[BACK]Return to if.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2000 / plot

Annotation of OpenXM_contrib2/asir2000/plot/if.c, Revision 1.18

1.2       noro        1: /*
                      2:  * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
                      3:  * All rights reserved.
                      4:  *
                      5:  * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
                      6:  * non-exclusive and royalty-free license to use, copy, modify and
                      7:  * redistribute, solely for non-commercial and non-profit purposes, the
                      8:  * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
                      9:  * conditions of this Agreement. For the avoidance of doubt, you acquire
                     10:  * only a limited right to use the SOFTWARE hereunder, and FLL or any
                     11:  * third party developer retains all rights, including but not limited to
                     12:  * copyrights, in and to the SOFTWARE.
                     13:  *
                     14:  * (1) FLL does not grant you a license in any way for commercial
                     15:  * purposes. You may use the SOFTWARE only for non-commercial and
                     16:  * non-profit purposes only, such as academic, research and internal
                     17:  * business use.
                     18:  * (2) The SOFTWARE is protected by the Copyright Law of Japan and
                     19:  * international copyright treaties. If you make copies of the SOFTWARE,
                     20:  * with or without modification, as permitted hereunder, you shall affix
                     21:  * to all such copies of the SOFTWARE the above copyright notice.
                     22:  * (3) An explicit reference to this SOFTWARE and its copyright owner
                     23:  * shall be made on your publication or presentation in any form of the
                     24:  * results obtained by use of the SOFTWARE.
                     25:  * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
1.3       noro       26:  * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
1.2       noro       27:  * for such modification or the source code of the modified part of the
                     28:  * SOFTWARE.
                     29:  *
                     30:  * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
                     31:  * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
                     32:  * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
                     33:  * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
                     34:  * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
                     35:  * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
                     36:  * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
                     37:  * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
                     38:  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
                     39:  * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
                     40:  * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
                     41:  * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
                     42:  * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
                     43:  * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
                     44:  * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
                     45:  * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
                     46:  * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
                     47:  *
1.18    ! noro       48:  * $OpenXM: OpenXM_contrib2/asir2000/plot/if.c,v 1.17 2005/05/18 03:27:00 noro Exp $
1.2       noro       49: */
1.1       noro       50: #include "ca.h"
                     51: #include "parse.h"
                     52: #include "ox.h"
                     53: #include "ifplot.h"
                     54:
1.8       noro       55: extern JMP_BUF ox_env;
1.1       noro       56:
1.4       noro       57: int open_canvas(NODE arg)
                     58: {
                     59:        int id;
                     60:        struct canvas *can;
                     61:        LIST wsize;
                     62:        STRING wname;
                     63:
                     64:        wsize = (LIST)ARG0(arg);
                     65:        wname = (STRING)ARG1(arg);
                     66:
                     67:        can = canvas[id = search_canvas()];
                     68:        can->mode = MODE_INTERACTIVE;
                     69:        if ( !wsize ) {
                     70:                can->width = DEFAULTWIDTH; can->height = DEFAULTHEIGHT;
                     71:        } else {
                     72:                can->width = QTOS((Q)BDY(BDY(wsize)));
                     73:                can->height = QTOS((Q)BDY(NEXT(BDY(wsize))));
                     74:        }
                     75:        if ( wname )
                     76:                can->wname = BDY(wname);
                     77:        else
                     78:                can->wname = "";
                     79:        create_canvas(can);
                     80:        return id;
                     81: }
                     82:
1.1       noro       83: int plot(NODE arg)
                     84: {
                     85:        int id;
                     86:        NODE n;
                     87:        struct canvas *can;
                     88:        P formula;
                     89:        LIST xrange,yrange,zrange,wsize;
                     90:        STRING wname;
1.12      noro       91:        V v;
1.1       noro       92:
                     93:        formula = (P)ARG0(arg);
                     94:        xrange = (LIST)ARG1(arg);
                     95:        yrange = (LIST)ARG2(arg);
                     96:        zrange = (LIST)ARG3(arg);
                     97:        wsize = (LIST)ARG4(arg);
                     98:        wname = (STRING)ARG5(arg);
                     99:
                    100:        can = canvas[id = search_canvas()];
1.12      noro      101:        if ( xrange ) {
                    102:                n = BDY(xrange); can->vx = VR((P)BDY(n)); n = NEXT(n);
                    103:                can->qxmin = (Q)BDY(n); n = NEXT(n); can->qxmax = (Q)BDY(n);
                    104:                can->xmin = ToReal(can->qxmin); can->xmax = ToReal(can->qxmax);
                    105:        }
1.1       noro      106:        if ( yrange ) {
                    107:                n = BDY(yrange); can->vy = VR((P)BDY(n)); n = NEXT(n);
                    108:                can->qymin = (Q)BDY(n); n = NEXT(n); can->qymax = (Q)BDY(n);
                    109:                can->ymin = ToReal(can->qymin); can->ymax = ToReal(can->qymax);
1.12      noro      110:        }
                    111:        if ( xrange && yrange )
                    112:                can->mode = zrange ? MODE_CONPLOT : MODE_IFPLOT;
                    113:        else
                    114:                can->mode = xrange ? MODE_PLOT : MODE_POLARPLOT;
                    115:
                    116:        if ( zrange ) {
1.15      noro      117:                n = NEXT(BDY(zrange));
1.12      noro      118:                can->zmin = ToReal(BDY(n));
                    119:                n = NEXT(n); can->zmax = ToReal(BDY(n));
                    120:                n = NEXT(n);
                    121:                if ( can->mode == MODE_CONPLOT )
                    122:                        can->nzstep = n ? QTOS((Q)BDY(n)) : MAXGC;
                    123:                else {
                    124:                        /* XXX */
1.15      noro      125:                        can->vx = VR((P)BDY(BDY(zrange)));
1.12      noro      126:                        can->nzstep = n ? QTOS((Q)BDY(n)) : DEFAULTPOLARSTEP;
                    127:                }
                    128:        }
                    129:
1.1       noro      130:        if ( !wsize ) {
                    131:                can->width = DEFAULTWIDTH; can->height = DEFAULTHEIGHT;
                    132:        } else {
                    133:                can->width = QTOS((Q)BDY(BDY(wsize)));
                    134:                can->height = QTOS((Q)BDY(NEXT(BDY(wsize))));
                    135:        }
                    136:        if ( wname )
                    137:                can->wname = BDY(wname);
                    138:        else
                    139:                can->wname = "";
                    140:        can->formula = formula;
                    141:        if ( can->mode == MODE_PLOT ) {
                    142:                plotcalc(can);
1.14      noro      143:                create_canvas(can);
1.1       noro      144:                plot_print(display,can);
1.12      noro      145:        } else if ( can->mode == MODE_POLARPLOT ) {
                    146:                polarplotcalc(can);
1.14      noro      147:                create_canvas(can);
1.12      noro      148:                plot_print(display,can);
1.14      noro      149:        } else {
                    150:                create_canvas(can);
1.1       noro      151:                ifplotmain(can);
1.12      noro      152:        }
1.1       noro      153:        copy_to_canvas(can);
                    154:        return id;
                    155: }
                    156:
1.6       noro      157: int memory_plot(NODE arg,LIST *bytes)
                    158: {
                    159:        NODE n;
                    160:        struct canvas tmp_can;
                    161:        struct canvas *can;
                    162:        P formula;
                    163:        LIST xrange,yrange,zrange,wsize;
                    164:        int width,height;
                    165:        double **tabe;
                    166:        int i;
                    167:        BYTEARRAY barray;
                    168:        Q qw,qh;
                    169:
                    170:        formula = (P)ARG0(arg);
                    171:        xrange = (LIST)ARG1(arg);
                    172:        yrange = (LIST)ARG2(arg);
                    173:        zrange = (LIST)ARG3(arg);
                    174:        wsize = (LIST)ARG4(arg);
                    175:
                    176:        can = &tmp_can;
                    177:        n = BDY(xrange); can->vx = VR((P)BDY(n)); n = NEXT(n);
                    178:        can->qxmin = (Q)BDY(n); n = NEXT(n); can->qxmax = (Q)BDY(n);
                    179:        can->xmin = ToReal(can->qxmin); can->xmax = ToReal(can->qxmax);
                    180:        if ( yrange ) {
                    181:                n = BDY(yrange); can->vy = VR((P)BDY(n)); n = NEXT(n);
                    182:                can->qymin = (Q)BDY(n); n = NEXT(n); can->qymax = (Q)BDY(n);
                    183:                can->ymin = ToReal(can->qymin); can->ymax = ToReal(can->qymax);
                    184:                if ( zrange ) {
                    185:                        n = NEXT(BDY(zrange));
                    186:                        can->zmin = ToReal(BDY(n)); n = NEXT(n); can->zmax = ToReal(BDY(n));
                    187:                        if ( n = NEXT(n) )
                    188:                                can->nzstep = QTOS((Q)BDY(n));
                    189:                        else
                    190:                                can->nzstep = MAXGC;
                    191:                        can->mode = MODE_CONPLOT;
                    192:                } else
                    193:                        can->mode = MODE_IFPLOT;
                    194:        } else
                    195:                can->mode = MODE_PLOT;
                    196:        if ( !wsize ) {
                    197:                can->width = DEFAULTWIDTH; can->height = DEFAULTHEIGHT;
                    198:        } else {
                    199:                can->width = QTOS((Q)BDY(BDY(wsize)));
                    200:                can->height = QTOS((Q)BDY(NEXT(BDY(wsize))));
                    201:        }
                    202:        can->wname = "";
                    203:        can->formula = formula;
                    204:        if ( can->mode == MODE_PLOT )
                    205:                plotcalc(can);
                    206:        else {
                    207:                width = can->width; height = can->height;
                    208:                tabe = (double **)ALLOCA(width*sizeof(double *));
                    209:                for ( i = 0; i < width; i++ )
                    210:                        tabe[i] = (double *)ALLOCA(height*sizeof(double));
                    211:                calc(tabe,can,1);
                    212:                memory_if_print(tabe,can,&barray);
                    213:                STOQ(width,qw); STOQ(height,qh);
                    214:                n = mknode(3,qw,qh,barray);
                    215:                MKLIST(*bytes,n);
                    216:        }
                    217: }
                    218:
1.1       noro      219: int plotover(NODE arg)
                    220: {
                    221:        int index;
                    222:        P formula;
                    223:        struct canvas *can;
                    224:        struct canvas fakecan;
                    225:        VL vl,vl0;
                    226:
                    227:        index = QTOS((Q)ARG0(arg));
                    228:        formula = (P)ARG1(arg);
                    229:        can = canvas[index];
                    230:        if ( !can->window )
                    231:                return -1;
1.7       noro      232:        get_vars_recursive((Obj)formula,&vl);
1.1       noro      233:        for ( vl0 = vl; vl0; vl0 = NEXT(vl0) )
1.7       noro      234:                if ( vl0->v->attr == (pointer)V_IND )
1.1       noro      235:                        if ( vl->v != can->vx && vl->v != can->vy )
                    236:                                return -1;
1.17      noro      237:        if ( argc(arg) == 3 )
                    238:                can->color = QTOS((Q)ARG2(arg));
                    239:        else
                    240:                can->color = 0;
1.18    ! noro      241: #if !defined(VISUAL)
1.17      noro      242:        set_drawcolor(can->color);
1.18    ! noro      243: #endif
1.1       noro      244:        current_can = can;
                    245:        fakecan = *can; fakecan.formula = formula;
                    246:        if ( can->mode == MODE_PLOT ) {
                    247:                plotcalc(&fakecan);
                    248:                plot_print(display,&fakecan);
                    249:        } else
                    250:                ifplotmain(&fakecan);
                    251:        copy_to_canvas(&fakecan);
                    252:        return index;
                    253: }
                    254:
                    255: int drawcircle(NODE arg)
                    256: {
1.4       noro      257: #if !defined(VISUAL)
1.1       noro      258:        int id;
                    259:        int index;
                    260:        pointer ptr;
                    261:        Q ret;
                    262:        LIST xyr;
                    263:        Obj x,y,r;
                    264:        int wx,wy,wr;
                    265:        struct canvas *can;
                    266:        struct canvas fakecan;
                    267:
                    268:        index = QTOS((Q)ARG0(arg));
                    269:        xyr = (LIST)ARG1(arg);
                    270:        x = (Obj)ARG0(BDY(xyr)); y = (Obj)ARG1(BDY(xyr)); r = (Obj)ARG2(BDY(xyr));
                    271:        can = canvas[index];
                    272:        if ( !can->window )
                    273:                return -1;
                    274:        else {
                    275:                current_can = can;
                    276:                wx = (ToReal(x)-can->xmin)*can->width/(can->xmax-can->xmin);
                    277:                wy = (can->ymax-ToReal(y))*can->height/(can->ymax-can->ymin);
                    278:                wr = ToReal(r);
                    279:                XFillArc(display,can->pix,colorGC,wx-wr/2,wy-wr/2,wr,wr,0,360*64);
                    280:                copy_to_canvas(can);
                    281:                return index;
                    282:        }
1.4       noro      283: #endif
                    284: }
                    285:
                    286: int draw_obj(NODE arg)
                    287: {
                    288:        int index;
1.5       noro      289:        int x,y,u,v,len,r;
1.4       noro      290:        NODE obj,n;
                    291:        RealVect *vect;
                    292:        struct canvas *can;
1.5       noro      293:        int color;
1.4       noro      294:
                    295:        index = QTOS((Q)ARG0(arg));
                    296:        can = canvas[index];
1.10      noro      297:        if ( !can && closed_canvas[index] ) {
                    298:                canvas[index] = closed_canvas[index];
                    299:                closed_canvas[index] = 0;
                    300:                can = canvas[index];
                    301:                popup_canvas(index);
                    302:                current_can = can;
                    303:        } else if ( !can || (can && !can->window) ) {
1.5       noro      304:                set_lasterror("draw_obj : canvas does not exist");
1.4       noro      305:                return -1;
1.5       noro      306:        }
1.4       noro      307:
                    308:        obj = BDY((LIST)ARG1(arg));
1.5       noro      309:        if ( argc(arg) == 3 )
                    310:                color = QTOS((Q)ARG2(arg));
                    311:        else
                    312:                color = 0; /* black */
                    313:        switch ( len = length(obj) ) {
1.4       noro      314:                case 2: /* point */
                    315:                        x = (int)ToReal((Q)ARG0(obj)); y = (int)ToReal((Q)ARG1(obj));
1.5       noro      316:                        draw_point(display,can,x,y,color);
1.16      noro      317:                        MKRVECT3(vect,x,y,color); MKNODE(n,vect,can->history);
                    318:                        can->history = n;
1.5       noro      319:                        break;
                    320:                case 3: /* circle */
                    321:                        x = (int)ToReal((Q)ARG0(obj)); y = (int)ToReal((Q)ARG1(obj));
                    322:                        r = (int)ToReal((Q)ARG2(obj));
1.16      noro      323:                        MKRVECT4(vect,x,y,r,color); MKNODE(n,vect,can->history);
                    324:                        can->history = n;
1.4       noro      325:                        break;
                    326:                case 4: /* line */
                    327:                        x = (int)ToReal((Q)ARG0(obj)); y = (int)ToReal((Q)ARG1(obj));
                    328:                        u = (int)ToReal((Q)ARG2(obj)); v = (int)ToReal((Q)ARG3(obj));
1.5       noro      329:                        draw_line(display,can,x,y,u,v,color);
1.16      noro      330:                        MKRVECT5(vect,x,y,u,v,color); MKNODE(n,vect,can->history);
                    331:                        can->history = n;
1.4       noro      332:                        break;
                    333:                default:
1.5       noro      334:                        set_lasterror("draw_obj : invalid request");
1.4       noro      335:                        return -1;
                    336:        }
1.9       noro      337:        return 0;
                    338: }
                    339:
                    340: int draw_string(NODE arg)
                    341: {
                    342:        int index,x,y;
                    343:        char *str;
                    344:        NODE pos;
                    345:        struct canvas *can;
                    346:        int color;
                    347:
                    348:        index = QTOS((Q)ARG0(arg));
                    349:        can = canvas[index];
1.11      noro      350:        if ( !can && closed_canvas[index] ) {
                    351:                canvas[index] = closed_canvas[index];
                    352:                closed_canvas[index] = 0;
                    353:                can = canvas[index];
                    354:                popup_canvas(index);
                    355:                current_can = can;
                    356:        } else if ( !can || (can && !can->window) ) {
                    357:                set_lasterror("draw_obj : canvas does not exist");
1.9       noro      358:                return -1;
                    359:        }
                    360:
                    361:        pos = BDY((LIST)ARG1(arg));
                    362:        str = BDY((STRING)ARG2(arg));
                    363:        if ( argc(arg) == 4 )
                    364:                color = QTOS((Q)ARG3(arg));
                    365:        else
                    366:                color = 0; /* black */
                    367:        x = (int)ToReal((Q)ARG0(pos));
                    368:        y = (int)ToReal((Q)ARG1(pos));
                    369:        draw_character_string(display,can,x,y,str,color);
1.4       noro      370:        return 0;
                    371: }
                    372:
                    373: int clear_canvas(NODE arg)
                    374: {
                    375:        int index;
                    376:        struct canvas *can;
                    377:
                    378:        index = QTOS((Q)ARG0(arg));
                    379:        can = canvas[index];
                    380:        if ( !can || !can->window )
                    381:                return -1;
                    382:        clear_pixmap(can);
                    383:        copy_to_canvas(can);
                    384:        /* clear the history */
                    385:        can->history = 0;
1.1       noro      386: }
                    387:
                    388: #define RealtoDbl(r) ((r)?BDY(r):0.0)
                    389:
                    390: int arrayplot(NODE arg)
                    391: {
                    392:        int id,ix,w,h;
                    393:        VECT array;
                    394:        LIST xrange,wsize;
                    395:        char *wname;
                    396:        NODE n;
                    397:        double ymax,ymin,dy,xstep;
                    398:        Real *tab;
                    399:        struct canvas *can;
                    400:        POINT *pa;
                    401:
                    402:        array = (VECT)ARG0(arg);
                    403:        xrange = (LIST)ARG1(arg);
                    404:        can = canvas[id = search_canvas()];
                    405:        n = BDY(xrange); can->vx = VR((P)BDY(n)); n = NEXT(n);
                    406:        can->qxmin = (Q)BDY(n); n = NEXT(n); can->qxmax = (Q)BDY(n);
                    407:        can->xmin = ToReal(can->qxmin); can->xmax = ToReal(can->qxmax);
                    408:        if ( !wsize ) {
                    409:                can->width = DEFAULTWIDTH; can->height = DEFAULTHEIGHT;
                    410:        } else {
                    411:                can->width = QTOS((Q)BDY(BDY(wsize)));
                    412:                can->height = QTOS((Q)BDY(NEXT(BDY(wsize))));
                    413:        }
                    414:        can->wname = wname; can->formula = 0; can->mode = MODE_PLOT;
                    415:        create_canvas(can);
                    416:        w = array->len;
                    417:        h = can->height;
                    418:        tab = (Real *)BDY(array);
                    419:        if ( can->ymax == can->ymin ) {
                    420:                for ( ymax = ymin = RealtoDbl(tab[0]), ix = 1; ix < w; ix++ ) {
                    421:                        if ( RealtoDbl(tab[ix]) > ymax )
                    422:                                ymax = RealtoDbl(tab[ix]);
                    423:                        if ( RealtoDbl(tab[ix]) < ymin )
                    424:                                ymin = RealtoDbl(tab[ix]);
                    425:                }
                    426:                can->ymax = ymax; can->ymin = ymin;
                    427:        } else {
                    428:                ymax = can->ymax; ymin = can->ymin;
                    429:        }
                    430:        dy = ymax-ymin;
                    431:        can->pa = (struct pa *)MALLOC(sizeof(struct pa));
                    432:        can->pa[0].length = w;
                    433:        can->pa[0].pos = pa = (POINT *)MALLOC(w*sizeof(POINT));
                    434:        xstep = (double)can->width/(double)(w-1);
                    435:        for ( ix = 0; ix < w; ix++ ) {
                    436: #ifndef MAXSHORT
                    437: #define MAXSHORT ((short)0x7fff)
                    438: #endif
                    439:                double t;
                    440:
                    441:                pa[ix].x = (int)(ix*xstep);
                    442:                t = (h - 1)*(ymax - RealtoDbl(tab[ix]))/dy;
                    443:                if ( t > MAXSHORT )
                    444:                        pa[ix].y = MAXSHORT;
                    445:                else if ( t < -MAXSHORT )
                    446:                        pa[ix].y = -MAXSHORT;
                    447:                else
1.7       noro      448:                        pa[ix].y = (long)t;
1.1       noro      449:        }
                    450:        plot_print(display,can);
                    451:        copy_to_canvas(can);
                    452:        return id;
                    453: }
                    454:
1.7       noro      455: void ifplot_resize(struct canvas *can,POINT spos,POINT epos)
1.1       noro      456: {
                    457:        struct canvas *ncan;
                    458:        struct canvas fakecan;
                    459:        Q dx,dy,dx2,dy2,xmin,xmax,ymin,ymax,xmid,ymid;
                    460:        Q sx,sy,ex,ey,cw,ch,ten,two;
                    461:        Q s,t;
                    462:        int new;
                    463:        int w,h,m;
                    464:
                    465:        if ( XC(spos) < XC(epos) && YC(spos) < YC(epos) ) {
                    466:                if ( can->precise && !can->wide ) {
                    467:                        fakecan = *can; ncan = &fakecan;
                    468:                } else {
                    469:                        new = search_canvas(); ncan = canvas[new];
                    470:                }
                    471:                ncan->mode = can->mode;
                    472:                ncan->zmin = can->zmin; ncan->zmax = can->zmax;
                    473:                ncan->nzstep = can->nzstep;
                    474:                ncan->wname = can->wname;
                    475:                ncan->vx = can->vx; ncan->vy = can->vy;
                    476:                ncan->formula = can->formula;
                    477:                w = XC(epos)-XC(spos);
                    478:                h = YC(epos)-YC(spos);
                    479:                m = MAX(can->width,can->height);
                    480:                if ( can->precise ) {
                    481:                        ncan->width = w; ncan->height = h;
                    482:                } else if ( w > h ) {
                    483:                        ncan->width = m; ncan->height = m * h/w;
                    484:                } else {
                    485:                        ncan->width = m * w/h; ncan->height = m;
                    486:                }
                    487:                if ( can->wide ) {
                    488:                        STOQ(10,ten); STOQ(2,two);
                    489:                        subq(can->qxmax,can->qxmin,&t); mulq(t,ten,&dx);
                    490:                        subq(can->qymax,can->qymin,&t); mulq(t,ten,&dy);
                    491:                        addq(can->qxmax,can->qxmin,&t); divq(t,two,&xmid);
                    492:                        addq(can->qymax,can->qymin,&t); divq(t,two,&ymid);
                    493:                        divq(dx,two,&dx2); divq(dy,two,&dy2);
                    494:                        subq(xmid,dx2,&xmin); addq(xmid,dx2,&xmax);
                    495:                        subq(ymid,dy2,&ymin); addq(ymid,dy2,&ymax);
                    496:                } else {
                    497:                        subq(can->qxmax,can->qxmin,&dx); subq(can->qymax,can->qymin,&dy);
                    498:                        xmin = can->qxmin; xmax = can->qxmax;
                    499:                        ymin = can->qymin; ymax = can->qymax;
                    500:                }
                    501:                STOQ(XC(spos),sx); STOQ(YC(spos),sy); STOQ(XC(epos),ex); STOQ(YC(epos),ey);
                    502:                STOQ(can->width,cw); STOQ(can->height,ch);
                    503:                mulq(sx,dx,&t); divq(t,cw,&s); addq(xmin,s,&ncan->qxmin);
                    504:                mulq(ex,dx,&t); divq(t,cw,&s); addq(xmin,s,&ncan->qxmax);
                    505:                mulq(ey,dy,&t); divq(t,ch,&s); subq(ymax,s,&ncan->qymin);
                    506:                mulq(sy,dy,&t); divq(t,ch,&s); subq(ymax,s,&ncan->qymax);
                    507:                ncan->xmin = ToReal(ncan->qxmin); ncan->xmax = ToReal(ncan->qxmax);
                    508:                ncan->ymin = ToReal(ncan->qymin); ncan->ymax = ToReal(ncan->qymax);
                    509:                if ( can->precise && !can->wide ) {
                    510:                        current_can = can;
                    511:                        alloc_pixmap(ncan);
1.4       noro      512: #if defined(VISUAL)
                    513:                        ncan->real_can = can;
                    514: #endif
1.1       noro      515:                        qifplotmain(ncan);
                    516:                        copy_subimage(ncan,can,spos);
                    517:                        copy_to_canvas(can);
                    518:                } else {
                    519:                        create_canvas(ncan);
                    520:                        if ( can->precise )
                    521:                                qifplotmain(ncan);
                    522:                        else
                    523:                                ifplotmain(ncan);
                    524:                        copy_to_canvas(ncan);
                    525:                }
                    526:        }
                    527: }
                    528:
1.7       noro      529: void plot_resize(struct canvas *can,POINT spos,POINT epos)
1.1       noro      530: {
                    531:        struct canvas *ncan;
                    532:        Q dx,dx2,xmin,xmax,xmid;
1.7       noro      533:        double dy,ymin,ymax,ymid;
1.1       noro      534:        Q sx,ex,cw,ten,two;
                    535:        Q s,t;
                    536:        int new;
                    537:        int w,h,m;
                    538:
                    539:        if ( XC(spos) < XC(epos) && YC(spos) < YC(epos) ) {
                    540:                new = search_canvas(); ncan = canvas[new];
                    541:                ncan->mode = can->mode;
                    542:                ncan->zmin = can->zmin; ncan->zmax = can->zmax;
                    543:                ncan->nzstep = can->nzstep;
                    544:                ncan->wname = can->wname;
                    545:                ncan->vx = can->vx; ncan->vy = can->vy;
                    546:                ncan->formula = can->formula;
                    547:                w = XC(epos)-XC(spos);
                    548:                h = YC(epos)-YC(spos);
                    549:                m = MAX(can->width,can->height);
                    550:                if ( w > h ) {
                    551:                        ncan->width = m; ncan->height = m * h/w;
                    552:                } else {
                    553:                        ncan->width = m * w/h; ncan->height = m;
                    554:                }
                    555:                if ( can->wide ) {
                    556:                        STOQ(10,ten); STOQ(2,two);
                    557:                        subq(can->qxmax,can->qxmin,&t); mulq(t,ten,&dx);
                    558:                        addq(can->qxmax,can->qxmin,&t); divq(t,two,&xmid);
                    559:                        divq(dx,two,&dx2); subq(xmid,dx2,&xmin); addq(xmid,dx2,&xmax);
                    560:
                    561:                        dy = (can->ymax-can->ymin)*10;
                    562:                        ymid = (can->ymax+can->ymin)/2;
                    563:                        ymin = ymid-dy/2; ymax = ymid+dy/2;
                    564:                } else {
                    565:                        subq(can->qxmax,can->qxmin,&dx);
                    566:                        xmin = can->qxmin; xmax = can->qxmax;
                    567:
                    568:                        dy = can->ymax-can->ymin;
                    569:                        ymin = can->ymin; ymax = can->ymax;
                    570:                }
                    571:                STOQ(XC(spos),sx); STOQ(XC(epos),ex); STOQ(can->width,cw);
                    572:                mulq(sx,dx,&t); divq(t,cw,&s); addq(xmin,s,&ncan->qxmin);
                    573:                mulq(ex,dx,&t); divq(t,cw,&s); addq(xmin,s,&ncan->qxmax);
                    574:                ncan->xmin = ToReal(ncan->qxmin); ncan->xmax = ToReal(ncan->qxmax);
                    575:
                    576:                ncan->ymin = ymax-YC(epos)*dy/can->height;
                    577:                ncan->ymax = ymax-YC(spos)*dy/can->height;
                    578:
                    579:                create_canvas(ncan);
                    580:                plotcalc(ncan);
                    581:                plot_print(display,ncan);
                    582:                copy_to_canvas(ncan);
                    583:        }
                    584: }
                    585:
1.7       noro      586: void ifplotmain(struct canvas *can)
1.1       noro      587: {
                    588:        int width,height;
1.7       noro      589:        double **tabe;
1.1       noro      590:        int i;
                    591:
                    592:        width = can->width; height = can->height;
                    593:        tabe = (double **)ALLOCA(width*sizeof(double *));
                    594:        for ( i = 0; i < width; i++ )
                    595:                tabe[i] = (double *)ALLOCA(height*sizeof(double));
                    596:        define_cursor(can->window,runningcur);
                    597:        set_busy(can); set_selection();
1.6       noro      598:        calc(tabe,can,0); if_print(display,tabe,can);
1.1       noro      599:        reset_selection(); reset_busy(can);
                    600:        define_cursor(can->window,normalcur);
                    601: }
                    602:
1.7       noro      603: void qifplotmain(struct canvas *can)
1.1       noro      604: {
                    605:        int width,height;
                    606:        char **tabe,*tabeb;
                    607:        int i;
                    608:
                    609:        width = can->width; height = can->height;
                    610:        tabe = (char **)ALLOCA(width*sizeof(char *)+width*height*sizeof(char));
1.8       noro      611:        bzero((void *)tabe,width*sizeof(char *)+width*height*sizeof(char));
1.1       noro      612:        for ( i = 0, tabeb = (char *)(tabe+width); i < width; i++ )
                    613:                tabe[i] = tabeb + height*i;
                    614:        define_cursor(can->window,runningcur);
                    615:        set_busy(can); set_selection();
                    616:        qcalc(tabe,can); qif_print(display,tabe,can);
                    617:        reset_selection(); reset_busy(can);
                    618:        define_cursor(can->window,normalcur);
                    619: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>