[BACK]Return to E.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2018 / engine

Annotation of OpenXM_contrib2/asir2018/engine/E.c, Revision 1.2

1.1       noro        1: /*
                      2:  * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
                      3:  * All rights reserved.
                      4:  *
                      5:  * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
                      6:  * non-exclusive and royalty-free license to use, copy, modify and
                      7:  * redistribute, solely for non-commercial and non-profit purposes, the
                      8:  * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
                      9:  * conditions of this Agreement. For the avoidance of doubt, you acquire
                     10:  * only a limited right to use the SOFTWARE hereunder, and FLL or any
                     11:  * third party developer retains all rights, including but not limited to
                     12:  * copyrights, in and to the SOFTWARE.
                     13:  *
                     14:  * (1) FLL does not grant you a license in any way for commercial
                     15:  * purposes. You may use the SOFTWARE only for non-commercial and
                     16:  * non-profit purposes only, such as academic, research and internal
                     17:  * business use.
                     18:  * (2) The SOFTWARE is protected by the Copyright Law of Japan and
                     19:  * international copyright treaties. If you make copies of the SOFTWARE,
                     20:  * with or without modification, as permitted hereunder, you shall affix
                     21:  * to all such copies of the SOFTWARE the above copyright notice.
                     22:  * (3) An explicit reference to this SOFTWARE and its copyright owner
                     23:  * shall be made on your publication or presentation in any form of the
                     24:  * results obtained by use of the SOFTWARE.
                     25:  * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
                     26:  * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
                     27:  * for such modification or the source code of the modified part of the
                     28:  * SOFTWARE.
                     29:  *
                     30:  * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
                     31:  * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
                     32:  * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
                     33:  * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
                     34:  * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
                     35:  * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
                     36:  * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
                     37:  * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
                     38:  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
                     39:  * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
                     40:  * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
                     41:  * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
                     42:  * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
                     43:  * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
                     44:  * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
                     45:  * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
                     46:  * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
                     47:  *
1.2     ! noro       48:  * $OpenXM: OpenXM_contrib2/asir2018/engine/E.c,v 1.1 2018/09/19 05:45:06 noro Exp $
1.1       noro       49: */
                     50: #include "ca.h"
                     51:
                     52: void henmv(VL vl,VN vn,P f,P g0,P h0,P a0,P b0,P lg,P lh,P lg0,P lh0,Z q,int k,P *gp,P *hp)
                     53: {
                     54:   P g1,h1,a1,b1;
                     55:   Z q2,r2,two;
                     56:
1.2     ! noro       57:   STOZ(2,two);
1.1       noro       58:   divqrz(q,two,&q2,&r2);
                     59:   adjc(vl,g0,a0,lg0,q,&g1,&a1); adjc(vl,h0,b0,lh0,q,&h1,&b1);
                     60:   henmvmain(vl,vn,f,g1,h1,b1,a1,lg,lh,q,q2,k,gp,hp);
                     61: }
                     62:
                     63: void henmvmain(VL vl,VN vn,P f,P fi0,P fi1,P gi0,P gi1,P l0,P l1,Z mod,Z mod2,int k,P *fr0,P *fr1)
                     64: {
                     65:   V v;
                     66:   int n,i,j;
                     67:   int *md;
                     68:   P x,m,m1,c,q,r,a,s,u,ff,f0,f1;
                     69:   P w0,w1,cf,cfi,t,q1,dvr;
                     70:   P *c0,*c1;
                     71:   P *f0h,*f1h;
                     72:
                     73:   v = VR(f); n = deg(v,f); MKV(v,x);
                     74:   c0 = (P *)ALLOCA((n+1)*sizeof(P));
                     75:   c1 = (P *)ALLOCA((n+1)*sizeof(P));
                     76:   invz((Z)LC(fi1),mod,(Z *)&c); mulp(vl,fi1,c,&t); cmp(mod,t,&dvr);
                     77:   cm2p(mod,mod2,gi0,&c0[0]); cm2p(mod,mod2,gi1,&c1[0]);
                     78:   for ( i = 1; i <= n; i++ ) {
                     79:     mulp(vl,x,c1[i-1],&m); divsrp(vl,m,dvr,&q,&r); mulp(vl,q,c,&q1);
                     80:     cm2p(mod,mod2,r,&c1[i]);
                     81:     mulp(vl,x,c0[i-1],&m); mulp(vl,q1,fi0,&m1); addp(vl,m,m1,&a);
                     82:     cm2p(mod,mod2,a,&c0[i]);
                     83:   }
                     84:   affine(vl,f,vn,&t); cm2p(mod,mod2,t,&ff);
                     85:   for ( i = 0; vn[i].v; i++ );
                     86:   md = ( int *) ALLOCA((i+1)*sizeof(int));
                     87:   for ( i = 0; vn[i].v; i++ )
                     88:     md[i] = getdeg(vn[i].v,ff);
                     89:   cm2p(mod,mod2,fi0,&f0); affine(vl,l0,vn,&t);
                     90:   if ( NUM(f0) )
                     91:     cm2p(mod,mod2,t,&f0);
                     92:   else
                     93:     cm2p(mod,mod2,t,&COEF(DC(f0)));
                     94:   cm2p(mod,mod2,fi1,&f1); affine(vl,l1,vn,&t);
                     95:   if ( NUM(f1) )
                     96:     cm2p(mod,mod2,t,&f1);
                     97:   else
                     98:     cm2p(mod,mod2,t,&COEF(DC(f1)));
                     99:   W_CALLOC(k,P,f0h); W_CALLOC(k,P,f1h);
                    100:   for ( i = 0; i <= k; i++ ) {
                    101:     exthpc(vl,v,f0,i,&f0h[i]); exthpc(vl,v,f1,i,&f1h[i]);
                    102:   }
                    103:   for ( j = 1; j <= k; j++ ) {
                    104:     for ( i = 0; vn[i].v; i++ )
                    105:       if ( getdeg(vn[i].v,f0)+getdeg(vn[i].v,f1) > md[i] )
                    106:         goto END;
                    107:     for ( i = 0, s = 0; i <= j; i++ ) {
                    108:       mulp(vl,f0h[i],f1h[j-i],&t); addp(vl,s,t,&u); s = u;
                    109:     }
                    110:     cm2p(mod,mod2,s,&t);
                    111:     exthpc(vl,v,ff,j,&u); subm2p(vl,mod,mod2,u,t,&cf);
                    112:     for ( i = 0, w0 = 0, w1 = 0; i <= n; i++ ) {
                    113:       if ( !cf )
                    114:         cfi = 0;
                    115:       else if ( VR(cf) == v )
                    116:         coefp(cf,i,&cfi);
                    117:       else if ( i == 0 )
                    118:         cfi = cf;
                    119:       else
                    120:         cfi = 0;
                    121:       if ( cfi ) {
                    122:         mulp(vl,cfi,c0[i],&m); addp(vl,w0,m,&a); w0 = a;
                    123:         mulp(vl,cfi,c1[i],&m); addp(vl,w1,m,&a); w1 = a;
                    124:       }
                    125:     }
                    126:     cm2p(mod,mod2,w0,&t); addm2p(vl,mod,mod2,f0,t,&a);
                    127:     addm2p(vl,mod,mod2,f0h[j],t,&s); f0h[j] = s; f0 = a;
                    128:     cm2p(mod,mod2,w1,&u); addm2p(vl,mod,mod2,f1,u,&a);
                    129:     addm2p(vl,mod,mod2,f1h[j],u,&s); f1h[j] = s; f1 = a;
                    130:     if ( !t ) {
                    131:       restore(vl,f0,vn,&s); cm2p(mod,mod2,s,&t);
                    132:       if ( divtpz(vl,f,t,&s) ) {
                    133:         *fr0 = t; *fr1 = s;
                    134:         return;
                    135:       }
                    136:     }
                    137:     if ( !u ) {
                    138:       restore(vl,f1,vn,&s); cm2p(mod,mod2,s,&t);
                    139:       if ( divtpz(vl,f,t,&s) ) {
                    140:         *fr0 = s; *fr1 = t;
                    141:         return;
                    142:       }
                    143:     }
                    144:   }
                    145: END:
                    146:   restore(vl,f0,vn,&t); cm2p(mod,mod2,t,fr0);
                    147:   restore(vl,f1,vn,&t); cm2p(mod,mod2,t,fr1);
                    148: }
                    149:
                    150: /*
                    151:   input : f, fi0, fi1, p, k; f = fi0 * fi1 mod p; ( p, k : integer )
                    152:   output : gr1 * fr0 + gr0 * fr1 = 1 mod qr; ( qr = p^(2^(k-1)) )
                    153: */
                    154:
                    155: void henzq(P f,P i0,UM fi0,P i1,UM fi1,int p,int k,P *fr0p,P *fr1p,P *gr0p,P *gr1p,Z *qrp)
                    156: {
                    157:   Z q,qq,q2,two,r2;
                    158:   int n,i;
                    159:   UM wg0,wg1,wf0,wf1;
                    160:   P f0,f1,g0,g1,m,m1,s,c,d,q1,r1,rm,rm1,a,a1,a2;
                    161:
                    162:   n = UDEG(f);
                    163:   wf0 = W_UMALLOC(n); wf1 = W_UMALLOC(n);
                    164:   wg0 = W_UMALLOC(n); wg1 = W_UMALLOC(n);
                    165:   cpyum(fi0,wf0); cpyum(fi1,wf1);
                    166:   eucum(p,wf0,wf1,wg1,wg0);
                    167:   umtop(VR(f),fi0,&f0); umtop(VR(f),fi1,&f1);
                    168:   umtop(VR(f),wg0,&g0); umtop(VR(f),wg1,&g1);
                    169:
1.2     ! noro      170:   STOZ(2,two); STOZ(p,q); divqrz(q,two,&q2,&r2);
1.1       noro      171:   for ( i = 1; i < k; i++ ) {
                    172:   /*  c = ((f - f0*f1)/q) mod q;
                    173:     q1 = (c*g1) / f1;
                    174:     r1 = (c*g1) mod f1;
                    175:     f1 += (r1 mod q)*q;
                    176:     f0 += ((c*g0 + q1*f0) mod q)*q;
                    177:
                    178:     d = ((1 - (f1*g0 + f0*g1))/q) mod q;
                    179:     q1 = (d*g0) / f1;
                    180:     r1 = (d*g0) mod f1;
                    181:     g1 += (r1 mod q)*q;
                    182:     g0 += ((c*g0 + q1*f0) mod q)*q;
                    183:     q = q^2;
                    184:   */
                    185:
                    186:   /* c = ((f - f0*f1)/q) mod q */
                    187:     mulp(CO,f0,f1,&m); subp(CO,f,m,&s);
                    188:     divcp(s,(Q)q,&m); cm2p(q,q2,m,&c);
                    189:
                    190:   /* q1 = (c*g1) / f1; r1 = (c*g1) mod f1; */
                    191:     mulp(CO,c,g1,&m); cm2p(q,q2,m,&s);
                    192:     udivpwm(q,s,f1,&q1,&r1);
                    193:
                    194:   /* f1 = f1 + (r1 mod q)*q; */
                    195:     cm2p(q,q2,r1,&rm);
                    196:     mulpq(rm,(P)q,&rm1); addp(CO,f1,rm1,&a);
                    197:     f1 = a;
                    198:
                    199:   /* a1 = (c*g0 + q1*f0) mod q; */
                    200:     mulp(CO,c,g0,&m); mulp(CO,q1,f0,&m1); addp(CO,m,m1,&a);
                    201:     cm2p(q,q2,a,&a1);
                    202:
                    203:   /* f0 = f0 + a1*q; */
                    204:     mulpq(a1,(P)q,&a2);
                    205:     addp(CO,f0,a2,&a);
                    206:     f0 = a;
                    207:
                    208:   /* d = ((1 - (f1*g0 + f0*g1))/q) mod q; */
                    209:     mulp(CO,f1,g0,&m); mulp(CO,f0,g1,&m1); addp(CO,m,m1,&a);
                    210:     subp(CO,(P)ONE,a,&s);
                    211:     divcp(s,(Q)q,&m); cm2p(q,q2,m,&d);
                    212:
                    213:   /* q1 = (d*g0) / f1; r1 = (d*g0) mod f1; */
                    214:     mulp(CO,d,g1,&m); udivpwm(q,m,f1,&q1,&r1);
                    215:
                    216:   /* g1 = g1 + (r1 mod q )*q; */
                    217:     cm2p(q,q2,r1,&rm);
                    218:     mulpq(rm,(P)q,&rm1); addp(CO,g1,rm1,&a);
                    219:     g1 = a;
                    220:
                    221:   /* g0 = g0 + (c*g0 + q1*f0 mod q)*q; */
                    222:     mulp(CO,d,g0,&m); mulp(CO,q1,f0,&m1); addp(CO,m,m1,&a);
                    223:     cm2p(q,q2,a,&a1); mulpq(a1,(P)q,&a2);
                    224:     addp(CO,g0,a2,&a);
                    225:     g0 = a;
                    226:
                    227:   /* q = q^2; */
                    228:     mulz(q,q,&qq); q = qq; divqrz(q,two,&q2,&r2);
                    229:   }
                    230:   *fr0p = f0; *fr1p = f1; *gr0p = g0; *gr1p = g1; *qrp = q;
                    231: }
                    232:
                    233: void henzq1(P g,P h,Q bound,P *gcp,P *hcp,Z *qp)
                    234: {
                    235:   V v;
                    236:   Z w,q,q1;
                    237:   Q f;
                    238:   Q u,t,a,b,s,ts;
                    239:   P c,c1;
                    240:   P tg,th,tr;
                    241:   UM wg,wh,ws,wt,wm;
                    242:   int n,m,modres,mod,index,i;
                    243:   P gc0,hc0;
                    244:   P z,zz,zzz;
                    245:
                    246:
                    247:   v = VR(g); n=deg(v,g); m=deg(v,h);
                    248:   norm(g,&a); norm(h,&b);
1.2     ! noro      249:   STOZ(m,w); pwrq(a,(Q)w,&t);
        !           250:   STOZ(n,w); pwrq(b,(Q)w,&s);
1.1       noro      251:   mulq(t,s,&ts);
                    252:
                    253:   factorialz(n+m,&w); mulq(ts,(Q)w,&s);
                    254:   addq(s,s,&f);
                    255:
                    256:   wg = W_UMALLOC(m+n); wh = W_UMALLOC(m+n);
                    257:   wt = W_UMALLOC(m+n); ws = W_UMALLOC(m+n);
                    258:   wm = W_UMALLOC(m+n);
                    259:
                    260:   for ( q = ONE, t = 0, c = 0, index = 0; ; ) {
                    261:     mod = get_lprime(index++);
                    262:     if ( !remqi((Q)LC(g),mod) || !remqi((Q)LC(h),mod) )
                    263:       continue;
                    264:     ptomp(mod,g,&tg); ptomp(mod,h,&th);
                    265:     srchump(mod,tg,th,&tr);
                    266:     if ( !tr )
                    267:       continue;
                    268:     else
                    269:       modres = CONT((MQ)tr);
                    270:
                    271:     mptoum(tg,wg); mptoum(th,wh);
                    272:     eucum(mod,wg,wh,ws,wt); /* wg * ws + wh * wt = 1 */
                    273:     DEG(wm) = 0; COEF(wm)[0] = modres;
                    274:     mulum(mod,ws,wm,wt);
                    275:     for ( i = DEG(wt); i >= 0; i-- )
                    276:       if ( ( COEF(wt)[i] * 2 ) > mod )
                    277:         COEF(wt)[i] -= mod;
                    278:     chnrem(mod,v,c,q,wt,&c1,&q1);
                    279:     if ( !ucmpp(c,c1) ) {
                    280:       mulp(CO,c,g,&z); divsrp(CO,z,h,&zz,&zzz);
                    281:       if ( NUM(zzz) ) {
                    282:         q = q1; c = c1;
                    283:         break;
                    284:       }
                    285:     }
                    286:     q = q1; c = c1;
                    287:
                    288:     if ( cmpq(f,(Q)q) < 0 )
                    289:       break;
                    290:   }
                    291:   ptozp(c,1,&s,&gc0);
                    292:   /* gc0*g = zz*h + zzz -> c*g + (-zz)*h = zzz */
                    293:   mulp(CO,gc0,g,&z);
                    294:   divsrp(CO,z,h,&zz,&zzz);
                    295:   ptozp(zz,1,&s,(P *)&t);
                    296:   if ( INT(s) )
                    297:     chsgnp(zz,&hc0);
                    298:   else {
                    299:     MPZTOZ(mpq_denref(BDY(s)),q); mulq((Q)q,(Q)zzz,(Q *)&q1); zzz = (P)q1;
                    300:     mulp(CO,gc0,(P)q,&c); gc0 = c; mulp(CO,zz,(P)q,&c); chsgnp(c,&hc0);
                    301:   }
                    302:   if ( !INT((Q)zzz) ) {
                    303:     MPZTOZ(mpq_denref(BDY((Q)zzz)),q); MPZTOZ(mpq_numref(BDY((Q)zzz)),q1); zzz = (P)q1;
                    304:     mulp(CO,gc0,(P)q,&c); gc0 = c; mulp(CO,hc0,(P)q,&c); hc0 = c;
                    305:   }
                    306:   for ( index = 0; ; ) {
                    307:     mod = get_lprime(index++);
                    308:     if ( !remqi((Q)zzz,mod) ||
                    309:       !remqi((Q)LC(g),mod) ||
                    310:       !remqi((Q)LC(h),mod) )
                    311:       continue;
1.2     ! noro      312:     for ( STOZ(mod,q); cmpq((Q)q,bound) < 0; ) {
1.1       noro      313:       mulz(q,q,&q1); q = q1;
                    314:     }
                    315:     *qp = q;
                    316:     invz((Z)zzz,q,&q1);
                    317:     mulp(CO,gc0,(P)q1,hcp); mulp(CO,hc0,(P)q1,gcp);
                    318:     return;
                    319:   }
                    320: }
                    321:
                    322: void addm2p(VL vl,Z mod,Z mod2,P n1,P n2,P *nr)
                    323: {
                    324:   P t;
                    325:
                    326:   addp(vl,n1,n2,&t);
                    327:   if ( !t )
                    328:     *nr = 0;
                    329:   else
                    330:     cm2p(mod,mod2,t,nr);
                    331: }
                    332:
                    333: void subm2p(VL vl,Z mod,Z mod2,P n1,P n2,P *nr)
                    334: {
                    335:   P t;
                    336:
                    337:   subp(vl,n1,n2,&t);
                    338:   if ( !t )
                    339:     *nr = 0;
                    340:   else
                    341:     cm2p(mod,mod2,t,nr);
                    342: }
                    343:
                    344: void mulm2p(VL vl,Z mod,Z mod2,P n1,P n2,P *nr)
                    345: {
                    346:   P t;
                    347:
                    348:   mulp(vl,n1,n2,&t);
                    349:   if ( !t )
                    350:     *nr = 0;
                    351:   else
                    352:     cm2p(mod,mod2,t,nr);
                    353: }
                    354:
                    355: void cmp(Z mod,P p,P *pr)
                    356: {
                    357:   P t;
                    358:   DCP dc,dcr,dcr0;
                    359:
                    360:   if ( !p )
                    361:     *pr = 0;
                    362:   else if ( NUM(p) )
                    363:     remz((Z)p,mod,(Z *)pr);
                    364:   else {
                    365:     for ( dc = DC(p), dcr0 = 0; dc; dc = NEXT(dc) ) {
                    366:       cmp(mod,COEF(dc),&t);
                    367:       if ( t ) {
                    368:         NEXTDC(dcr0,dcr);
                    369:         DEG(dcr) = DEG(dc);
                    370:         COEF(dcr) = t;
                    371:       }
                    372:     }
                    373:     if ( !dcr0 )
                    374:       *pr = 0;
                    375:     else {
                    376:       NEXT(dcr) = 0;
                    377:       MKP(VR(p),dcr0,*pr);
                    378:     }
                    379:   }
                    380: }
                    381:
                    382: void cm2p(Z mod,Z m,P p,P *pr)
                    383: {
                    384:   P t;
                    385:   DCP dc,dcr,dcr0;
                    386:
                    387:   if ( !p )
                    388:     *pr = 0;
                    389:   else if ( NUM(p) )
                    390:     rem2q((Z)p,mod,m,(Z *)pr);
                    391:   else {
                    392:     for ( dc = DC(p), dcr0 = 0; dc; dc = NEXT(dc) ) {
                    393:       cm2p(mod,m,COEF(dc),&t);
                    394:       if ( t ) {
                    395:         NEXTDC(dcr0,dcr);
                    396:         DEG(dcr) = DEG(dc);
                    397:         COEF(dcr) = t;
                    398:       }
                    399:     }
                    400:     if ( !dcr0 )
                    401:       *pr = 0;
                    402:     else {
                    403:       NEXT(dcr) = 0;
                    404:       MKP(VR(p),dcr0,*pr);
                    405:     }
                    406:   }
                    407: }
                    408:
                    409: void addm2q(Z mod,Z mod2,Z n1,Z n2,Z *nr)
                    410: {
                    411:   Z t;
                    412:
                    413:   addz(n1,n2,&t);
                    414:   if ( !t )
                    415:     *nr = 0;
                    416:   else
                    417:     rem2q(t,mod,mod2,nr);
                    418: }
                    419:
                    420: void subm2q(Z mod,Z mod2,Z n1,Z n2,Z *nr)
                    421: {
                    422:   Z t;
                    423:
                    424:   subz(n1,n2,&t);
                    425:   if ( !t )
                    426:     *nr = 0;
                    427:   else
                    428:     rem2q(t,mod,mod2,nr);
                    429: }
                    430:
                    431: void mulm2q(Z mod,Z mod2,Z n1,Z n2,Z *nr)
                    432: {
                    433:   Z t;
                    434:
                    435:   mulz(n1,n2,&t);
                    436:   if ( !t )
                    437:     *nr = 0;
                    438:   else
                    439:     rem2q(t,mod,mod2,nr);
                    440: }
                    441:
                    442: void rem2q(Z n,Z m,Z m2,Z *nr)
                    443: {
                    444:   Z r;
                    445:   int sgn;
                    446:
                    447:   remz(n,m,&r);
                    448:   if ( !r )
                    449:     *nr = 0;
                    450:   else {
                    451:     sgn = cmpz(r,m2);
                    452:     if ( sgn > 0 )
                    453:       subz(r,m,nr);
                    454:     else
                    455:       *nr = r;
                    456:   }
                    457: }
                    458:
                    459: /*
                    460:   extract d-homogeneous part with respect to vl - {v}
                    461: */
                    462:
                    463: void exthpc_generic(VL vl,P p,int d,V v,P *pr)
                    464: {
                    465:   P w,x,t,t1,a,xd;
                    466:   V v0;
                    467:   DCP dc;
                    468:
                    469:   if ( d < 0 || !p )
                    470:     *pr = 0;
                    471:   else if ( NUM(p) )
                    472:     if ( d == 0 )
                    473:       *pr = p;
                    474:     else
                    475:       *pr = 0;
                    476:   else if ( v == VR(p) )
                    477:     exthpc(vl,v,p,d,pr);
                    478:   else {
                    479:     v0 = VR(p);
                    480:     for ( MKV(v0,x), dc = DC(p), w = 0; dc; dc = NEXT(dc) ) {
1.2     ! noro      481:       exthpc_generic(vl,COEF(dc),d-ZTOS(DEG(dc)),v,&t);
1.1       noro      482:       pwrp(vl,x,DEG(dc),&xd);
                    483:       mulp(vl,xd,t,&t1); addp(vl,w,t1,&a); w = a;
                    484:     }
                    485:     *pr = w;
                    486:   }
                    487: }
                    488:
                    489: void exthp(VL vl,P p,int d,P *pr)
                    490: {
                    491:   P t,t1,a,w,x,xd;
                    492:   DCP dc;
                    493:
                    494:   if ( d < 0 )
                    495:     *pr = 0;
                    496:   else if ( NUM(p) )
                    497:     if ( d == 0 )
                    498:       *pr = p;
                    499:     else
                    500:       *pr = 0;
                    501:   else {
                    502:     for ( MKV(VR(p),x), dc = DC(p), w = 0; dc; dc = NEXT(dc) ) {
1.2     ! noro      503:       exthp(vl,COEF(dc),d - ZTOS(DEG(dc)),&t);
1.1       noro      504:       pwrp(vl,x,DEG(dc),&xd);
                    505:       mulp(vl,xd,t,&t1); addp(vl,w,t1,&a); w = a;
                    506:     }
                    507:     *pr = w;
                    508:   }
                    509: }
                    510:
                    511: void exthpc(VL vl,V v,P p,int d,P *pr)
                    512: {
                    513:   P t,t1,a,w,x,xd;
                    514:   DCP dc;
                    515:
                    516:   if ( v != VR(p) )
                    517:     exthp(vl,p,d,pr);
                    518:   else if ( d < 0 )
                    519:     *pr = 0;
                    520:   else {
                    521:     for ( MKV(v,x), dc = DC(p), w = 0; dc; dc = NEXT(dc) ) {
                    522:       exthp(vl,COEF(dc),d,&t);
                    523:       pwrp(vl,x,DEG(dc),&xd);
                    524:       mulp(vl,xd,t,&t1); addp(vl,w,t1,&a); w = a;
                    525:     }
                    526:     *pr = w;
                    527:   }
                    528: }
                    529:
                    530: void cbound(VL vl,P p,Q *b)
                    531: {
                    532:   Q n,m;
                    533:   Z t,e;
                    534:   int k;
                    535:
                    536:   cmax(p,&n);
                    537:   addq(n,n,&m);
                    538:
                    539:   k = geldb(vl,p);
1.2     ! noro      540:   STOZ(3,t); STOZ(k,e);
1.1       noro      541:
                    542:   pwrq((Q)t,(Q)e,&n);
                    543:   mulq(m,n,b);
                    544: }
                    545:
                    546: int geldb(VL vl,P p)
                    547: {
                    548:   int m;
                    549:
                    550:   for ( m = 0; vl; vl = NEXT(vl) )
                    551:     m += getdeg(vl->v,p);
                    552:   return ( m );
                    553: }
                    554:
                    555: int getdeg(V v,P p)
                    556: {
                    557:   int m,t;
                    558:   DCP dc;
                    559:
                    560:   if ( !p || NUM(p) )
                    561:     return ( 0 );
                    562:   else if ( v == VR(p) )
                    563:     return ( deg(v,p) );
                    564:   else {
                    565:     for ( dc = DC(p), m = 0; dc; dc = NEXT(dc) ) {
                    566:       t = getdeg(v,COEF(dc));
                    567:       m = MAX(m,t);
                    568:     }
                    569:     return ( m );
                    570:   }
                    571: }
                    572:
                    573: /* YYY */
                    574:
                    575: void cmax(P p,Q *b)
                    576: {
                    577:   DCP dc;
                    578:   Q m,m1;
                    579:
                    580:   if ( NUM(p) )
                    581:     absq((Q)p,b);
                    582:   else {
                    583:     for ( dc = DC(p), m = 0; dc; dc = NEXT(dc) ) {
                    584:       cmax(COEF(dc),&m1);
                    585:       if ( cmpq(m1,m) > 0 )
                    586:         m = m1;
                    587:     }
                    588:     *b = m;
                    589:   }
                    590: }
                    591:
                    592: int nextbin(VN vn,int n)
                    593: {
                    594:   int tmp,i,carry;
                    595:
                    596:   if ( n == 0 )
                    597:     return ( 1 );
                    598:
                    599:   for ( i = n - 1, carry = 1; i >= 0; i-- ) {
                    600:     tmp =  vn[i].n + carry;
                    601:     vn[i].n = tmp % 2;
                    602:     carry = tmp / 2;
                    603:   }
                    604:   return ( carry );
                    605: }
                    606:
                    607: void mulsgn(VN vn,VN vnt,int n,VN vn1)
                    608: {
                    609:   int i;
                    610:
                    611:   for ( i = 0; vn[i].v; i++ )
                    612:     vn1[i].n = vn[i].n;
                    613:   for ( i = 0; i < n; i++ )
                    614:     if ( vnt[i].n )
                    615:       vn1[(long)vnt[i].v].n *= -1;
                    616: }
                    617:
                    618: void next(VN vn)
                    619: {
                    620:   int i,m,n,tmp,carry;
                    621:
                    622:   for ( m = 0, i = 0; vn[i].v; i++ )
                    623:     m = MAX(m,ABS(vn[i].n));
                    624:   if ( m == 0 ) {
                    625:     vn[--i].n = 1;
                    626:     return;
                    627:   }
                    628:   for ( carry = 1, m++, i--; ( i >= 0 ) && carry; i-- ) {
                    629:     tmp = vn[i].n + carry;
                    630:     vn[i].n = tmp % m;
                    631:     carry = tmp / m;
                    632:   }
                    633:   if ( ( i == -1 ) && carry ) {
                    634:     for ( i = 0; vn[i].v; i++ )
                    635:       vn[i].n = 0;
                    636:     vn[--i].n = m;
                    637:   } else {
                    638:     for ( n = 0, i = 0; vn[i].v; i++ )
                    639:       n = MAX(n,ABS(vn[i].n));
                    640:     if ( n < m - 1 )
                    641:       vn[--i].n = m - 1;
                    642:   }
                    643: }
                    644:
                    645: void clctv(VL vl,P p,VL *nvlp)
                    646: {
                    647:   int i,n;
                    648:   VL tvl;
                    649:   VN tvn;
                    650:
                    651:   if ( !p || NUM(p) ) {
                    652:     *nvlp = 0;
                    653:     return;
                    654:   }
                    655:
                    656:   for ( n = 0, tvl = vl; tvl; tvl = NEXT(tvl), n++ );
                    657:   tvn = (VN) ALLOCA((n+1)*sizeof(struct oVN));
                    658:   for ( i = 0, tvl = vl; tvl; tvl = NEXT(tvl), i++ ) {
                    659:     tvn[i].v = tvl->v;
                    660:     tvn[i].n = 0;
                    661:   }
                    662:
                    663:   markv(tvn,n,p);
                    664:   vntovl(tvn,n,nvlp);
                    665: }
                    666:
                    667: void markv(VN vn,int n,P p)
                    668: {
                    669:   V v;
                    670:   DCP dc;
                    671:   int i;
                    672:
                    673:   if ( NUM(p) )
                    674:     return;
                    675:   v = VR(p);
                    676:   for ( i = 0, v = VR(p); i < n; i++ )
                    677:     if ( v == vn[i].v ) {
                    678:       vn[i].n = 1;
                    679:       break;
                    680:     }
                    681:   for ( dc = DC(p); dc; dc = NEXT(dc) )
                    682:     markv(vn,n,COEF(dc));
                    683: }
                    684:
                    685: void vntovl(VN vn,int n,VL *vlp)
                    686: {
                    687:   int i;
                    688:   VL tvl,tvl0;
                    689:
                    690:   for ( i = 0, tvl0 = 0; ; ) {
                    691:     while ( ( i < n ) && ( vn[i].n == 0 ) ) i++;
                    692:     if ( i == n )
                    693:       break;
                    694:     else {
                    695:       if ( !tvl0 ) {
                    696:         NEWVL(tvl0);
                    697:         tvl = tvl0;
                    698:       } else {
                    699:         NEWVL(NEXT(tvl));
                    700:         tvl = NEXT(tvl);
                    701:       }
                    702:       tvl->v = vn[i++].v;
                    703:     }
                    704:   }
                    705:   if ( tvl0 )
                    706:     NEXT(tvl) = 0;
                    707:   *vlp = tvl0;
                    708: }
                    709:
                    710: int dbound(V v,P f)
                    711: {
                    712:   int m,t;
                    713:   DCP dc;
                    714:
                    715:   if ( !f )
                    716:     return ( -1 );
                    717:   else if ( v != VR(f) )
                    718:     return homdeg(f);
                    719:   else {
                    720:     for ( dc = DC(f), m = 0; dc; dc = NEXT(dc) ) {
                    721:       t = homdeg(COEF(dc));
                    722:       m = MAX(m,t);
                    723:     }
                    724:     return ( m );
                    725:   }
                    726: }
                    727:
                    728: int homdeg(P f)
                    729: {
                    730:   int m,t;
                    731:   DCP dc;
                    732:
                    733:   if ( !f )
                    734:     return ( -1 );
                    735:   else if ( NUM(f) )
                    736:     return( 0 );
                    737:   else {
                    738:     for ( dc = DC(f), m = 0; dc; dc = NEXT(dc) ) {
1.2     ! noro      739:       t = ZTOS(DEG(dc))+homdeg(COEF(dc));
1.1       noro      740:       m = MAX(m,t);
                    741:     }
                    742:     return ( m );
                    743:   }
                    744: }
                    745:
                    746: int minhomdeg(P f)
                    747: {
                    748:   int m,t;
                    749:   DCP dc;
                    750:
                    751:   if ( !f )
                    752:     return ( -1 );
                    753:   else if ( NUM(f) )
                    754:     return( 0 );
                    755:   else {
                    756:     for ( dc = DC(f), m = homdeg(f); dc; dc = NEXT(dc) ) {
1.2     ! noro      757:       t = ZTOS(DEG(dc))+minhomdeg(COEF(dc));
1.1       noro      758:       m = MIN(m,t);
                    759:     }
                    760:     return ( m );
                    761:   }
                    762: }
                    763:
                    764: void adjc(VL vl,P f,P a,P lc0,Z q,P *fr,P *ar)
                    765: {
                    766:   Z m,t;
                    767:   P m1;
                    768:
                    769:   invz((Z)LC(f),q,&t);
                    770:   mulz((Z)lc0,t,&m);
                    771:   mulpq(f,(P)m,&m1); cmp(q,m1,fr);
                    772:   invz(m,q,&t);
                    773:   mulpq(a,(P)t,&m1);
                    774:   cmp(q,m1,ar);
                    775: }
                    776:
                    777: void affinemain(VL vl,P p,V v0,int n,P *pl,P *pr)
                    778: {
                    779:   P x,t,m,c,s,a;
                    780:   DCP dc;
                    781:   Z d;
                    782:
                    783:   if ( !p )
                    784:     *pr = 0;
                    785:   else if ( NUM(p) )
                    786:     *pr = p;
                    787:   else if ( VR(p) != v0 ) {
                    788:     MKV(VR(p),x);
                    789:     for ( c = 0, dc = DC(p); dc; dc = NEXT(dc) ) {
                    790:       affinemain(vl,COEF(dc),v0,n,pl,&t);
                    791:       if ( DEG(dc) ) {
                    792:         pwrp(vl,x,DEG(dc),&s); mulp(vl,s,t,&m);
                    793:         addp(vl,m,c,&a); c = a;
                    794:       } else {
                    795:         addp(vl,t,c,&a); c = a;
                    796:       }
                    797:     }
                    798:     *pr = c;
                    799:   } else {
                    800:     dc = DC(p);
                    801:     c = COEF(dc);
                    802:     for ( d = DEG(dc), dc = NEXT(dc);
                    803:       dc; d = DEG(dc), dc = NEXT(dc) ) {
1.2     ! noro      804:         mulp(vl,pl[ZTOS(d)-ZTOS(DEG(dc))],c,&m);
1.1       noro      805:         addp(vl,m,COEF(dc),&c);
                    806:     }
                    807:     if ( d ) {
1.2     ! noro      808:       mulp(vl,pl[ZTOS(d)],c,&m); c = m;
1.1       noro      809:     }
                    810:     *pr = c;
                    811:   }
                    812: }
                    813:
                    814: void restore(VL vl,P f,VN vn,P *fr)
                    815: {
                    816:   int i;
                    817:   P vv,g,g1,t;
                    818:   Z s;
                    819:
                    820:   g = f;
                    821:   for ( i = 0; vn[i].v; i++ ) {
                    822:     MKV(vn[i].v,t);
                    823:     if ( vn[i].n ) {
1.2     ! noro      824:       STOZ(-vn[i].n,s);
1.1       noro      825:       addp(vl,t,(P)s,&vv);
                    826:     } else
                    827:       vv = t;
                    828:
                    829:     substp(vl,g,vn[i].v,vv,&g1); g = g1;
                    830:   }
                    831:   *fr = g;
                    832: }
                    833:
                    834: void mergev(VL vl,VL vl1,VL vl2,VL *nvlp)
                    835: {
                    836:   int i,n;
                    837:   VL tvl;
                    838:   VN vn;
                    839:
                    840:   if ( !vl1 ) {
                    841:     *nvlp = vl2; return;
                    842:   } else if ( !vl2 ) {
                    843:     *nvlp = vl1; return;
                    844:   }
                    845:   for ( i = 0, tvl = vl; tvl; i++, tvl = NEXT(tvl) );
                    846:   n = i;
                    847:   W_CALLOC(n,struct oVN,vn);
                    848:   for ( i = 0, tvl = vl; tvl; tvl = NEXT(tvl), i++ )
                    849:     vn[i].v = tvl->v;
                    850:   for ( i = 0, tvl = vl1; (i < n) && tvl; i++, tvl = NEXT(tvl)) {
                    851:     while ( ( i < n ) && ( vn[i].v != tvl->v ) )
                    852:       i++;
                    853:     if ( i == n )
                    854:       break;
                    855:     else
                    856:       vn[i].n = 1;
                    857:   }
                    858:   for ( i = 0, tvl = vl2; (i < n) && tvl; i++, tvl = NEXT(tvl) ) {
                    859:     while ( ( i < n ) && ( vn[i].v != tvl->v ) )
                    860:       i++;
                    861:     if ( i == n )
                    862:       break;
                    863:     else
                    864:       vn[i].n = 1;
                    865:   }
                    866:   vntovl(vn,n,nvlp);
                    867: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>