[BACK]Return to ratint CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2000 / lib

Annotation of OpenXM_contrib2/asir2000/lib/ratint, Revision 1.3

1.3     ! noro        1: /*
        !             2:  * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
        !             3:  * All rights reserved.
        !             4:  *
        !             5:  * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
        !             6:  * non-exclusive and royalty-free license to use, copy, modify and
        !             7:  * redistribute, solely for non-commercial and non-profit purposes, the
        !             8:  * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
        !             9:  * conditions of this Agreement. For the avoidance of doubt, you acquire
        !            10:  * only a limited right to use the SOFTWARE hereunder, and FLL or any
        !            11:  * third party developer retains all rights, including but not limited to
        !            12:  * copyrights, in and to the SOFTWARE.
        !            13:  *
        !            14:  * (1) FLL does not grant you a license in any way for commercial
        !            15:  * purposes. You may use the SOFTWARE only for non-commercial and
        !            16:  * non-profit purposes only, such as academic, research and internal
        !            17:  * business use.
        !            18:  * (2) The SOFTWARE is protected by the Copyright Law of Japan and
        !            19:  * international copyright treaties. If you make copies of the SOFTWARE,
        !            20:  * with or without modification, as permitted hereunder, you shall affix
        !            21:  * to all such copies of the SOFTWARE the above copyright notice.
        !            22:  * (3) An explicit reference to this SOFTWARE and its copyright owner
        !            23:  * shall be made on your publication or presentation in any form of the
        !            24:  * results obtained by use of the SOFTWARE.
        !            25:  * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
        !            26:  * e-mail at risa-admin@flab.fujitsu.co.jp of the detailed specification
        !            27:  * for such modification or the source code of the modified part of the
        !            28:  * SOFTWARE.
        !            29:  *
        !            30:  * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
        !            31:  * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
        !            32:  * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
        !            33:  * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
        !            34:  * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
        !            35:  * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
        !            36:  * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
        !            37:  * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
        !            38:  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
        !            39:  * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
        !            40:  * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
        !            41:  * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
        !            42:  * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
        !            43:  * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
        !            44:  * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
        !            45:  * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
        !            46:  * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
        !            47:  *
        !            48:  * $OpenXM: OpenXM_contrib2/asir2000/lib/ratint,v 1.2 2000/06/07 03:00:21 noro Exp $
        !            49: */
1.1       noro       50: /*
                     51:  * rational function integration (Trager's algorithm)
                     52:  * load("gr"); load("sp");
                     53:  * toplevel : ratint(F,V)
                     54:  * returns a complicated list s.t.
                     55:  * [<rational part>, [[root*log(poly),defpoly],...].
                     56:  */
                     57:
                     58: #define FIRST(a) car(a)
                     59: #define SECOND(a) car(cdr(a))
                     60: #define THIRD(a) car(cdr(cdr(a)))
                     61:
                     62:
                     63: def substv(P,Sl)
                     64: {
                     65:        for ( A = P; Sl != []; Sl = cdr(Sl) )
                     66:                A = subst(A,FIRST(car(Sl)),SECOND(car(Sl)));
                     67:        return A;
                     68: }
                     69:
                     70: def co(X,V,D)
                     71: {
                     72:        for ( I = 0; I < D; I++ )
                     73:                X = diff(X,V);
                     74:        return sdiv(subst(X,V,0),fac(D));
                     75: }
                     76:
                     77: def solve(El,Vl)
                     78: /*
                     79:  * El : list of linear forms
                     80:  * Vl : list of variable
                     81:  */
                     82: {
                     83:        N = length(El); M = length(Vl);
                     84:        Mat = newmat(N,M+1);
                     85:        W = newvect(M+1); Index = newvect(N); Vs = newvect(M);
                     86:        for ( I = 0, Tl = Vl; I < M; Tl = cdr(Tl), I++ )
                     87:                Vs[I] = car(Tl);
                     88:        for ( I = 0, Tl = El; I < N; Tl = cdr(Tl), I++ ) {
                     89:                ltov(car(Tl),Vl,W);
                     90:                for ( J = 0; J <= M; J++ )
                     91:                        Mat[I][J] = W[J];
                     92:        }
                     93:        Tl = solvemain(Mat,Index,N,M); L = car(Tl); D = car(cdr(Tl));
                     94:        if ( L < 0 )
                     95:                return [];
                     96:        for ( I = L - 1, S = []; I >= 0; I-- ) {
                     97:                for ( J = Index[I]+1, A = 0; J < M; J++ ) {
                     98:                        A += Mat[I][J]*Vs[J];
                     99:                }
                    100:                S = cons([Vs[Index[I]],-red((A+Mat[I][M])/D)],S);
                    101:        }
                    102:        return S;
                    103: }
                    104:
                    105: def solvemain(Mat,Index,N,M)
                    106: /*
                    107:  *     Mat : matrix of size Nx(M+1)
                    108:  *     Index : vector of length N
                    109:  */
                    110: {
                    111:        for ( J = 0, L = 0, D = 1; J < M; J++ ) {
                    112:                for ( I = L; I < N && !Mat[I][J]; I++ );
                    113:                if ( I == N )
                    114:                        continue;
                    115:                Index[L] = J;
                    116:                for ( K = 0; K <= M; K++ ) {
                    117:                        T = Mat[I][K]; Mat[I][K] = Mat[L][K]; Mat[L][K] = T;
                    118:                }
                    119:                for ( I = L + 1, V = Mat[L][J]; I < N; I++ )
                    120:                        for ( K = J, U = Mat[I][J]; K <= M; K++ )
                    121:                                Mat[I][K] = sdiv(Mat[I][K]*V-Mat[L][K]*U,D);
                    122:                D = V; L++;
                    123:        }
                    124:        for ( I = L; I < N; I++ )
                    125:                for ( J = 0; J <= M; J++ )
                    126:                        if ( Mat[I][J] )
                    127:                                return -1;
                    128:        for ( I = L - 2, W = newvect(M+1); I >= 0; I-- ) {
                    129:                for ( J = 0; J <= M; J++ )
                    130:                        W[J] = 0;
                    131:                for ( G = I + 1; G < L; G++ )
                    132:                        for ( H = Index[G], U = Mat[I][H]; H <= M; H++ )
                    133:                                W[H] += Mat[G][H]*U;
                    134:                for ( J = Index[I], U = Mat[I][J]; J <= M; J++ )
                    135:                        Mat[I][J] = sdiv(Mat[I][J]*D-W[J],U);
                    136:        }
                    137:        return [L,D];
                    138: }
                    139:
                    140: def ltov(P,VL,W)
                    141: {
                    142:        for ( I = 0, L = VL; L != []; L = cdr(L), I++ ) {
                    143:                W[I] = co(P,car(L),1); P -= W[I]*car(L);
                    144:        }
                    145:        W[I] = P;
                    146: }
                    147:
                    148: def makeucp(N,V) {
                    149:        for ( UCV = [], I = 0; I <= N; I++ )
                    150:                UCV = cons(uc(),UCV);
                    151:        for ( L = UCV, I = P = 0; I <= N; I++, L = cdr(L) )
                    152:                P += car(L)*V^I;
                    153:        return [P,UCV];
                    154: }
                    155:
                    156: def ratint(F,V) {
                    157:        L = ratintsep(F,V);
                    158:        Rat = FIRST(L);
                    159:        if ( !SECOND(L) )
                    160:                return L;
                    161:        else {
                    162:                Pf = ratintpf(SECOND(L),V);
                    163:                for ( T = Pf, S = []; T != []; T = cdr(T) )
                    164:                        S = cons(ratintlog(car(T),V),S);
                    165:                return [Rat,S];
                    166:        }
                    167: }
                    168:
                    169: def ratintlog(F,V) {
                    170:        Nm = nm(F); Dn = dn(F);
                    171:        C = uc();
                    172:        R = res(V,ptozp(Nm-C*diff(Dn,V)),ptozp(Dn));
                    173:        Rc = FIRST(SECOND(fctr(R)));
                    174:        if ( deg(Rc,C) == 1 ) {
                    175:                VC = -co(Rc,C,0)/co(Rc,C,1);
                    176:                A = gcd(Nm-VC*diff(Dn,V),Dn);
                    177:                return [VC*log(A),0];
                    178:        } else {
                    179:                Root = newalg(Rc);
                    180:                A = gcda(subst(ptozp(Nm-C*diff(Dn,V)),C,Root),subst(ptozp(Dn),C,Root));
                    181:                return [Root*log(A),defpoly(Root)];
                    182:        }
                    183: }
                    184:
                    185: def ratintsep(F,V) {
                    186:        B = dn(F); A = srem(nm(F),B); P = sdiv(nm(F)-R,B);
                    187:        IP = polyint(P,V);
                    188:        G = gcd(B,diff(B,x));
                    189:        if ( type(G) == 1 )
                    190:                return [IP,red(A/B)];
                    191:        H = sdiv(B,G);
                    192:        N = deg(B,V); M = deg(H,V);
                    193:        CL = makeucp(N-M-1,V); DL = makeucp(M-1,V);
                    194:        C = car(CL); CV = car(cdr(CL));
                    195:        D = car(DL); DV = car(cdr(DL));
                    196:        UCV = append(CV,DV);
                    197:        S = solveuc(A-(diff(C,V)*H-C*sdiv(H*diff(G,V),G)+D*G),V,UCV);
                    198:        C = substv(C,S); D = substv(D,S);
                    199:        return [IP+C/G,red(D/H)];
                    200: }
                    201:
                    202: def polyint(P,V) {
                    203:        if ( !P )
                    204:                return 0;
                    205:        if ( type(P) == 1 )
                    206:                return P*V;
                    207:        for ( I = deg(P,V), T = 0; I >= 0; I-- )
                    208:                T += coef(P,I)/(I+1)*V^(I+1);
                    209:        return T;
                    210: }
                    211:
                    212: def ratintpf(P,V) {
                    213:        NmP = nm(P); DnP = dn(P);
                    214:        DnPf = fctr(DnP);
                    215:        L = length(DnPf) - 1;
                    216:        if ( L == 1 )
                    217:                return [P];
                    218:
                    219:        Lc = FIRST(car(DnPf)); DnPf = cdr(DnPf);
                    220:        NmP = sdiv(NmP,Lc); DnP = sdiv(DnP,Lc);
                    221:        Nm = newvect(L); Dn = newvect(L);
                    222:        for ( I = 0, F = DnPf; I < L; I++, F = cdr(F) )
                    223:                Dn[I] = FIRST(car(F));
                    224:
                    225:        for ( I = 0, U = -NmP, Vl = []; I < L; I++ ) {
                    226:                CL = makeucp(deg(Dn[I],V)-1,V);
                    227:                Nm[I] = FIRST(CL); Vl = append(Vl,SECOND(CL));
                    228:                U += sdiv(DnP,Dn[I])*Nm[I];
                    229:        }
                    230:
                    231:        S = solveuc(U,V,Vl);
                    232:        for ( I = 0, F = []; I < L; I++ )
                    233:                if ( T = substv(Nm[I],S) )
                    234:                        F = cons(T/Dn[I],F);
                    235:        return F;
                    236: }
                    237:
                    238: def solveuc(P,V,L) {
                    239:        for ( N = deg(P,V), E = [], I = N; I >= 0; I-- )
                    240:                if ( C = coef(P,I) )
                    241:                        E = cons(C,E);
                    242:        EVG = eqsimp(E,L);
                    243:        if ( FIRST(EVG) == [] )
                    244:                return THIRD(EVG);
                    245:        else {
                    246:                S = solve(FIRST(EVG),SECOND(EVG));
                    247:                for ( T = S, G = THIRD(EVG); G != []; G = cdr(G) ) {
                    248:                        VV = car(G);
                    249:                        T = cons([FIRST(VV),substv(SECOND(VV),S)],T);
                    250:                }
                    251:                return T;
                    252:        }
                    253:
                    254: }
                    255:
                    256: #if 0
                    257: def append(A,B) {
                    258:        return A == [] ? B : cons(car(A),append(cdr(A),B));
                    259: }
                    260: #endif
                    261:
                    262: def eqsimp(E,Vs) {
                    263:        for ( Got = []; ; ) {
                    264:                if ( (VV = searchmonic(E,Vs)) == [] )
                    265:                        return [E,Vs,Got];
                    266:                V = FIRST(VV); Val = SECOND(VV);
                    267:                Vs = subtract(Vs,V);
                    268:                for ( T = []; E != []; E = cdr(E) )
                    269:                        if ( S = subst(car(E),V,Val) )
                    270:                                T = cons(S,T);
                    271:                E = T;
                    272:                for ( T = [VV]; Got != []; Got = cdr(Got) ) {
                    273:                        VV1 = car(Got);
                    274:                        T = cons([FIRST(VV1),subst(SECOND(VV1),V,Val)],T);
                    275:                }
                    276:                Got = T;
                    277:        }
                    278: }
                    279:
                    280: def searchmonic(E,Vs) {
                    281:        for ( ; E != []; E = cdr(E) )
                    282:                for ( P = car(E), T = Vs; T != []; T = cdr(T) ) {
                    283:                        V = car(T); C = diff(P,V);
                    284:                        if ( C == 1 )
                    285:                                return [V,-(P-V)];
                    286:                        else if ( C == -1 )
                    287:                                return [V,P+V];
                    288:                }
                    289:        return [];
                    290: }
                    291:
                    292: def subtract(S,E) {
                    293:        for ( T = []; S != []; S = cdr(S) )
                    294:                if ( car(S) == E )
                    295:                        return append(T,cdr(S));
                    296:                else
                    297:                        T = cons(car(S),T);
                    298: }
                    299: end$

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>