version 1.15, 2004/01/06 08:38:05 |
version 1.21, 2004/01/07 08:15:16 |
|
|
load("solve")$ |
load("solve")$ |
load("gr")$ |
load("gr")$ |
|
|
|
#define EPS 1E-6 |
|
#define TINY 1E-20 |
|
#define MAX_ITER 100 |
|
#define ROUND_THRESHOLD 0.4 |
|
|
|
def rotate(A,I,J,K,L,C,S){ |
|
|
|
X=A[I][J]; |
|
Y=A[K][L]; |
|
A[I][J]=X*C-Y*S; |
|
A[K][L]=X*S+Y*C; |
|
|
|
return 1; |
|
} |
|
|
|
def jacobi(N,A,W){ |
|
|
|
S=OFFDIAG=0.0; |
|
|
|
for(J=0;J<N;J++){ |
|
|
|
for(K=0;K<N;K++) |
|
W[J][K]=0.0; |
|
|
|
W[J][J]=1.0; |
|
S+=A[J][J]*A[J][J]; |
|
|
|
for(K=J+1;K<N;K++) |
|
OFFDIAG+=A[J][K]*A[J][K]; |
|
} |
|
|
|
TOLERANCE=EPS*EPS*(S/2+OFFDIAG); |
|
|
|
for(ITER=1;ITER<=MAX_ITER;ITER++){ |
|
|
|
OFFDIAG=0.0; |
|
for(J=0;J<N-1;J++) |
|
for(K=J+1;K<N;K++) |
|
OFFDIAG+=A[J][K]*A[J][K]; |
|
|
|
if(OFFDIAG < TOLERANCE) |
|
break; |
|
|
|
for(J=0;J<N-1;J++){ |
|
for(K=J+1;K<N;K++){ |
|
|
|
if(dabs(A[J][K])<TINY) |
|
continue; |
|
|
|
T=(A[K][K]-A[J][J])/(2.0*A[J][K]); |
|
|
|
if(T>=0.0) |
|
T=1.0/(T+dsqrt(T*T+1)); |
|
else |
|
T=1.0/(T-dsqrt(T*T+1)); |
|
|
|
C=1.0/dsqrt(T*T+1); |
|
|
|
S=T*C; |
|
|
|
T*=A[J][K]; |
|
|
|
A[J][J]-=T; |
|
A[K][K]+=T; |
|
A[J][K]=0.0; |
|
|
|
for(I=0;I<J;I++) |
|
rotate(A,I,J,I,K,C,S); |
|
|
|
for(I=J+1;I<K;I++) |
|
rotate(A,J,I,I,K,C,S); |
|
|
|
for(I=K+1;I<N;I++) |
|
rotate(A,J,I,K,I,C,S); |
|
|
|
for(I=0;I<N;I++) |
|
rotate(W,J,I,K,I,C,S); |
|
|
|
} |
|
} |
|
} |
|
|
|
if (ITER > MAX_ITER) |
|
return 0; |
|
|
|
for(I=0;I<N-1;I++){ |
|
|
|
K=I; |
|
|
|
T=A[K][K]; |
|
|
|
for(J=I+1;J<N;J++) |
|
if(A[J][J]>T){ |
|
K=J; |
|
T=A[K][K]; |
|
} |
|
|
|
A[K][K]=A[I][I]; |
|
|
|
A[I][I]=T; |
|
|
|
V=W[K]; |
|
|
|
W[K]=W[I]; |
|
|
|
W[I]=V; |
|
} |
|
|
|
return 1; |
|
} |
|
|
def nonzerovec(A){ |
def nonzerovec(A){ |
|
|
for(I=0;I<size(A)[0];I++) |
for(I=0;I<size(A)[0];I++) |
|
|
return RET$ |
return RET$ |
} |
} |
|
|
def wsort(A,B,C,FLAG){ |
def wsort(A,B,C,FLAG,ID){ |
|
|
if(FLAG==0){ |
if(FLAG==0){ |
D=newvect(length(B))$ |
D=newvect(length(B))$ |
Line 87 def wsort(A,B,C,FLAG){ |
|
Line 198 def wsort(A,B,C,FLAG){ |
|
F=cons(D[I][2],F)$ |
F=cons(D[I][2],F)$ |
F=reverse(F)$ |
F=reverse(F)$ |
|
|
return [[E,F]]$ |
return [[ID,E,F]]$ |
} |
} |
else{ |
else{ |
D=newvect(length(B))$ |
D=newvect(length(B))$ |
Line 125 def wsort(A,B,C,FLAG){ |
|
Line 236 def wsort(A,B,C,FLAG){ |
|
TMP0=reverse(TMP0)$ |
TMP0=reverse(TMP0)$ |
TMP1=reverse(TMP1)$ |
TMP1=reverse(TMP1)$ |
|
|
RET=cons([TMP0,TMP1],RET)$ |
RET=cons([ID,TMP0,TMP1],RET)$ |
} |
} |
|
|
return RET$ |
return RET$ |
} |
} |
} |
} |
|
|
def derase(A){ |
|
|
|
B=newvect(length(A),A)$ |
|
B=qsort(B,junban)$ |
|
C=[]$ |
|
for(I=0;I<size(B)[0];I++) |
|
if(car(C)!=B[I]) |
|
C=cons(B[I],C)$ |
|
|
|
return reverse(C)$ |
|
} |
|
|
|
def nonposdegchk(Res){ |
def nonposdegchk(Res){ |
|
|
for(I=0;I<length(Res);I++) |
for(I=0;I<length(Res);I++) |
Line 163 def getgcd(A,B){ |
|
Line 262 def getgcd(A,B){ |
|
for(I=0;I<VarsNumA;I++){ |
for(I=0;I<VarsNumA;I++){ |
|
|
for(J=0;J<VarsNumB;J++) |
for(J=0;J<VarsNumB;J++) |
if(C[J]==A[I][0]) |
if(B[J]==A[I][0]) |
break$ |
break$ |
|
|
if(J<VarsNumB) |
if(J<VarsNumB) |
Line 204 def makeret(Res,Vars,FLAG){ |
|
Line 303 def makeret(Res,Vars,FLAG){ |
|
VarsNum=length(Vars)$ |
VarsNum=length(Vars)$ |
|
|
ResVec=newvect(ResNum)$ |
ResVec=newvect(ResNum)$ |
for(M=0,I=0;I<ResNum;I++){ |
|
if(member(Res[I][0],Vars)){ |
|
ResVec[I]=Res[I][1]$ |
|
|
|
if(FLAG && type(ResVec[I])==1){ |
for(M=0,I=0;I<ResNum;I++){ |
if(M==0) |
if(member(Res[I][0],Vars)){ |
M=ResVec[I]$ |
ResVec[I]=Res[I][1]$ |
else |
|
if(ResVec[I]<M) |
if(FLAG && type(ResVec[I])==1){ |
M=ResVec[I]$ |
if(M==0) |
} |
M=ResVec[I]$ |
} |
else |
} |
if(ResVec[I]<M) |
|
M=ResVec[I]$ |
|
} |
|
} |
|
} |
|
|
if(M!=0) |
if(M!=0) |
ResVec=ResVec/M; |
ResVec=ResVec/M; |
|
|
RET=newvect(VarsNum,Vars)$ |
RET=newvect(VarsNum,Vars)$ |
|
|
for(I=0;I<ResNum;I++){ |
for(I=0;I<ResNum;I++){ |
for(J=0;J<VarsNum;J++) |
for(J=0;J<VarsNum;J++) |
Line 253 def roundret(V){ |
|
Line 353 def roundret(V){ |
|
RET1=I*RET0$ |
RET1=I*RET0$ |
for(J=0;J<VN;J++){ |
for(J=0;J<VN;J++){ |
X=drint(RET1[J])$ |
X=drint(RET1[J])$ |
if(dabs(X-RET1[J])<0.2) |
if(dabs(X-RET1[J])<ROUND_THRESHOLD) |
RET1[J]=X$ |
RET1[J]=X$ |
else |
else |
break$ |
break$ |
Line 385 def qcheck(PolyList,Vars,FLAG){ |
|
Line 485 def qcheck(PolyList,Vars,FLAG){ |
|
if(checktd(PolyList,Vars,ResVars[1])==1){ |
if(checktd(PolyList,Vars,ResVars[1])==1){ |
if(ResVars[0]==0){ |
if(ResVars[0]==0){ |
RET=append(RET,wsort(ResVars[1],Vars, |
RET=append(RET,wsort(ResVars[1],Vars, |
ResVars[1],FLAG))$ |
ResVars[1],FLAG,0))$ |
|
|
return RET$ |
return RET$ |
} |
} |
else{ |
else{ |
RET=append(RET,[[Vars,vtol(ResVars[1])]])$ |
RET=append(RET,[[0,Vars,vtol(ResVars[1])]])$ |
return RET$ |
return RET$ |
} |
} |
} |
} |
Line 401 def qcheck(PolyList,Vars,FLAG){ |
|
Line 502 def qcheck(PolyList,Vars,FLAG){ |
|
|
|
} |
} |
|
|
def leastsq(NormMat,ExpMat,Vars,FLAG){ |
def leastsq(NormMat,ExpMat,Vars,FLAG,ID){ |
|
|
RET=[]$ |
RET=[]$ |
|
|
Line 448 def leastsq(NormMat,ExpMat,Vars,FLAG){ |
|
Line 549 def leastsq(NormMat,ExpMat,Vars,FLAG){ |
|
Res=getgcd(Res,Rea)$ |
Res=getgcd(Res,Rea)$ |
|
|
if(nonposdegchk(Res)){ |
if(nonposdegchk(Res)){ |
|
|
TMP1=makeret(Res,Vars,1)$ |
TMP1=makeret(Res,Vars,1)$ |
|
|
if(TMP1[0]==0){ |
if(TMP1[0]==0){ |
TMP=roundret(TMP1[1])$ |
TMP=roundret(TMP1[1])$ |
if(TMP!=[]) |
|
RET=append(RET,wsort(TMP1[1],Vars,TMP,FLAG))$ |
|
|
|
RET=append(RET,wsort(TMP1[1],Vars, |
RET=append(RET,wsort(TMP1[1],Vars, |
map(drint,TMP1[1]*1.0),FLAG))$ |
map(drint,TMP1[1]*1.0),FLAG,ID))$ |
|
|
|
if(TMP!=[]) |
|
RET=append(RET,wsort(TMP1[1],Vars, |
|
TMP,FLAG,ID+1))$ |
|
|
return RET$ |
return RET$ |
} |
} |
else{ |
else{ |
RET=append(RET,[[Vars,vtol(TMP1[1]*1.0)]])$ |
RET=append(RET,[[ID,Vars,vtol(TMP1[1]*1.0)]])$ |
return RET$ |
return RET$ |
} |
} |
} |
} |
Line 469 def leastsq(NormMat,ExpMat,Vars,FLAG){ |
|
Line 574 def leastsq(NormMat,ExpMat,Vars,FLAG){ |
|
|
|
} |
} |
|
|
def weightr(ExpMat,Vars,PolyListNum,OneMat,FLAG){ |
def unitweight(ExpMat,Vars,PolyListNum,OneMat,FLAG){ |
|
|
RET=[]$ |
RET=[]$ |
|
|
Line 483 def weightr(ExpMat,Vars,PolyListNum,OneMat,FLAG){ |
|
Line 588 def weightr(ExpMat,Vars,PolyListNum,OneMat,FLAG){ |
|
|
|
ExtVars=reverse(ExtVars)$ |
ExtVars=reverse(ExtVars)$ |
|
|
NormMat=newmat(ExpMatColNum,ExtMatColNum)$ |
NormMat0=newvect(ExpMatColNum)$ |
|
for(I=0;I<ExpMatColNum;I++) |
|
NormMat0[I]=newvect(ExpMatColNum)$ |
|
|
for(I=0;I<ExpMatColNum;I++) |
for(I=0;I<ExpMatColNum;I++) |
for(J=I;J<ExpMatColNum;J++) |
for(J=I;J<ExpMatColNum;J++) |
for(K=0;K<ExpMatRowNum;K++) |
for(K=0;K<ExpMatRowNum;K++) |
NormMat[I][J]+= |
NormMat0[I][J]+= |
ExpMat[K][I]* |
ExpMat[K][I]* |
ExpMat[K][J]$ |
ExpMat[K][J]$ |
|
|
|
NormMat1=newvect(ExtMatColNum)$ |
|
for(I=0;I<ExtMatColNum;I++) |
|
NormMat1[I]=newvect(ExtMatColNum)$ |
|
|
|
|
|
WorkMat=newvect(ExtMatColNum)$ |
|
for(I=0;I<ExtMatColNum;I++) |
|
WorkMat[I]=newvect(ExtMatColNum)$ |
|
|
|
|
for(I=0;I<ExpMatColNum;I++) |
for(I=0;I<ExpMatColNum;I++) |
|
for(J=I;J<ExpMatColNum;J++) |
|
NormMat1[I][J]=NormMat0[I][J]$ |
|
|
|
for(I=0;I<ExpMatColNum;I++) |
for(J=0;J<PolyListNum;J++) |
for(J=0;J<PolyListNum;J++) |
for(K=OneMat[J];K<OneMat[J+1];K++) |
for(K=OneMat[J];K<OneMat[J+1];K++) |
NormMat[I][J+ExpMatColNum]-= |
NormMat1[I][J+ExpMatColNum]-= |
ExpMat[K][I]$ |
ExpMat[K][I]$ |
|
|
WVect=newvect(PolyListNum)$ |
|
for(I=0;I<PolyListNum;I++) |
for(I=0;I<PolyListNum;I++) |
WVect[I]=OneMat[I+1]-OneMat[I]$ |
NormMat1[I+ExpMatColNum][I+ExpMatColNum]=OneMat[I+1]-OneMat[I]$ |
|
|
for(F=0;F<ExtMatColNum;F++){ |
if(jacobi(ExtMatColNum,NormMat1,WorkMat)){ |
SolveList=[]$ |
|
|
Res=newvect(ExpMatColNum)$ |
for(I=0;I<ExpMatColNum;I++){ |
for(I=0;I<ExpMatColNum;I++){ |
if (F==I) |
Res[I]=newvect(2)$ |
continue$ |
Res[I][0]=Vars[I]$ |
|
Res[I][1]=WorkMat[ExtMatColNum-1][I]$ |
|
} |
|
|
TMP=0$ |
|
|
|
for(J=0;J<I;J++) |
|
if(J!=F) |
|
TMP+=NormMat[J][I]*ExtVars[J]$ |
|
|
|
for(J=I;J<ExtMatColNum;J++) |
|
if(J!=F) |
|
TMP+=NormMat[I][J]*ExtVars[J]$ |
|
|
|
if(F<I) |
|
TMP+=NormMat[F][I]$ |
|
else |
|
TMP+=NormMat[I][F]$ |
|
|
|
SolveList=cons(TMP,SolveList)$ |
|
} |
|
|
|
for(I=0;I<PolyListNum;I++){ |
|
if(F==(I+ExpMatColNum)) |
|
continue$ |
|
|
|
TMP=0$ |
|
for(J=0;J<ExpMatColNum;J++) |
|
if(J!=F) |
|
TMP+=NormMat[J][I+ExpMatColNum] |
|
*ExtVars[J]$ |
|
|
|
TMP+=WVect[I]*ExtVars[I+ExpMatColNum]$ |
|
|
|
if(F<ExpMatColNum) |
|
TMP+=NormMat[F][I+ExpMatColNum]$ |
|
|
|
SolveList=cons(TMP,SolveList)$ |
|
} |
|
|
|
Rea=vars(SolveList)$ |
|
|
|
SolVars=[]$ |
|
for(I=0;I<ExtMatColNum;I++) |
|
if(I!=F && member(ExtVars[I],Rea)) |
|
SolVars=cons(ExtVars[I],SolVars)$ |
|
|
|
Res=solve(SolveList,SolVars)$ |
|
Res=cons([ExtVars[F],1],Res)$ |
|
|
|
TMP=[]$ |
|
for(I=0;I<length(Rea);I++) |
|
if(member(Rea[I],Vars)) |
|
TMP=cons(Rea[I],TMP)$ |
|
|
|
if(member(ExtVars[F],Vars)) |
|
TMP=cons(ExtVars[F],TMP)$ |
|
|
|
Res=getgcd(Res,TMP)$ |
|
|
|
if(nonposdegchk(Res)){ |
if(nonposdegchk(Res)){ |
|
|
TMP1=makeret(Res,Vars,1)$ |
TMP1=makeret(Res,Vars,1)$ |
if(TMP1[0]==0){ |
|
TMP=roundret(TMP1[1])$ |
|
if(TMP!=[]) |
|
RET=append(RET,wsort(TMP1[1],Vars, |
|
TMP,FLAG))$ |
|
|
|
|
TMP=roundret(TMP1[1])$ |
|
|
|
RET=append(RET,wsort(TMP1[1],Vars, |
|
map(drint,TMP1[1]*1.0),FLAG,1))$ |
|
|
|
if(TMP!=[]) |
RET=append(RET,wsort(TMP1[1],Vars, |
RET=append(RET,wsort(TMP1[1],Vars, |
map(drint,TMP1[1]*1.0),FLAG))$ |
TMP,FLAG,2))$ |
} |
|
else{ |
|
RET=append(RET,[[Vars,vtol(TMP1[1]*1.0)]])$ |
|
} |
|
} |
} |
|
|
} |
} |
|
|
return [NormMat,RET]$ |
return [NormMat0,RET]$ |
} |
} |
|
|
def weight(PolyList,Vars,FLAG1,FLAG2){ |
def weight(PolyList,Vars,FLAG){ |
|
|
Vars0=vars(PolyList)$ |
Vars0=vars(PolyList)$ |
Vars1=[]$ |
Vars1=[]$ |
Line 598 def weight(PolyList,Vars,FLAG1,FLAG2){ |
|
Line 662 def weight(PolyList,Vars,FLAG1,FLAG2){ |
|
|
|
RET=[]$ |
RET=[]$ |
|
|
TMP=qcheck(PolyList,Vars,FLAG2)$ |
TMP=qcheck(PolyList,Vars,FLAG)$ |
|
|
if(TMP!=[]){ |
if(TMP!=[]){ |
RET=append(RET,TMP)$ |
RET=append(RET,TMP)$ |
return cons(1,RET)$ |
return RET$ |
} |
} |
|
|
dp_ord(2)$ |
dp_ord(2)$ |
|
|
PolyListNum=length(PolyList)$ |
PolyListNum=length(PolyList)$ |
|
|
if(FLAG1){ |
OneMat=newvect(PolyListNum+1,[0])$ |
|
ExpMat=[]$ |
OneMat=newvect(PolyListNum+1,[0])$ |
for(I=0;I<PolyListNum;I++){ |
ExpMat=[]$ |
for(Poly=dp_ptod(PolyList[I],Vars); |
for(I=0;I<PolyListNum;I++){ |
Poly!=0;Poly=dp_rest(Poly)){ |
for(Poly=dp_ptod(PolyList[I],Vars); |
ExpMat=cons(dp_etov(dp_ht(Poly)),ExpMat)$ |
Poly!=0;Poly=dp_rest(Poly)){ |
|
ExpMat=cons(dp_etov(dp_ht(Poly)),ExpMat)$ |
|
} |
|
OneMat[I+1]=length(ExpMat)$ |
|
} |
} |
|
OneMat[I+1]=length(ExpMat)$ |
|
} |
|
|
ExpMat=reverse(ExpMat)$ |
ExpMat=reverse(ExpMat)$ |
ExpMat=newvect(length(ExpMat),ExpMat)$ |
ExpMat=newvect(length(ExpMat),ExpMat)$ |
|
|
TMP=weightr(ExpMat,Vars,PolyListNum,OneMat,FLAG2)$ |
TMP=unitweight(ExpMat,Vars,PolyListNum,OneMat,FLAG)$ |
RET=append(RET,TMP[1])$ |
|
RET=append(RET,leastsq(TMP[0],ExpMat,Vars,FLAG2))$ |
|
} |
|
else{ |
|
ExpMat=[]$ |
|
for(I=0;I<PolyListNum;I++){ |
|
for(Poly=dp_ptod(PolyList[I],Vars); |
|
Poly!=0;Poly=dp_rest(Poly)){ |
|
if(nonzerovec(TMP=dp_etov(dp_ht(Poly)))) |
|
ExpMat=cons(TMP,ExpMat)$ |
|
} |
|
} |
|
|
|
ExpMat=reverse(ExpMat)$ |
RET=append(RET,TMP[1])$ |
ExpMat=newvect(length(ExpMat),ExpMat)$ |
|
|
|
RET=append(RET,leastsq(0,ExpMat,Vars,FLAG2))$ |
TMP0=leastsq(TMP[0],ExpMat,Vars,FLAG,3)$ |
} |
|
|
|
|
RET=append(RET,TMP0)$ |
|
|
ExpMat=qsort(ExpMat,junban)$ |
ExpMat=qsort(ExpMat,junban)$ |
|
|
ExpMat2=[]$ |
ExpMat2=[]$ |
Line 653 def weight(PolyList,Vars,FLAG1,FLAG2){ |
|
Line 703 def weight(PolyList,Vars,FLAG1,FLAG2){ |
|
|
|
if(size(ExpMat)[0]!=length(ExpMat2)){ |
if(size(ExpMat)[0]!=length(ExpMat2)){ |
ExpMat=newvect(length(ExpMat2),ExpMat2)$ |
ExpMat=newvect(length(ExpMat2),ExpMat2)$ |
RET=append(RET,leastsq(0,ExpMat,Vars,FLAG2))$ |
RET=append(RET,leastsq(0,ExpMat,Vars,FLAG,5))$ |
} |
} |
|
else{ |
|
TMP0=map(ltov,TMP0)$ |
|
|
RET=derase(RET)$ |
for(I=0;I<length(TMP0);I++) |
return cons(0,RET)$ |
if(TMP0[I][0]==3) |
|
TMP0[I][0]=5$ |
|
else if(TMP0[I][0]==4) |
|
TMP0[I][0]=6$ |
|
|
|
TMP0=map(vtol,TMP0)$ |
|
|
|
RET=append(RET,TMP0)$ |
|
} |
|
|
|
return RET$ |
} |
} |
|
|
end$ |
end$ |