Annotation of OpenXM_contrib2/asir2000/lib/solve, Revision 1.1.1.1
1.1 noro 1: /* $OpenXM: OpenXM/src/asir99/lib/solve,v 1.1.1.1 1999/11/10 08:12:30 noro Exp $ */
2: def kenzan(El,Sl)
3: {
4: for ( Tl = El; Tl != []; Tl = cdr(Tl) ) {
5: if ( substv(car(Tl),Sl) ) {
6: print("kenzan : error");
7: return 0;
8: }
9: }
10: print("kenzan : ok");
11: return 1;
12: }
13:
14: def substv(P,Sl)
15: {
16: for ( A = P; Sl != []; Sl = cdr(Sl) )
17: A = subst(A,car(car(Sl)),car(cdr(car(Sl))));
18: return A;
19: }
20:
21: def co(X,V,D)
22: {
23: for ( I = 0; I < D; I++ )
24: X = diff(X,V);
25: return sdiv(subst(X,V,0),fac(D));
26: }
27:
28: def solve(El,Vl)
29: /*
30: * El : list of linear forms
31: * Vl : list of variable
32: */
33: {
34: N = length(El); M = length(Vl);
35: Mat = newmat(N,M+1);
36: W = newvect(M+1); Index = newvect(N); Vs = newvect(M);
37: for ( I = 0, Tl = Vl; I < M; Tl = cdr(Tl), I++ )
38: Vs[I] = car(Tl);
39: for ( I = 0, Tl = El; I < N; Tl = cdr(Tl), I++ ) {
40: ltov(car(Tl),Vl,W);
41: for ( J = 0; J <= M; J++ )
42: Mat[I][J] = W[J];
43: }
44: Tl = solvemain(Mat,Index,N,M); L = car(Tl); D = car(cdr(Tl));
45: if ( L < 0 )
46: return [];
47: for ( I = L - 1, S = []; I >= 0; I-- ) {
48: for ( J = Index[I]+1, A = 0; J < M; J++ ) {
49: A += Mat[I][J]*Vs[J];
50: }
51: S = cons([Vs[Index[I]],-red((A+Mat[I][M])/D)],S);
52: }
53: if ( kenzan(El,S) )
54: return S;
55: else
56: return [];
57: return S;
58: }
59:
60: def solvemain(Mat,Index,N,M)
61: /*
62: * Mat : matrix of size Nx(M+1)
63: * Index : vector of length N
64: */
65: {
66: for ( J = 0, L = 0, D = 1; J < M; J++ ) {
67: for ( I = L; I < N && !Mat[I][J]; I++ );
68: if ( I == N )
69: continue;
70: Index[L] = J;
71: for ( K = 0; K <= M; K++ ) {
72: T = Mat[I][K]; Mat[I][K] = Mat[L][K]; Mat[L][K] = T;
73: }
74: for ( I = L + 1, V = Mat[L][J]; I < N; I++ )
75: for ( K = J, U = Mat[I][J]; K <= M; K++ )
76: Mat[I][K] = sdiv(Mat[I][K]*V-Mat[L][K]*U,D);
77: D = V; L++;
78: }
79: for ( I = L; I < N; I++ )
80: for ( J = 0; J <= M; J++ )
81: if ( Mat[I][J] )
82: return -1;
83: for ( I = L - 2, W = newvect(M+1); I >= 0; I-- ) {
84: for ( J = 0; J <= M; J++ )
85: W[J] = 0;
86: for ( G = I + 1; G < L; G++ )
87: for ( H = Index[G], U = Mat[I][H]; H <= M; H++ )
88: W[H] += Mat[G][H]*U;
89: for ( J = Index[I], U = Mat[I][J]; J <= M; J++ )
90: Mat[I][J] = sdiv(Mat[I][J]*D-W[J],U);
91: }
92: return [L,D];
93: }
94:
95: def length(L)
96: {
97: for ( I = 0; L != []; L = cdr(L), I++ );
98: return I;
99: }
100:
101: def ltov(P,VL,W)
102: {
103: for ( I = 0, L = VL; L != []; L = cdr(L), I++ ) {
104: W[I] = co(P,car(L),1); P -= W[I]*car(L);
105: }
106: W[I] = P;
107: }
108: end$
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>