Annotation of OpenXM_contrib2/asir2000/plot/if.c, Revision 1.14
1.2 noro 1: /*
2: * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
3: * All rights reserved.
4: *
5: * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
6: * non-exclusive and royalty-free license to use, copy, modify and
7: * redistribute, solely for non-commercial and non-profit purposes, the
8: * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
9: * conditions of this Agreement. For the avoidance of doubt, you acquire
10: * only a limited right to use the SOFTWARE hereunder, and FLL or any
11: * third party developer retains all rights, including but not limited to
12: * copyrights, in and to the SOFTWARE.
13: *
14: * (1) FLL does not grant you a license in any way for commercial
15: * purposes. You may use the SOFTWARE only for non-commercial and
16: * non-profit purposes only, such as academic, research and internal
17: * business use.
18: * (2) The SOFTWARE is protected by the Copyright Law of Japan and
19: * international copyright treaties. If you make copies of the SOFTWARE,
20: * with or without modification, as permitted hereunder, you shall affix
21: * to all such copies of the SOFTWARE the above copyright notice.
22: * (3) An explicit reference to this SOFTWARE and its copyright owner
23: * shall be made on your publication or presentation in any form of the
24: * results obtained by use of the SOFTWARE.
25: * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
1.3 noro 26: * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
1.2 noro 27: * for such modification or the source code of the modified part of the
28: * SOFTWARE.
29: *
30: * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
31: * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
32: * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
33: * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
34: * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
35: * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
36: * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
37: * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
38: * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
39: * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
40: * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
41: * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
42: * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
43: * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
44: * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
45: * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
46: * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
47: *
1.14 ! noro 48: * $OpenXM: OpenXM_contrib2/asir2000/plot/if.c,v 1.13 2002/08/02 09:29:17 noro Exp $
1.2 noro 49: */
1.1 noro 50: #include "ca.h"
51: #include "parse.h"
52: #include "ox.h"
53: #include "ifplot.h"
54:
1.8 noro 55: extern JMP_BUF ox_env;
1.1 noro 56:
1.4 noro 57: int open_canvas(NODE arg)
58: {
59: int id;
60: struct canvas *can;
61: LIST wsize;
62: STRING wname;
63:
64: wsize = (LIST)ARG0(arg);
65: wname = (STRING)ARG1(arg);
66:
67: can = canvas[id = search_canvas()];
68: can->mode = MODE_INTERACTIVE;
69: if ( !wsize ) {
70: can->width = DEFAULTWIDTH; can->height = DEFAULTHEIGHT;
71: } else {
72: can->width = QTOS((Q)BDY(BDY(wsize)));
73: can->height = QTOS((Q)BDY(NEXT(BDY(wsize))));
74: }
75: if ( wname )
76: can->wname = BDY(wname);
77: else
78: can->wname = "";
79: create_canvas(can);
80: return id;
81: }
82:
1.1 noro 83: int plot(NODE arg)
84: {
85: int id;
86: NODE n;
87: struct canvas *can;
88: P formula;
89: LIST xrange,yrange,zrange,wsize;
90: STRING wname;
1.12 noro 91: V v;
1.1 noro 92:
93: formula = (P)ARG0(arg);
94: xrange = (LIST)ARG1(arg);
95: yrange = (LIST)ARG2(arg);
96: zrange = (LIST)ARG3(arg);
97: wsize = (LIST)ARG4(arg);
98: wname = (STRING)ARG5(arg);
99:
100: can = canvas[id = search_canvas()];
1.12 noro 101: if ( xrange ) {
102: n = BDY(xrange); can->vx = VR((P)BDY(n)); n = NEXT(n);
103: can->qxmin = (Q)BDY(n); n = NEXT(n); can->qxmax = (Q)BDY(n);
104: can->xmin = ToReal(can->qxmin); can->xmax = ToReal(can->qxmax);
105: }
1.1 noro 106: if ( yrange ) {
107: n = BDY(yrange); can->vy = VR((P)BDY(n)); n = NEXT(n);
108: can->qymin = (Q)BDY(n); n = NEXT(n); can->qymax = (Q)BDY(n);
109: can->ymin = ToReal(can->qymin); can->ymax = ToReal(can->qymax);
1.12 noro 110: }
111: if ( xrange && yrange )
112: can->mode = zrange ? MODE_CONPLOT : MODE_IFPLOT;
113: else
114: can->mode = xrange ? MODE_PLOT : MODE_POLARPLOT;
115:
116: if ( zrange ) {
117: n = BDY(zrange); v = VR((P)BDY(n)); n = NEXT(n);
118: can->zmin = ToReal(BDY(n));
119: n = NEXT(n); can->zmax = ToReal(BDY(n));
120: n = NEXT(n);
121: if ( can->mode == MODE_CONPLOT )
122: can->nzstep = n ? QTOS((Q)BDY(n)) : MAXGC;
123: else {
124: /* XXX */
125: can->vx = v;
126: can->nzstep = n ? QTOS((Q)BDY(n)) : DEFAULTPOLARSTEP;
127: }
128: }
129:
1.1 noro 130: if ( !wsize ) {
131: can->width = DEFAULTWIDTH; can->height = DEFAULTHEIGHT;
132: } else {
133: can->width = QTOS((Q)BDY(BDY(wsize)));
134: can->height = QTOS((Q)BDY(NEXT(BDY(wsize))));
135: }
136: if ( wname )
137: can->wname = BDY(wname);
138: else
139: can->wname = "";
140: can->formula = formula;
141: if ( can->mode == MODE_PLOT ) {
142: plotcalc(can);
1.14 ! noro 143: create_canvas(can);
1.1 noro 144: plot_print(display,can);
1.12 noro 145: } else if ( can->mode == MODE_POLARPLOT ) {
146: polarplotcalc(can);
1.14 ! noro 147: create_canvas(can);
1.12 noro 148: plot_print(display,can);
1.14 ! noro 149: } else {
! 150: create_canvas(can);
1.1 noro 151: ifplotmain(can);
1.12 noro 152: }
1.1 noro 153: copy_to_canvas(can);
154: return id;
155: }
156:
1.6 noro 157: int memory_plot(NODE arg,LIST *bytes)
158: {
159: NODE n;
160: struct canvas tmp_can;
161: struct canvas *can;
162: P formula;
163: LIST xrange,yrange,zrange,wsize;
164: int width,height;
165: double **tabe;
166: int i;
167: BYTEARRAY barray;
168: Q qw,qh;
169:
170: formula = (P)ARG0(arg);
171: xrange = (LIST)ARG1(arg);
172: yrange = (LIST)ARG2(arg);
173: zrange = (LIST)ARG3(arg);
174: wsize = (LIST)ARG4(arg);
175:
176: can = &tmp_can;
177: n = BDY(xrange); can->vx = VR((P)BDY(n)); n = NEXT(n);
178: can->qxmin = (Q)BDY(n); n = NEXT(n); can->qxmax = (Q)BDY(n);
179: can->xmin = ToReal(can->qxmin); can->xmax = ToReal(can->qxmax);
180: if ( yrange ) {
181: n = BDY(yrange); can->vy = VR((P)BDY(n)); n = NEXT(n);
182: can->qymin = (Q)BDY(n); n = NEXT(n); can->qymax = (Q)BDY(n);
183: can->ymin = ToReal(can->qymin); can->ymax = ToReal(can->qymax);
184: if ( zrange ) {
185: n = NEXT(BDY(zrange));
186: can->zmin = ToReal(BDY(n)); n = NEXT(n); can->zmax = ToReal(BDY(n));
187: if ( n = NEXT(n) )
188: can->nzstep = QTOS((Q)BDY(n));
189: else
190: can->nzstep = MAXGC;
191: can->mode = MODE_CONPLOT;
192: } else
193: can->mode = MODE_IFPLOT;
194: } else
195: can->mode = MODE_PLOT;
196: if ( !wsize ) {
197: can->width = DEFAULTWIDTH; can->height = DEFAULTHEIGHT;
198: } else {
199: can->width = QTOS((Q)BDY(BDY(wsize)));
200: can->height = QTOS((Q)BDY(NEXT(BDY(wsize))));
201: }
202: can->wname = "";
203: can->formula = formula;
204: if ( can->mode == MODE_PLOT )
205: plotcalc(can);
206: else {
207: width = can->width; height = can->height;
208: tabe = (double **)ALLOCA(width*sizeof(double *));
209: for ( i = 0; i < width; i++ )
210: tabe[i] = (double *)ALLOCA(height*sizeof(double));
211: calc(tabe,can,1);
212: memory_if_print(tabe,can,&barray);
213: STOQ(width,qw); STOQ(height,qh);
214: n = mknode(3,qw,qh,barray);
215: MKLIST(*bytes,n);
216: }
217: }
218:
1.1 noro 219: int plotover(NODE arg)
220: {
221: int index;
222: P formula;
223: struct canvas *can;
224: struct canvas fakecan;
225: VL vl,vl0;
226:
227: index = QTOS((Q)ARG0(arg));
228: formula = (P)ARG1(arg);
229: can = canvas[index];
230: if ( !can->window )
231: return -1;
1.7 noro 232: get_vars_recursive((Obj)formula,&vl);
1.1 noro 233: for ( vl0 = vl; vl0; vl0 = NEXT(vl0) )
1.7 noro 234: if ( vl0->v->attr == (pointer)V_IND )
1.1 noro 235: if ( vl->v != can->vx && vl->v != can->vy )
236: return -1;
237: current_can = can;
238: fakecan = *can; fakecan.formula = formula;
239: if ( can->mode == MODE_PLOT ) {
240: plotcalc(&fakecan);
241: plot_print(display,&fakecan);
242: } else
243: ifplotmain(&fakecan);
244: copy_to_canvas(&fakecan);
245: return index;
246: }
247:
248: int drawcircle(NODE arg)
249: {
1.4 noro 250: #if !defined(VISUAL)
1.1 noro 251: int id;
252: int index;
253: pointer ptr;
254: Q ret;
255: LIST xyr;
256: Obj x,y,r;
257: int wx,wy,wr;
258: struct canvas *can;
259: struct canvas fakecan;
260:
261: index = QTOS((Q)ARG0(arg));
262: xyr = (LIST)ARG1(arg);
263: x = (Obj)ARG0(BDY(xyr)); y = (Obj)ARG1(BDY(xyr)); r = (Obj)ARG2(BDY(xyr));
264: can = canvas[index];
265: if ( !can->window )
266: return -1;
267: else {
268: current_can = can;
269: wx = (ToReal(x)-can->xmin)*can->width/(can->xmax-can->xmin);
270: wy = (can->ymax-ToReal(y))*can->height/(can->ymax-can->ymin);
271: wr = ToReal(r);
272: XFillArc(display,can->pix,colorGC,wx-wr/2,wy-wr/2,wr,wr,0,360*64);
273: copy_to_canvas(can);
274: return index;
275: }
1.4 noro 276: #endif
277: }
278:
279: int draw_obj(NODE arg)
280: {
281: int index;
1.5 noro 282: int x,y,u,v,len,r;
1.4 noro 283: NODE obj,n;
284: RealVect *vect;
285: struct canvas *can;
1.5 noro 286: int color;
1.4 noro 287:
288: index = QTOS((Q)ARG0(arg));
289: can = canvas[index];
1.10 noro 290: if ( !can && closed_canvas[index] ) {
291: canvas[index] = closed_canvas[index];
292: closed_canvas[index] = 0;
293: can = canvas[index];
294: popup_canvas(index);
295: current_can = can;
296: } else if ( !can || (can && !can->window) ) {
1.5 noro 297: set_lasterror("draw_obj : canvas does not exist");
1.4 noro 298: return -1;
1.5 noro 299: }
1.4 noro 300:
301: obj = BDY((LIST)ARG1(arg));
1.5 noro 302: if ( argc(arg) == 3 )
303: color = QTOS((Q)ARG2(arg));
304: else
305: color = 0; /* black */
306: switch ( len = length(obj) ) {
1.4 noro 307: case 2: /* point */
308: x = (int)ToReal((Q)ARG0(obj)); y = (int)ToReal((Q)ARG1(obj));
1.5 noro 309: draw_point(display,can,x,y,color);
310: MKRVECT2(vect,x,y); MKNODE(n,vect,can->history); can->history = n;
311: break;
312: case 3: /* circle */
313: x = (int)ToReal((Q)ARG0(obj)); y = (int)ToReal((Q)ARG1(obj));
314: r = (int)ToReal((Q)ARG2(obj));
315: MKRVECT3(vect,x,y,r); MKNODE(n,vect,can->history); can->history = n;
1.4 noro 316: break;
317: case 4: /* line */
318: x = (int)ToReal((Q)ARG0(obj)); y = (int)ToReal((Q)ARG1(obj));
319: u = (int)ToReal((Q)ARG2(obj)); v = (int)ToReal((Q)ARG3(obj));
1.5 noro 320: draw_line(display,can,x,y,u,v,color);
1.4 noro 321: MKRVECT4(vect,x,y,u,v); MKNODE(n,vect,can->history); can->history = n;
322: break;
323: default:
1.5 noro 324: set_lasterror("draw_obj : invalid request");
1.4 noro 325: return -1;
326: }
1.9 noro 327: return 0;
328: }
329:
330: int draw_string(NODE arg)
331: {
332: int index,x,y;
333: char *str;
334: NODE pos;
335: struct canvas *can;
336: int color;
337:
338: index = QTOS((Q)ARG0(arg));
339: can = canvas[index];
1.11 noro 340: if ( !can && closed_canvas[index] ) {
341: canvas[index] = closed_canvas[index];
342: closed_canvas[index] = 0;
343: can = canvas[index];
344: popup_canvas(index);
345: current_can = can;
346: } else if ( !can || (can && !can->window) ) {
347: set_lasterror("draw_obj : canvas does not exist");
1.9 noro 348: return -1;
349: }
350:
351: pos = BDY((LIST)ARG1(arg));
352: str = BDY((STRING)ARG2(arg));
353: if ( argc(arg) == 4 )
354: color = QTOS((Q)ARG3(arg));
355: else
356: color = 0; /* black */
357: x = (int)ToReal((Q)ARG0(pos));
358: y = (int)ToReal((Q)ARG1(pos));
359: draw_character_string(display,can,x,y,str,color);
1.4 noro 360: return 0;
361: }
362:
363: int clear_canvas(NODE arg)
364: {
365: int index;
366: struct canvas *can;
367:
368: index = QTOS((Q)ARG0(arg));
369: can = canvas[index];
370: if ( !can || !can->window )
371: return -1;
372: clear_pixmap(can);
373: copy_to_canvas(can);
374: /* clear the history */
375: can->history = 0;
1.1 noro 376: }
377:
378: #define RealtoDbl(r) ((r)?BDY(r):0.0)
379:
380: int arrayplot(NODE arg)
381: {
382: int id,ix,w,h;
383: VECT array;
384: LIST xrange,wsize;
385: char *wname;
386: NODE n;
387: double ymax,ymin,dy,xstep;
388: Real *tab;
389: struct canvas *can;
390: POINT *pa;
391:
392: array = (VECT)ARG0(arg);
393: xrange = (LIST)ARG1(arg);
394: can = canvas[id = search_canvas()];
395: n = BDY(xrange); can->vx = VR((P)BDY(n)); n = NEXT(n);
396: can->qxmin = (Q)BDY(n); n = NEXT(n); can->qxmax = (Q)BDY(n);
397: can->xmin = ToReal(can->qxmin); can->xmax = ToReal(can->qxmax);
398: if ( !wsize ) {
399: can->width = DEFAULTWIDTH; can->height = DEFAULTHEIGHT;
400: } else {
401: can->width = QTOS((Q)BDY(BDY(wsize)));
402: can->height = QTOS((Q)BDY(NEXT(BDY(wsize))));
403: }
404: can->wname = wname; can->formula = 0; can->mode = MODE_PLOT;
405: create_canvas(can);
406: w = array->len;
407: h = can->height;
408: tab = (Real *)BDY(array);
409: if ( can->ymax == can->ymin ) {
410: for ( ymax = ymin = RealtoDbl(tab[0]), ix = 1; ix < w; ix++ ) {
411: if ( RealtoDbl(tab[ix]) > ymax )
412: ymax = RealtoDbl(tab[ix]);
413: if ( RealtoDbl(tab[ix]) < ymin )
414: ymin = RealtoDbl(tab[ix]);
415: }
416: can->ymax = ymax; can->ymin = ymin;
417: } else {
418: ymax = can->ymax; ymin = can->ymin;
419: }
420: dy = ymax-ymin;
421: can->pa = (struct pa *)MALLOC(sizeof(struct pa));
422: can->pa[0].length = w;
423: can->pa[0].pos = pa = (POINT *)MALLOC(w*sizeof(POINT));
424: xstep = (double)can->width/(double)(w-1);
425: for ( ix = 0; ix < w; ix++ ) {
426: #ifndef MAXSHORT
427: #define MAXSHORT ((short)0x7fff)
428: #endif
429: double t;
430:
431: pa[ix].x = (int)(ix*xstep);
432: t = (h - 1)*(ymax - RealtoDbl(tab[ix]))/dy;
433: if ( t > MAXSHORT )
434: pa[ix].y = MAXSHORT;
435: else if ( t < -MAXSHORT )
436: pa[ix].y = -MAXSHORT;
437: else
1.7 noro 438: pa[ix].y = (long)t;
1.1 noro 439: }
440: plot_print(display,can);
441: copy_to_canvas(can);
442: return id;
443: }
444:
1.7 noro 445: void ifplot_resize(struct canvas *can,POINT spos,POINT epos)
1.1 noro 446: {
447: struct canvas *ncan;
448: struct canvas fakecan;
449: Q dx,dy,dx2,dy2,xmin,xmax,ymin,ymax,xmid,ymid;
450: Q sx,sy,ex,ey,cw,ch,ten,two;
451: Q s,t;
452: int new;
453: int w,h,m;
454:
455: if ( XC(spos) < XC(epos) && YC(spos) < YC(epos) ) {
456: if ( can->precise && !can->wide ) {
457: fakecan = *can; ncan = &fakecan;
458: } else {
459: new = search_canvas(); ncan = canvas[new];
460: }
461: ncan->mode = can->mode;
462: ncan->zmin = can->zmin; ncan->zmax = can->zmax;
463: ncan->nzstep = can->nzstep;
464: ncan->wname = can->wname;
465: ncan->vx = can->vx; ncan->vy = can->vy;
466: ncan->formula = can->formula;
467: w = XC(epos)-XC(spos);
468: h = YC(epos)-YC(spos);
469: m = MAX(can->width,can->height);
470: if ( can->precise ) {
471: ncan->width = w; ncan->height = h;
472: } else if ( w > h ) {
473: ncan->width = m; ncan->height = m * h/w;
474: } else {
475: ncan->width = m * w/h; ncan->height = m;
476: }
477: if ( can->wide ) {
478: STOQ(10,ten); STOQ(2,two);
479: subq(can->qxmax,can->qxmin,&t); mulq(t,ten,&dx);
480: subq(can->qymax,can->qymin,&t); mulq(t,ten,&dy);
481: addq(can->qxmax,can->qxmin,&t); divq(t,two,&xmid);
482: addq(can->qymax,can->qymin,&t); divq(t,two,&ymid);
483: divq(dx,two,&dx2); divq(dy,two,&dy2);
484: subq(xmid,dx2,&xmin); addq(xmid,dx2,&xmax);
485: subq(ymid,dy2,&ymin); addq(ymid,dy2,&ymax);
486: } else {
487: subq(can->qxmax,can->qxmin,&dx); subq(can->qymax,can->qymin,&dy);
488: xmin = can->qxmin; xmax = can->qxmax;
489: ymin = can->qymin; ymax = can->qymax;
490: }
491: STOQ(XC(spos),sx); STOQ(YC(spos),sy); STOQ(XC(epos),ex); STOQ(YC(epos),ey);
492: STOQ(can->width,cw); STOQ(can->height,ch);
493: mulq(sx,dx,&t); divq(t,cw,&s); addq(xmin,s,&ncan->qxmin);
494: mulq(ex,dx,&t); divq(t,cw,&s); addq(xmin,s,&ncan->qxmax);
495: mulq(ey,dy,&t); divq(t,ch,&s); subq(ymax,s,&ncan->qymin);
496: mulq(sy,dy,&t); divq(t,ch,&s); subq(ymax,s,&ncan->qymax);
497: ncan->xmin = ToReal(ncan->qxmin); ncan->xmax = ToReal(ncan->qxmax);
498: ncan->ymin = ToReal(ncan->qymin); ncan->ymax = ToReal(ncan->qymax);
499: if ( can->precise && !can->wide ) {
500: current_can = can;
501: alloc_pixmap(ncan);
1.4 noro 502: #if defined(VISUAL)
503: ncan->real_can = can;
504: #endif
1.1 noro 505: qifplotmain(ncan);
506: copy_subimage(ncan,can,spos);
507: copy_to_canvas(can);
508: } else {
509: create_canvas(ncan);
510: if ( can->precise )
511: qifplotmain(ncan);
512: else
513: ifplotmain(ncan);
514: copy_to_canvas(ncan);
515: }
516: }
517: }
518:
1.7 noro 519: void plot_resize(struct canvas *can,POINT spos,POINT epos)
1.1 noro 520: {
521: struct canvas *ncan;
522: Q dx,dx2,xmin,xmax,xmid;
1.7 noro 523: double dy,ymin,ymax,ymid;
1.1 noro 524: Q sx,ex,cw,ten,two;
525: Q s,t;
526: int new;
527: int w,h,m;
528:
529: if ( XC(spos) < XC(epos) && YC(spos) < YC(epos) ) {
530: new = search_canvas(); ncan = canvas[new];
531: ncan->mode = can->mode;
532: ncan->zmin = can->zmin; ncan->zmax = can->zmax;
533: ncan->nzstep = can->nzstep;
534: ncan->wname = can->wname;
535: ncan->vx = can->vx; ncan->vy = can->vy;
536: ncan->formula = can->formula;
537: w = XC(epos)-XC(spos);
538: h = YC(epos)-YC(spos);
539: m = MAX(can->width,can->height);
540: if ( w > h ) {
541: ncan->width = m; ncan->height = m * h/w;
542: } else {
543: ncan->width = m * w/h; ncan->height = m;
544: }
545: if ( can->wide ) {
546: STOQ(10,ten); STOQ(2,two);
547: subq(can->qxmax,can->qxmin,&t); mulq(t,ten,&dx);
548: addq(can->qxmax,can->qxmin,&t); divq(t,two,&xmid);
549: divq(dx,two,&dx2); subq(xmid,dx2,&xmin); addq(xmid,dx2,&xmax);
550:
551: dy = (can->ymax-can->ymin)*10;
552: ymid = (can->ymax+can->ymin)/2;
553: ymin = ymid-dy/2; ymax = ymid+dy/2;
554: } else {
555: subq(can->qxmax,can->qxmin,&dx);
556: xmin = can->qxmin; xmax = can->qxmax;
557:
558: dy = can->ymax-can->ymin;
559: ymin = can->ymin; ymax = can->ymax;
560: }
561: STOQ(XC(spos),sx); STOQ(XC(epos),ex); STOQ(can->width,cw);
562: mulq(sx,dx,&t); divq(t,cw,&s); addq(xmin,s,&ncan->qxmin);
563: mulq(ex,dx,&t); divq(t,cw,&s); addq(xmin,s,&ncan->qxmax);
564: ncan->xmin = ToReal(ncan->qxmin); ncan->xmax = ToReal(ncan->qxmax);
565:
566: ncan->ymin = ymax-YC(epos)*dy/can->height;
567: ncan->ymax = ymax-YC(spos)*dy/can->height;
568:
569: create_canvas(ncan);
570: plotcalc(ncan);
571: plot_print(display,ncan);
572: copy_to_canvas(ncan);
573: }
574: }
575:
1.7 noro 576: void ifplotmain(struct canvas *can)
1.1 noro 577: {
578: int width,height;
1.7 noro 579: double **tabe;
1.1 noro 580: int i;
581:
582: width = can->width; height = can->height;
583: tabe = (double **)ALLOCA(width*sizeof(double *));
584: for ( i = 0; i < width; i++ )
585: tabe[i] = (double *)ALLOCA(height*sizeof(double));
586: define_cursor(can->window,runningcur);
587: set_busy(can); set_selection();
1.6 noro 588: calc(tabe,can,0); if_print(display,tabe,can);
1.1 noro 589: reset_selection(); reset_busy(can);
590: define_cursor(can->window,normalcur);
591: }
592:
1.7 noro 593: void qifplotmain(struct canvas *can)
1.1 noro 594: {
595: int width,height;
596: char **tabe,*tabeb;
597: int i;
598:
599: width = can->width; height = can->height;
600: tabe = (char **)ALLOCA(width*sizeof(char *)+width*height*sizeof(char));
1.8 noro 601: bzero((void *)tabe,width*sizeof(char *)+width*height*sizeof(char));
1.1 noro 602: for ( i = 0, tabeb = (char *)(tabe+width); i < width; i++ )
603: tabe[i] = tabeb + height*i;
604: define_cursor(can->window,runningcur);
605: set_busy(can); set_selection();
606: qcalc(tabe,can); qif_print(display,tabe,can);
607: reset_selection(); reset_busy(can);
608: define_cursor(can->window,normalcur);
609: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>