelim; T != []; T = cdr(T) ) { |
Line 2408 def minipoly_sf_0dim(G,V,O,F,V0,Server) |
|
Line 2412 def minipoly_sf_0dim(G,V,O,F,V0,Server) |
|
for ( I = Len - 1, GI = []; I >= 0; I-- ) |
for ( I = Len - 1, GI = []; I >= 0; I-- ) |
GI = cons(I,GI); |
GI = cons(I,GI); |
MB = dp_mbase(HL); DIM = length(MB); UT = newvect(DIM); |
MB = dp_mbase(HL); DIM = length(MB); UT = newvect(DIM); |
U = dp_ptod(ptosfp(F),V); |
U = dp_ptod(simp_ff(F),V); |
U = dp_nf_f(GI,U,PS,1); |
U = dp_nf_f(GI,U,PS,1); |
for ( I = 0; I < DIM; I++ ) |
for ( I = 0; I < DIM; I++ ) |
UT[I] = [MB[I],dp_nf_f(GI,U*MB[I],PS,1)]; |
UT[I] = [MB[I],dp_nf_f(GI,U*MB[I],PS,1)]; |
|
|
T = dp_ptod(ptosfp(1),[V0]); |
T = dp_ptod(simp_ff(1),[V0]); |
TT = dp_ptod(ptosfp(1),V); |
TT = dp_ptod(simp_ff(1),V); |
G = H = [[TT,T]]; |
G = H = [[TT,T]]; |
|
|
for ( I = 1; ; I++ ) { |
for ( I = 1; ; I++ ) { |
if ( dp_gr_print() ) |
if ( dp_gr_print() ) |
print(".",2); |
print(".",2); |
T = dp_ptod(ptosfp(V0^I),[V0]); |
T = dp_ptod(simp_ff(V0^I),[V0]); |
TT = dp_nf_tab_f(H[0][0],UT); |
TT = dp_nf_tab_f(H[0][0],UT); |
H = cons([TT,T],H); |
H = cons([TT,T],H); |
L = dp_lnf_f([TT,T],G); |
L = dp_lnf_f([TT,T],G); |
Line 2439 def minipoly_sf_rat(G,V,F,V0) |
|
Line 2443 def minipoly_sf_rat(G,V,F,V0) |
|
Vc = setminus(vars(G),V); |
Vc = setminus(vars(G),V); |
Gf = cons(V0-F,G); |
Gf = cons(V0-F,G); |
Vf = append(V,[V0]); |
Vf = append(V,[V0]); |
G3 = dp_gr_f_main(map(ptosfp,Gf),Vf,0,3); |
G3 = dp_gr_f_main(map(simp_ff,Gf),Vf,0,3); |
for ( T = G3; T != []; T = cdr(T) ) { |
for ( T = G3; T != []; T = cdr(T) ) { |
Vt = setminus(vars(car(T)),Vc); |
Vt = setminus(vars(car(T)),Vc); |
if ( Vt == [V0] ) |
if ( Vt == [V0] ) |
Line 2822 def henleq_gsl_sfrat(L,B,Vc,Eval) |
|
Line 2826 def henleq_gsl_sfrat(L,B,Vc,Eval) |
|
X = map(subst,X,V0,V0-E0); |
X = map(subst,X,V0,V0-E0); |
if ( zerovector(RESTA*X+RESTB) ) { |
if ( zerovector(RESTA*X+RESTB) ) { |
if ( dp_gr_print() ) print("end",0); |
if ( dp_gr_print() ) print("end",0); |
return [X,ptosfp(1)]; |
return [X,simp_ff(1)]; |
} else |
} else |
return 0; |
return 0; |
} else if ( COUNT == CCC ) { |
} else if ( COUNT == CCC ) { |
Line 2885 def henleq_gsl_sfrat_higher(L,B,Vc,Eval) |
|
Line 2889 def henleq_gsl_sfrat_higher(L,B,Vc,Eval) |
|
X = map(mshift,X,Vc,E,-1); |
X = map(mshift,X,Vc,E,-1); |
if ( zerovector(RESTA*X+RESTB) ) { |
if ( zerovector(RESTA*X+RESTB) ) { |
if ( dp_gr_print() ) print("end",0); |
if ( dp_gr_print() ) print("end",0); |
return [X,ptosfp(1)]; |
return [X,simp_ff(1)]; |
} else |
} else |
return 0; |
return 0; |
} else if ( COUNT == CCC ) { |
} else if ( COUNT == CCC ) { |
Line 2995 def polyvtoratv_higher(Vect,Vc,K) |
|
Line 2999 def polyvtoratv_higher(Vect,Vc,K) |
|
def polytorat_gcd(F,V,K) |
def polytorat_gcd(F,V,K) |
{ |
{ |
if ( deg(F,V) < K ) |
if ( deg(F,V) < K ) |
return [F,ptosfp(1)]; |
return [F,simp_ff(1)]; |
F1 = Mod^(K*2); F2 = F; |
F1 = Mod^(K*2); F2 = F; |
B1 = 0; B2 = 1; |
B1 = 0; B2 = 1; |
while ( 1 ) { |
while ( 1 ) { |
Line 3027 def polytorat_gcd(F,V,K) |
|
Line 3031 def polytorat_gcd(F,V,K) |
|
def polytorat(F,V,Mat,K) |
def polytorat(F,V,Mat,K) |
{ |
{ |
if ( deg(F,V) < K ) |
if ( deg(F,V) < K ) |
return [F,ptosfp(1)]; |
return [F,simp_ff(1)]; |
for ( I = 0; I < K; I++ ) |
for ( I = 0; I < K; I++ ) |
for ( J = 0; J < K; J++ ) |
for ( J = 0; J < K; J++ ) |
Mat[I][J] = coef(F,I+K-J); |
Mat[I][J] = coef(F,I+K-J); |
Line 3049 def polytorat_higher(F,V,K) |
|
Line 3053 def polytorat_higher(F,V,K) |
|
{ |
{ |
if ( K < 2 ) return 0; |
if ( K < 2 ) return 0; |
if ( homogeneous_deg(F) < K ) |
if ( homogeneous_deg(F) < K ) |
return [F,ptosfp(1)]; |
return [F,simp_ff(1)]; |
D = create_icpoly(V,K); |
D = create_icpoly(V,K); |
C = extract_coef(D*F,V,K,2*K); |
C = extract_coef(D*F,V,K,2*K); |
Vc = vars(C); |
Vc = vars(C); |
Line 3154 def ideal_uniq(L) /* sub procedure of welldec and norm |
|
Line 3158 def ideal_uniq(L) /* sub procedure of welldec and norm |
|
R = append(R,[L[I]]); |
R = append(R,[L[I]]); |
else { |
else { |
for (J = 0; J < length(R); J++) |
for (J = 0; J < length(R); J++) |
if ( gb_comp(L[I],R[J]) ) |
if ( gb_comp_old(L[I],R[J]) ) |
break; |
break; |
if ( J == length(R) ) |
if ( J == length(R) ) |
R = append(R,[L[I]]); |
R = append(R,[L[I]]); |
Line 3170 def ideal_uniq_by_first(L) /* sub procedure of welldec |
|
Line 3174 def ideal_uniq_by_first(L) /* sub procedure of welldec |
|
R = append(R,[L[I]]); |
R = append(R,[L[I]]); |
else { |
else { |
for (J = 0; J < length(R); J++) |
for (J = 0; J < length(R); J++) |
if ( gb_comp(L[I][0],R[J][0]) ) |
if ( gb_comp_old(L[I][0],R[J][0]) ) |
break; |
break; |
if ( J == length(R) ) |
if ( J == length(R) ) |
R = append(R,[L[I]]); |
R = append(R,[L[I]]); |
Line 3231 def gr_fctr_sf(FL,VL,Ord) |
|
Line 3235 def gr_fctr_sf(FL,VL,Ord) |
|
for (TP = [],I = 0; I<length(FL); I++ ) { |
for (TP = [],I = 0; I<length(FL); I++ ) { |
F = FL[I]; |
F = FL[I]; |
SF = idealsqfr_sf(F); |
SF = idealsqfr_sf(F); |
if ( !gb_comp(F,SF) ) |
if ( !gb_comp_old(F,SF) ) |
F = dp_gr_f_main(SF,VL,0,Ord); |
F = dp_gr_f_main(SF,VL,0,Ord); |
CID_SF=[1]; |
CID_SF=[1]; |
SP = gr_fctr_sub_sf(F,VL,Ord); |
SP = gr_fctr_sub_sf(F,VL,Ord); |
Line 3255 def gr_fctr_sub_sf(G,VL,Ord) |
|
Line 3259 def gr_fctr_sub_sf(G,VL,Ord) |
|
W = cons(FL[J][0],G); |
W = cons(FL[J][0],G); |
NG = dp_gr_f_main(W,VL,0,Ord); |
NG = dp_gr_f_main(W,VL,0,Ord); |
TNG = idealsqfr_sf(NG); |
TNG = idealsqfr_sf(NG); |
if ( !gb_comp(NG,TNG) ) |
if ( !gb_comp_old(NG,TNG) ) |
NG = dp_gr_f_main(TNG,VL,0,Ord); |
NG = dp_gr_f_main(TNG,VL,0,Ord); |
if ( !inclusion_test(CID_SF,NG,VL,Ord) ) { |
if ( !inclusion_test(CID_SF,NG,VL,Ord) ) { |
DG = gr_fctr_sub_sf(NG,VL,Ord); |
DG = gr_fctr_sub_sf(NG,VL,Ord); |
Line 3273 def gr_fctr_sub_sf(G,VL,Ord) |
|
Line 3277 def gr_fctr_sub_sf(G,VL,Ord) |
|
if (I == length(G)) |
if (I == length(G)) |
RL = append([G],RL); |
RL = append([G],RL); |
return RL; |
return RL; |
|
} |
|
|
|
def gb_comp_old(A,B) |
|
{ |
|
LA = length(A); |
|
LB = length(B); |
|
if ( LA != LB ) |
|
return 0; |
|
A = newvect(LA,A); |
|
B = newvect(LB,B); |
|
A1 = qsort(A); |
|
B1 = qsort(B); |
|
for ( I = 0; I < LA; I++ ) |
|
if ( A1[I] != B1[I] && A1[I] != -B1[I] ) |
|
break; |
|
return I == LA ? 1 : 0; |
} |
} |
end$ |
end$ |