Annotation of OpenXM_contrib2/asir2000/plot/if.c, Revision 1.18
1.2 noro 1: /*
2: * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
3: * All rights reserved.
4: *
5: * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
6: * non-exclusive and royalty-free license to use, copy, modify and
7: * redistribute, solely for non-commercial and non-profit purposes, the
8: * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
9: * conditions of this Agreement. For the avoidance of doubt, you acquire
10: * only a limited right to use the SOFTWARE hereunder, and FLL or any
11: * third party developer retains all rights, including but not limited to
12: * copyrights, in and to the SOFTWARE.
13: *
14: * (1) FLL does not grant you a license in any way for commercial
15: * purposes. You may use the SOFTWARE only for non-commercial and
16: * non-profit purposes only, such as academic, research and internal
17: * business use.
18: * (2) The SOFTWARE is protected by the Copyright Law of Japan and
19: * international copyright treaties. If you make copies of the SOFTWARE,
20: * with or without modification, as permitted hereunder, you shall affix
21: * to all such copies of the SOFTWARE the above copyright notice.
22: * (3) An explicit reference to this SOFTWARE and its copyright owner
23: * shall be made on your publication or presentation in any form of the
24: * results obtained by use of the SOFTWARE.
25: * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
1.3 noro 26: * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
1.2 noro 27: * for such modification or the source code of the modified part of the
28: * SOFTWARE.
29: *
30: * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
31: * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
32: * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
33: * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
34: * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
35: * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
36: * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
37: * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
38: * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
39: * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
40: * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
41: * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
42: * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
43: * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
44: * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
45: * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
46: * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
47: *
1.18 ! noro 48: * $OpenXM: OpenXM_contrib2/asir2000/plot/if.c,v 1.17 2005/05/18 03:27:00 noro Exp $
1.2 noro 49: */
1.1 noro 50: #include "ca.h"
51: #include "parse.h"
52: #include "ox.h"
53: #include "ifplot.h"
54:
1.8 noro 55: extern JMP_BUF ox_env;
1.1 noro 56:
1.4 noro 57: int open_canvas(NODE arg)
58: {
59: int id;
60: struct canvas *can;
61: LIST wsize;
62: STRING wname;
63:
64: wsize = (LIST)ARG0(arg);
65: wname = (STRING)ARG1(arg);
66:
67: can = canvas[id = search_canvas()];
68: can->mode = MODE_INTERACTIVE;
69: if ( !wsize ) {
70: can->width = DEFAULTWIDTH; can->height = DEFAULTHEIGHT;
71: } else {
72: can->width = QTOS((Q)BDY(BDY(wsize)));
73: can->height = QTOS((Q)BDY(NEXT(BDY(wsize))));
74: }
75: if ( wname )
76: can->wname = BDY(wname);
77: else
78: can->wname = "";
79: create_canvas(can);
80: return id;
81: }
82:
1.1 noro 83: int plot(NODE arg)
84: {
85: int id;
86: NODE n;
87: struct canvas *can;
88: P formula;
89: LIST xrange,yrange,zrange,wsize;
90: STRING wname;
1.12 noro 91: V v;
1.1 noro 92:
93: formula = (P)ARG0(arg);
94: xrange = (LIST)ARG1(arg);
95: yrange = (LIST)ARG2(arg);
96: zrange = (LIST)ARG3(arg);
97: wsize = (LIST)ARG4(arg);
98: wname = (STRING)ARG5(arg);
99:
100: can = canvas[id = search_canvas()];
1.12 noro 101: if ( xrange ) {
102: n = BDY(xrange); can->vx = VR((P)BDY(n)); n = NEXT(n);
103: can->qxmin = (Q)BDY(n); n = NEXT(n); can->qxmax = (Q)BDY(n);
104: can->xmin = ToReal(can->qxmin); can->xmax = ToReal(can->qxmax);
105: }
1.1 noro 106: if ( yrange ) {
107: n = BDY(yrange); can->vy = VR((P)BDY(n)); n = NEXT(n);
108: can->qymin = (Q)BDY(n); n = NEXT(n); can->qymax = (Q)BDY(n);
109: can->ymin = ToReal(can->qymin); can->ymax = ToReal(can->qymax);
1.12 noro 110: }
111: if ( xrange && yrange )
112: can->mode = zrange ? MODE_CONPLOT : MODE_IFPLOT;
113: else
114: can->mode = xrange ? MODE_PLOT : MODE_POLARPLOT;
115:
116: if ( zrange ) {
1.15 noro 117: n = NEXT(BDY(zrange));
1.12 noro 118: can->zmin = ToReal(BDY(n));
119: n = NEXT(n); can->zmax = ToReal(BDY(n));
120: n = NEXT(n);
121: if ( can->mode == MODE_CONPLOT )
122: can->nzstep = n ? QTOS((Q)BDY(n)) : MAXGC;
123: else {
124: /* XXX */
1.15 noro 125: can->vx = VR((P)BDY(BDY(zrange)));
1.12 noro 126: can->nzstep = n ? QTOS((Q)BDY(n)) : DEFAULTPOLARSTEP;
127: }
128: }
129:
1.1 noro 130: if ( !wsize ) {
131: can->width = DEFAULTWIDTH; can->height = DEFAULTHEIGHT;
132: } else {
133: can->width = QTOS((Q)BDY(BDY(wsize)));
134: can->height = QTOS((Q)BDY(NEXT(BDY(wsize))));
135: }
136: if ( wname )
137: can->wname = BDY(wname);
138: else
139: can->wname = "";
140: can->formula = formula;
141: if ( can->mode == MODE_PLOT ) {
142: plotcalc(can);
1.14 noro 143: create_canvas(can);
1.1 noro 144: plot_print(display,can);
1.12 noro 145: } else if ( can->mode == MODE_POLARPLOT ) {
146: polarplotcalc(can);
1.14 noro 147: create_canvas(can);
1.12 noro 148: plot_print(display,can);
1.14 noro 149: } else {
150: create_canvas(can);
1.1 noro 151: ifplotmain(can);
1.12 noro 152: }
1.1 noro 153: copy_to_canvas(can);
154: return id;
155: }
156:
1.6 noro 157: int memory_plot(NODE arg,LIST *bytes)
158: {
159: NODE n;
160: struct canvas tmp_can;
161: struct canvas *can;
162: P formula;
163: LIST xrange,yrange,zrange,wsize;
164: int width,height;
165: double **tabe;
166: int i;
167: BYTEARRAY barray;
168: Q qw,qh;
169:
170: formula = (P)ARG0(arg);
171: xrange = (LIST)ARG1(arg);
172: yrange = (LIST)ARG2(arg);
173: zrange = (LIST)ARG3(arg);
174: wsize = (LIST)ARG4(arg);
175:
176: can = &tmp_can;
177: n = BDY(xrange); can->vx = VR((P)BDY(n)); n = NEXT(n);
178: can->qxmin = (Q)BDY(n); n = NEXT(n); can->qxmax = (Q)BDY(n);
179: can->xmin = ToReal(can->qxmin); can->xmax = ToReal(can->qxmax);
180: if ( yrange ) {
181: n = BDY(yrange); can->vy = VR((P)BDY(n)); n = NEXT(n);
182: can->qymin = (Q)BDY(n); n = NEXT(n); can->qymax = (Q)BDY(n);
183: can->ymin = ToReal(can->qymin); can->ymax = ToReal(can->qymax);
184: if ( zrange ) {
185: n = NEXT(BDY(zrange));
186: can->zmin = ToReal(BDY(n)); n = NEXT(n); can->zmax = ToReal(BDY(n));
187: if ( n = NEXT(n) )
188: can->nzstep = QTOS((Q)BDY(n));
189: else
190: can->nzstep = MAXGC;
191: can->mode = MODE_CONPLOT;
192: } else
193: can->mode = MODE_IFPLOT;
194: } else
195: can->mode = MODE_PLOT;
196: if ( !wsize ) {
197: can->width = DEFAULTWIDTH; can->height = DEFAULTHEIGHT;
198: } else {
199: can->width = QTOS((Q)BDY(BDY(wsize)));
200: can->height = QTOS((Q)BDY(NEXT(BDY(wsize))));
201: }
202: can->wname = "";
203: can->formula = formula;
204: if ( can->mode == MODE_PLOT )
205: plotcalc(can);
206: else {
207: width = can->width; height = can->height;
208: tabe = (double **)ALLOCA(width*sizeof(double *));
209: for ( i = 0; i < width; i++ )
210: tabe[i] = (double *)ALLOCA(height*sizeof(double));
211: calc(tabe,can,1);
212: memory_if_print(tabe,can,&barray);
213: STOQ(width,qw); STOQ(height,qh);
214: n = mknode(3,qw,qh,barray);
215: MKLIST(*bytes,n);
216: }
217: }
218:
1.1 noro 219: int plotover(NODE arg)
220: {
221: int index;
222: P formula;
223: struct canvas *can;
224: struct canvas fakecan;
225: VL vl,vl0;
226:
227: index = QTOS((Q)ARG0(arg));
228: formula = (P)ARG1(arg);
229: can = canvas[index];
230: if ( !can->window )
231: return -1;
1.7 noro 232: get_vars_recursive((Obj)formula,&vl);
1.1 noro 233: for ( vl0 = vl; vl0; vl0 = NEXT(vl0) )
1.7 noro 234: if ( vl0->v->attr == (pointer)V_IND )
1.1 noro 235: if ( vl->v != can->vx && vl->v != can->vy )
236: return -1;
1.17 noro 237: if ( argc(arg) == 3 )
238: can->color = QTOS((Q)ARG2(arg));
239: else
240: can->color = 0;
1.18 ! noro 241: #if !defined(VISUAL)
1.17 noro 242: set_drawcolor(can->color);
1.18 ! noro 243: #endif
1.1 noro 244: current_can = can;
245: fakecan = *can; fakecan.formula = formula;
246: if ( can->mode == MODE_PLOT ) {
247: plotcalc(&fakecan);
248: plot_print(display,&fakecan);
249: } else
250: ifplotmain(&fakecan);
251: copy_to_canvas(&fakecan);
252: return index;
253: }
254:
255: int drawcircle(NODE arg)
256: {
1.4 noro 257: #if !defined(VISUAL)
1.1 noro 258: int id;
259: int index;
260: pointer ptr;
261: Q ret;
262: LIST xyr;
263: Obj x,y,r;
264: int wx,wy,wr;
265: struct canvas *can;
266: struct canvas fakecan;
267:
268: index = QTOS((Q)ARG0(arg));
269: xyr = (LIST)ARG1(arg);
270: x = (Obj)ARG0(BDY(xyr)); y = (Obj)ARG1(BDY(xyr)); r = (Obj)ARG2(BDY(xyr));
271: can = canvas[index];
272: if ( !can->window )
273: return -1;
274: else {
275: current_can = can;
276: wx = (ToReal(x)-can->xmin)*can->width/(can->xmax-can->xmin);
277: wy = (can->ymax-ToReal(y))*can->height/(can->ymax-can->ymin);
278: wr = ToReal(r);
279: XFillArc(display,can->pix,colorGC,wx-wr/2,wy-wr/2,wr,wr,0,360*64);
280: copy_to_canvas(can);
281: return index;
282: }
1.4 noro 283: #endif
284: }
285:
286: int draw_obj(NODE arg)
287: {
288: int index;
1.5 noro 289: int x,y,u,v,len,r;
1.4 noro 290: NODE obj,n;
291: RealVect *vect;
292: struct canvas *can;
1.5 noro 293: int color;
1.4 noro 294:
295: index = QTOS((Q)ARG0(arg));
296: can = canvas[index];
1.10 noro 297: if ( !can && closed_canvas[index] ) {
298: canvas[index] = closed_canvas[index];
299: closed_canvas[index] = 0;
300: can = canvas[index];
301: popup_canvas(index);
302: current_can = can;
303: } else if ( !can || (can && !can->window) ) {
1.5 noro 304: set_lasterror("draw_obj : canvas does not exist");
1.4 noro 305: return -1;
1.5 noro 306: }
1.4 noro 307:
308: obj = BDY((LIST)ARG1(arg));
1.5 noro 309: if ( argc(arg) == 3 )
310: color = QTOS((Q)ARG2(arg));
311: else
312: color = 0; /* black */
313: switch ( len = length(obj) ) {
1.4 noro 314: case 2: /* point */
315: x = (int)ToReal((Q)ARG0(obj)); y = (int)ToReal((Q)ARG1(obj));
1.5 noro 316: draw_point(display,can,x,y,color);
1.16 noro 317: MKRVECT3(vect,x,y,color); MKNODE(n,vect,can->history);
318: can->history = n;
1.5 noro 319: break;
320: case 3: /* circle */
321: x = (int)ToReal((Q)ARG0(obj)); y = (int)ToReal((Q)ARG1(obj));
322: r = (int)ToReal((Q)ARG2(obj));
1.16 noro 323: MKRVECT4(vect,x,y,r,color); MKNODE(n,vect,can->history);
324: can->history = n;
1.4 noro 325: break;
326: case 4: /* line */
327: x = (int)ToReal((Q)ARG0(obj)); y = (int)ToReal((Q)ARG1(obj));
328: u = (int)ToReal((Q)ARG2(obj)); v = (int)ToReal((Q)ARG3(obj));
1.5 noro 329: draw_line(display,can,x,y,u,v,color);
1.16 noro 330: MKRVECT5(vect,x,y,u,v,color); MKNODE(n,vect,can->history);
331: can->history = n;
1.4 noro 332: break;
333: default:
1.5 noro 334: set_lasterror("draw_obj : invalid request");
1.4 noro 335: return -1;
336: }
1.9 noro 337: return 0;
338: }
339:
340: int draw_string(NODE arg)
341: {
342: int index,x,y;
343: char *str;
344: NODE pos;
345: struct canvas *can;
346: int color;
347:
348: index = QTOS((Q)ARG0(arg));
349: can = canvas[index];
1.11 noro 350: if ( !can && closed_canvas[index] ) {
351: canvas[index] = closed_canvas[index];
352: closed_canvas[index] = 0;
353: can = canvas[index];
354: popup_canvas(index);
355: current_can = can;
356: } else if ( !can || (can && !can->window) ) {
357: set_lasterror("draw_obj : canvas does not exist");
1.9 noro 358: return -1;
359: }
360:
361: pos = BDY((LIST)ARG1(arg));
362: str = BDY((STRING)ARG2(arg));
363: if ( argc(arg) == 4 )
364: color = QTOS((Q)ARG3(arg));
365: else
366: color = 0; /* black */
367: x = (int)ToReal((Q)ARG0(pos));
368: y = (int)ToReal((Q)ARG1(pos));
369: draw_character_string(display,can,x,y,str,color);
1.4 noro 370: return 0;
371: }
372:
373: int clear_canvas(NODE arg)
374: {
375: int index;
376: struct canvas *can;
377:
378: index = QTOS((Q)ARG0(arg));
379: can = canvas[index];
380: if ( !can || !can->window )
381: return -1;
382: clear_pixmap(can);
383: copy_to_canvas(can);
384: /* clear the history */
385: can->history = 0;
1.1 noro 386: }
387:
388: #define RealtoDbl(r) ((r)?BDY(r):0.0)
389:
390: int arrayplot(NODE arg)
391: {
392: int id,ix,w,h;
393: VECT array;
394: LIST xrange,wsize;
395: char *wname;
396: NODE n;
397: double ymax,ymin,dy,xstep;
398: Real *tab;
399: struct canvas *can;
400: POINT *pa;
401:
402: array = (VECT)ARG0(arg);
403: xrange = (LIST)ARG1(arg);
404: can = canvas[id = search_canvas()];
405: n = BDY(xrange); can->vx = VR((P)BDY(n)); n = NEXT(n);
406: can->qxmin = (Q)BDY(n); n = NEXT(n); can->qxmax = (Q)BDY(n);
407: can->xmin = ToReal(can->qxmin); can->xmax = ToReal(can->qxmax);
408: if ( !wsize ) {
409: can->width = DEFAULTWIDTH; can->height = DEFAULTHEIGHT;
410: } else {
411: can->width = QTOS((Q)BDY(BDY(wsize)));
412: can->height = QTOS((Q)BDY(NEXT(BDY(wsize))));
413: }
414: can->wname = wname; can->formula = 0; can->mode = MODE_PLOT;
415: create_canvas(can);
416: w = array->len;
417: h = can->height;
418: tab = (Real *)BDY(array);
419: if ( can->ymax == can->ymin ) {
420: for ( ymax = ymin = RealtoDbl(tab[0]), ix = 1; ix < w; ix++ ) {
421: if ( RealtoDbl(tab[ix]) > ymax )
422: ymax = RealtoDbl(tab[ix]);
423: if ( RealtoDbl(tab[ix]) < ymin )
424: ymin = RealtoDbl(tab[ix]);
425: }
426: can->ymax = ymax; can->ymin = ymin;
427: } else {
428: ymax = can->ymax; ymin = can->ymin;
429: }
430: dy = ymax-ymin;
431: can->pa = (struct pa *)MALLOC(sizeof(struct pa));
432: can->pa[0].length = w;
433: can->pa[0].pos = pa = (POINT *)MALLOC(w*sizeof(POINT));
434: xstep = (double)can->width/(double)(w-1);
435: for ( ix = 0; ix < w; ix++ ) {
436: #ifndef MAXSHORT
437: #define MAXSHORT ((short)0x7fff)
438: #endif
439: double t;
440:
441: pa[ix].x = (int)(ix*xstep);
442: t = (h - 1)*(ymax - RealtoDbl(tab[ix]))/dy;
443: if ( t > MAXSHORT )
444: pa[ix].y = MAXSHORT;
445: else if ( t < -MAXSHORT )
446: pa[ix].y = -MAXSHORT;
447: else
1.7 noro 448: pa[ix].y = (long)t;
1.1 noro 449: }
450: plot_print(display,can);
451: copy_to_canvas(can);
452: return id;
453: }
454:
1.7 noro 455: void ifplot_resize(struct canvas *can,POINT spos,POINT epos)
1.1 noro 456: {
457: struct canvas *ncan;
458: struct canvas fakecan;
459: Q dx,dy,dx2,dy2,xmin,xmax,ymin,ymax,xmid,ymid;
460: Q sx,sy,ex,ey,cw,ch,ten,two;
461: Q s,t;
462: int new;
463: int w,h,m;
464:
465: if ( XC(spos) < XC(epos) && YC(spos) < YC(epos) ) {
466: if ( can->precise && !can->wide ) {
467: fakecan = *can; ncan = &fakecan;
468: } else {
469: new = search_canvas(); ncan = canvas[new];
470: }
471: ncan->mode = can->mode;
472: ncan->zmin = can->zmin; ncan->zmax = can->zmax;
473: ncan->nzstep = can->nzstep;
474: ncan->wname = can->wname;
475: ncan->vx = can->vx; ncan->vy = can->vy;
476: ncan->formula = can->formula;
477: w = XC(epos)-XC(spos);
478: h = YC(epos)-YC(spos);
479: m = MAX(can->width,can->height);
480: if ( can->precise ) {
481: ncan->width = w; ncan->height = h;
482: } else if ( w > h ) {
483: ncan->width = m; ncan->height = m * h/w;
484: } else {
485: ncan->width = m * w/h; ncan->height = m;
486: }
487: if ( can->wide ) {
488: STOQ(10,ten); STOQ(2,two);
489: subq(can->qxmax,can->qxmin,&t); mulq(t,ten,&dx);
490: subq(can->qymax,can->qymin,&t); mulq(t,ten,&dy);
491: addq(can->qxmax,can->qxmin,&t); divq(t,two,&xmid);
492: addq(can->qymax,can->qymin,&t); divq(t,two,&ymid);
493: divq(dx,two,&dx2); divq(dy,two,&dy2);
494: subq(xmid,dx2,&xmin); addq(xmid,dx2,&xmax);
495: subq(ymid,dy2,&ymin); addq(ymid,dy2,&ymax);
496: } else {
497: subq(can->qxmax,can->qxmin,&dx); subq(can->qymax,can->qymin,&dy);
498: xmin = can->qxmin; xmax = can->qxmax;
499: ymin = can->qymin; ymax = can->qymax;
500: }
501: STOQ(XC(spos),sx); STOQ(YC(spos),sy); STOQ(XC(epos),ex); STOQ(YC(epos),ey);
502: STOQ(can->width,cw); STOQ(can->height,ch);
503: mulq(sx,dx,&t); divq(t,cw,&s); addq(xmin,s,&ncan->qxmin);
504: mulq(ex,dx,&t); divq(t,cw,&s); addq(xmin,s,&ncan->qxmax);
505: mulq(ey,dy,&t); divq(t,ch,&s); subq(ymax,s,&ncan->qymin);
506: mulq(sy,dy,&t); divq(t,ch,&s); subq(ymax,s,&ncan->qymax);
507: ncan->xmin = ToReal(ncan->qxmin); ncan->xmax = ToReal(ncan->qxmax);
508: ncan->ymin = ToReal(ncan->qymin); ncan->ymax = ToReal(ncan->qymax);
509: if ( can->precise && !can->wide ) {
510: current_can = can;
511: alloc_pixmap(ncan);
1.4 noro 512: #if defined(VISUAL)
513: ncan->real_can = can;
514: #endif
1.1 noro 515: qifplotmain(ncan);
516: copy_subimage(ncan,can,spos);
517: copy_to_canvas(can);
518: } else {
519: create_canvas(ncan);
520: if ( can->precise )
521: qifplotmain(ncan);
522: else
523: ifplotmain(ncan);
524: copy_to_canvas(ncan);
525: }
526: }
527: }
528:
1.7 noro 529: void plot_resize(struct canvas *can,POINT spos,POINT epos)
1.1 noro 530: {
531: struct canvas *ncan;
532: Q dx,dx2,xmin,xmax,xmid;
1.7 noro 533: double dy,ymin,ymax,ymid;
1.1 noro 534: Q sx,ex,cw,ten,two;
535: Q s,t;
536: int new;
537: int w,h,m;
538:
539: if ( XC(spos) < XC(epos) && YC(spos) < YC(epos) ) {
540: new = search_canvas(); ncan = canvas[new];
541: ncan->mode = can->mode;
542: ncan->zmin = can->zmin; ncan->zmax = can->zmax;
543: ncan->nzstep = can->nzstep;
544: ncan->wname = can->wname;
545: ncan->vx = can->vx; ncan->vy = can->vy;
546: ncan->formula = can->formula;
547: w = XC(epos)-XC(spos);
548: h = YC(epos)-YC(spos);
549: m = MAX(can->width,can->height);
550: if ( w > h ) {
551: ncan->width = m; ncan->height = m * h/w;
552: } else {
553: ncan->width = m * w/h; ncan->height = m;
554: }
555: if ( can->wide ) {
556: STOQ(10,ten); STOQ(2,two);
557: subq(can->qxmax,can->qxmin,&t); mulq(t,ten,&dx);
558: addq(can->qxmax,can->qxmin,&t); divq(t,two,&xmid);
559: divq(dx,two,&dx2); subq(xmid,dx2,&xmin); addq(xmid,dx2,&xmax);
560:
561: dy = (can->ymax-can->ymin)*10;
562: ymid = (can->ymax+can->ymin)/2;
563: ymin = ymid-dy/2; ymax = ymid+dy/2;
564: } else {
565: subq(can->qxmax,can->qxmin,&dx);
566: xmin = can->qxmin; xmax = can->qxmax;
567:
568: dy = can->ymax-can->ymin;
569: ymin = can->ymin; ymax = can->ymax;
570: }
571: STOQ(XC(spos),sx); STOQ(XC(epos),ex); STOQ(can->width,cw);
572: mulq(sx,dx,&t); divq(t,cw,&s); addq(xmin,s,&ncan->qxmin);
573: mulq(ex,dx,&t); divq(t,cw,&s); addq(xmin,s,&ncan->qxmax);
574: ncan->xmin = ToReal(ncan->qxmin); ncan->xmax = ToReal(ncan->qxmax);
575:
576: ncan->ymin = ymax-YC(epos)*dy/can->height;
577: ncan->ymax = ymax-YC(spos)*dy/can->height;
578:
579: create_canvas(ncan);
580: plotcalc(ncan);
581: plot_print(display,ncan);
582: copy_to_canvas(ncan);
583: }
584: }
585:
1.7 noro 586: void ifplotmain(struct canvas *can)
1.1 noro 587: {
588: int width,height;
1.7 noro 589: double **tabe;
1.1 noro 590: int i;
591:
592: width = can->width; height = can->height;
593: tabe = (double **)ALLOCA(width*sizeof(double *));
594: for ( i = 0; i < width; i++ )
595: tabe[i] = (double *)ALLOCA(height*sizeof(double));
596: define_cursor(can->window,runningcur);
597: set_busy(can); set_selection();
1.6 noro 598: calc(tabe,can,0); if_print(display,tabe,can);
1.1 noro 599: reset_selection(); reset_busy(can);
600: define_cursor(can->window,normalcur);
601: }
602:
1.7 noro 603: void qifplotmain(struct canvas *can)
1.1 noro 604: {
605: int width,height;
606: char **tabe,*tabeb;
607: int i;
608:
609: width = can->width; height = can->height;
610: tabe = (char **)ALLOCA(width*sizeof(char *)+width*height*sizeof(char));
1.8 noro 611: bzero((void *)tabe,width*sizeof(char *)+width*height*sizeof(char));
1.1 noro 612: for ( i = 0, tabeb = (char *)(tabe+width); i < width; i++ )
613: tabe[i] = tabeb + height*i;
614: define_cursor(can->window,runningcur);
615: set_busy(can); set_selection();
616: qcalc(tabe,can); qif_print(display,tabe,can);
617: reset_selection(); reset_busy(can);
618: define_cursor(can->window,normalcur);
619: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>