[BACK]Return to Fgfs.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2018 / engine

Annotation of OpenXM_contrib2/asir2018/engine/Fgfs.c, Revision 1.2

1.2     ! noro        1: /* $OpenXM: OpenXM_contrib2/asir2018/engine/Fgfs.c,v 1.1 2018/09/19 05:45:06 noro Exp $ */
1.1       noro        2:
                      3: #include "ca.h"
                      4:
                      5: void cont_pp_mv_sf(VL vl,VL rvl,P p,P *c,P *pp);
                      6: void gcdsf_main(VL vl,P *pa,int m,P *r);
                      7: void ugcdsf(P *pa,int m,P *r);
                      8: void head_monomial(VL vl,V v,P p,P *coef,P *term);
                      9: void sqfrsfmain(VL vl,P f,DCP *dcp);
                     10: void pthrootsf(P f,Z m,P *r);
                     11: void partial_sqfrsf(VL vl,V v,P f,P *r,DCP *dcp);
                     12: void gcdsf(VL vl,P *pa,int k,P *r);
                     13: void mfctrsfmain(VL vl, P f, DCP *dcp);
                     14: void next_evaluation_point(int *mev,int n);
                     15: void estimatelc_sf(VL vl,VL rvl,P c,DCP dc,int *mev,P *lcp);
                     16: void mfctrsf_hensel(VL vl,VL rvl,P f,P pp0,P u0,P v0,P lcu,P lcv,int *mev,P *up);
                     17: void substvp_sf(VL vl,VL rvl,P f,int *mev,P *r);
                     18: void shift_sf(VL vl, VL rvl, P f, int *mev, int sgn, P *r);
                     19: void adjust_coef_sf(VL vl,VL rvl,P lcu,P u0,int *mev,P *r);
                     20: void extended_gcd_modyk(P u0,P v0,V x,V y,int dy,P *cu,P *cv);
                     21: void poly_to_gfsn_poly(VL vl,P f,V v,P *r);
                     22: void gfsn_poly_to_poly(VL vl,P f,V v,P *r);
                     23: void poly_to_gfsn_poly_main(P f,V v,P *r);
                     24: void gfsn_poly_to_poly_main(P f,V v,P *r);
                     25: void gfsn_univariate_to_sfbm(P f,int dy,BM *r);
                     26: void sfbm_to_gfsn_univariate(BM f,V x,V y,P *r);
                     27:
                     28: void monomialfctr_sf(VL vl,P p,P *pr,DCP *dcp)
                     29: {
                     30:   VL nvl,avl;
                     31:   Z d;
                     32:   P f,t,s;
                     33:   DCP dc0,dc;
                     34:   Obj obj;
                     35:
                     36:   clctv(vl,p,&nvl);
                     37:   for ( dc0 = 0, avl = nvl, f = p; avl; avl = NEXT(avl) ) {
                     38:     getmindeg(avl->v,f,&d);
                     39:     if ( d ) {
                     40:       MKV(avl->v,t);
                     41:       simp_ff((Obj)t,&obj); t = (P)obj;
                     42:       NEXTDC(dc0,dc); DEG(dc) = d; COEF(dc) = t;
                     43:       pwrp(vl,t,d,&s); divsp(vl,f,s,&t); f = t;
                     44:     }
                     45:   }
                     46:   if ( dc0 )
                     47:     NEXT(dc) = 0;
                     48:   *pr = f; *dcp = dc0;
                     49: }
                     50:
                     51: void lex_lc(P f,P *c)
                     52: {
                     53:   if ( !f || NUM(f) )
                     54:     *c = f;
                     55:   else
                     56:     lex_lc(COEF(DC(f)),c);
                     57: }
                     58:
                     59: DCP append_dc(DCP dc,DCP dct)
                     60: {
                     61:   DCP dcs;
                     62:
                     63:   if ( !dc )
                     64:     return dct;
                     65:   else {
                     66:     for ( dcs = dc; NEXT(dcs); dcs = NEXT(dcs) );
                     67:     NEXT (dcs) = dct;
                     68:     return dc;
                     69:   }
                     70: }
                     71:
                     72: void sqfrsf(VL vl, P f, DCP *dcp)
                     73: {
                     74:   DCP dc,dct;
                     75:   Obj obj;
                     76:   P t,s,c,cont;
                     77:   VL tvl,onevl;
                     78:
                     79:   simp_ff((Obj)f,&obj); f = (P)obj;
                     80:   lex_lc(f,&c); divsp(vl,f,c,&t); f = t;
                     81:   monomialfctr_sf(vl,f,&t,&dc); f = t;
                     82:   clctv(vl,f,&tvl); vl = tvl;
                     83:   NEWVL(onevl); NEXT(onevl)=0;
                     84:   if ( !vl )
                     85:     ;
                     86:   else if ( !NEXT(vl) ) {
                     87:     sfusqfr(f,&dct);
                     88:     dc = append_dc(dc,NEXT(dct));
                     89:   } else {
                     90:     t = f;
                     91:     for ( tvl = vl; tvl; tvl = NEXT(tvl) ) {
                     92:       onevl->v = tvl->v;
                     93:       cont_pp_mv_sf(vl,onevl,t,&cont,&s); t = s;
                     94:       sqfrsf(vl,cont,&dct);
                     95:       dc = append_dc(dc,NEXT(dct));
                     96:     }
                     97:     sqfrsfmain(vl,t,&dct);
                     98:     dc = append_dc(dc,dct);
                     99:   }
                    100:   NEWDC(dct); DEG(dct) = ONE; COEF(dct) = (P)c; NEXT(dct) = dc;
                    101:   *dcp = dct;
                    102: }
                    103:
                    104: void sqfrsfmain(VL vl,P f,DCP *dcp)
                    105: {
                    106:   VL tvl;
                    107:   DCP dc,dct,dcs;
                    108:   P t,s;
                    109:   Z m,m1;
                    110:   V v;
                    111:
                    112:   clctv(vl,f,&tvl); vl = tvl;
                    113:   dc = 0;
                    114:   t = f;
                    115:   for ( tvl = vl; tvl; tvl = NEXT(tvl) ) {
                    116:     v = tvl->v;
                    117:     partial_sqfrsf(vl,v,t,&s,&dct); t = s;
                    118:     dc = append_dc(dc,dct);
                    119:   }
                    120:   if ( !NUM(t) ) {
1.2     ! noro      121:     STOZ(characteristic_sf(),m);
1.1       noro      122:     pthrootsf(t,m,&s);
                    123:     sqfrsfmain(vl,s,&dct);
                    124:     for ( dcs = dct; dcs; dcs = NEXT(dcs) ) {
                    125:       mulz(DEG(dcs),m,&m1); DEG(dcs) = m1;
                    126:     }
                    127:     dc = append_dc(dc,dct);
                    128:   }
                    129:   *dcp = dc;
                    130: }
                    131:
                    132: void pthrootsf(P f,Z m,P *r)
                    133: {
                    134:   DCP dc,dc0,dct;
                    135:   Z qn,rn;
                    136:
                    137:   if ( NUM(f) )
                    138:     pthrootgfs((GFS)f,(GFS *)r);
                    139:   else {
                    140:     dc = DC(f);
                    141:     dc0 = 0;
                    142:     for ( dc0 = 0; dc; dc = NEXT(dc) ) {
                    143:       NEXTDC(dc0,dct);
                    144:       pthrootsf(COEF(dc),m,&COEF(dct));
                    145:       if ( DEG(dc) ) {
                    146:         divqrz(DEG(dc),m,&qn,&rn);
                    147:         if ( rn )
                    148:           error("pthrootsf : cannot happen");
                    149:         DEG(dct) = qn;
                    150:       } else
                    151:         DEG(dct) = 0;
                    152:     }
                    153:     NEXT(dct) = 0;
                    154:     MKP(VR(f),dc0,*r);
                    155:   }
                    156: }
                    157:
                    158: void partial_sqfrsf(VL vl,V v,P f,P *r,DCP *dcp)
                    159: {
                    160:   P ps[2];
                    161:   DCP dc0,dc;
                    162:   int m;
                    163:   P t,flat,flat1,g,df,q;
                    164:
                    165:   diffp(vl,f,v,&df);
                    166:   if ( !df ) {
                    167:     *dcp = 0;
                    168:     *r = f;
                    169:     return;
                    170:   }
                    171:   ps[0] = f; ps[1] = df;
                    172:   gcdsf(vl,ps,2,&g);
                    173:   divsp(vl,f,g,&flat);
                    174:   m = 0;
                    175:   t = f;
                    176:   dc0 = 0;
                    177:   while ( !NUM(flat) ) {
                    178:     while ( divtp(vl,t,flat,&q) ) {
                    179:       t = q; m++;
                    180:     }
                    181:     ps[0] = t; ps[1] = flat;
                    182:     gcdsf(vl,ps,2,&flat1);
                    183:     divsp(vl,flat,flat1,&g);
                    184:     flat = flat1;
                    185:     NEXTDC(dc0,dc);
                    186:     COEF(dc) = g;
1.2     ! noro      187:     STOZ(m,DEG(dc));
1.1       noro      188:   }
                    189:   NEXT(dc) = 0;
                    190:   *dcp = dc0;
                    191:   *r = t;
                    192: }
                    193:
                    194: void gcdsf(VL vl,P *pa,int k,P *r)
                    195: {
                    196:   P *ps,*pl,*pm;
                    197:   P **cp;
                    198:   int *cn;
                    199:   DCP *ml;
                    200:   Obj obj;
                    201:   int i,j,l,m;
                    202:   P mg,mgsf,t;
                    203:   VL avl,nvl,tvl,svl;
                    204:
                    205:   ps = (P *)ALLOCA(k*sizeof(P));
                    206:   for ( i = 0, m = 0; i < k; i++ ) {
                    207:     simp_ff((Obj)pa[i],&obj);
                    208:     if ( obj )
                    209:       ps[m++] = (P)obj;
                    210:   }
                    211:   if ( !m ) {
                    212:     *r = 0;
                    213:     return;
                    214:   }
                    215:   if ( m == 1 ) {
                    216:     *r = ps[0];
                    217:     return;
                    218:   }
                    219:   pl = (P *)ALLOCA(m*sizeof(P));
                    220:   ml = (DCP *)ALLOCA(m*sizeof(DCP));
                    221:   for ( i = 0; i < m; i++ )
                    222:     monomialfctr(vl,ps[i],&pl[i],&ml[i]);
                    223:   gcdmonomial(vl,ml,m,&mg); simp_ff((Obj)mg,&obj); mgsf = (P)obj;
                    224:   for ( i = 0, nvl = vl, avl = 0; nvl && i < m; i++ ) {
                    225:     clctv(vl,pl[i],&tvl);
                    226:     intersectv(nvl,tvl,&svl); nvl = svl;
                    227:     mergev(vl,avl,tvl,&svl); avl = svl;
                    228:   }
                    229:   if ( !nvl ) {
                    230:     *r = mgsf;
                    231:     return;
                    232:   }
                    233:   if ( !NEXT(avl) ) {
                    234:     ugcdsf(pl,m,&t);
                    235:     mulp(vl,mgsf,t,r);
                    236:     return;
                    237:   }
                    238:   for ( tvl = nvl, i = 0; tvl; tvl = NEXT(tvl), i++ );
                    239:   for ( tvl = avl, j = 0; tvl; tvl = NEXT(tvl), j++ );
                    240:   if ( i == j ) {
                    241:     /* all the pl[i]'s have the same variables */
                    242:     gcdsf_main(avl,pl,m,&t);
                    243:   } else {
                    244:     cp = (P **)ALLOCA(m*sizeof(P *));
                    245:     cn = (int *)ALLOCA(m*sizeof(int));
                    246:     for ( i = 0; i < m; i++ ) {
                    247:       cp[i] = (P *)ALLOCA(lengthp(pl[i])*sizeof(P));
                    248:       cn[i] = pcoef(vl,nvl,pl[i],cp[i]);
                    249:     }
                    250:     for ( i = j = 0; i < m; i++ )
                    251:       j += cn[i];
                    252:     pm = (P *)ALLOCA(j*sizeof(P));
                    253:     for ( i = l = 0; i < m; i++ )
                    254:       for ( j = 0; j < cn[i]; j++ )
                    255:         pm[l++] = cp[i][j];
                    256:     gcdsf(vl,pm,l,&t);
                    257:   }
                    258:   mulp(vl,mgsf,t,r);
                    259: }
                    260:
                    261: /* univariate gcd */
                    262:
                    263: void ugcdsf(P *pa,int m,P *r)
                    264: {
                    265:   P *ps;
                    266:   int i;
                    267:   UM w1,w2,w3,w;
                    268:   int d;
                    269:   V v;
                    270:
                    271:   if ( m == 1 ) {
                    272:     *r = pa[0];
                    273:     return;
                    274:   }
                    275:   for ( i = 0; i < m; i++ )
                    276:     if ( NUM(pa[i]) ) {
                    277:       itogfs(1,(GFS *)r);
                    278:       return;
                    279:     }
                    280:   ps = (P *)ALLOCA(m*sizeof(P));
                    281:   sort_by_deg(m,pa,ps);
                    282:   v = VR(ps[m-1]);
                    283:   d = getdeg(v,ps[m-1]);
                    284:   w1 = W_UMALLOC(d);
                    285:   w2 = W_UMALLOC(d);
                    286:   w3 = W_UMALLOC(d);
                    287:   ptosfum(ps[0],w1);
                    288:   for ( i = 1; i < m; i++ ) {
                    289:     ptosfum(ps[i],w2);
                    290:     gcdsfum(w1,w2,w3);
                    291:     w = w1; w1 = w3; w3 = w;
                    292:     if ( !DEG(w1) ) {
                    293:       itogfs(1,(GFS *)r);
                    294:       return;
                    295:     }
                    296:   }
                    297:   sfumtop(v,w1,r);
                    298: }
                    299:
                    300: /* deg(HT(p),v), where p is considered as distributed poly over F[v] */
                    301: int gethdeg(VL vl,V v,P p)
                    302: {
                    303:   DCP dc;
                    304:   Z dmax;
                    305:   P cmax;
                    306:
                    307:   if ( !p )
                    308:     return -1;
                    309:   else if ( NUM(p) )
                    310:     return 0;
                    311:   else if ( VR(p) != v )
                    312:     /* HT(p) = HT(lc(p))*x^D */
                    313:     return gethdeg(vl,v,COEF(DC(p)));
                    314:   else {
                    315:     /* VR(p) = v */
                    316:     dc = DC(p); dmax = DEG(dc); cmax = COEF(dc);
                    317:     for ( dc = NEXT(dc); dc; dc = NEXT(dc) )
                    318:       if ( compp(vl,COEF(dc),cmax) > 0 ) {
                    319:         dmax = DEG(dc); cmax = COEF(dc);
                    320:       }
1.2     ! noro      321:     return ZTOS(dmax);
1.1       noro      322:   }
                    323: }
                    324:
                    325: /* all the pa[i]'s have the same variables (=vl) */
                    326:
                    327: void gcdsf_main(VL vl,P *pa,int m,P *r)
                    328: {
                    329:   int nv,i,i0,imin,d,d0,d1,d2,dmin,index;
                    330:   V v,v0,vmin;
                    331:   VL tvl,nvl,rvl,nvl0,rvl0;
                    332:   P *pc, *ps, *ph,*lps;
                    333:   P x,t,cont,hg,g,hm,mod,s;
                    334:   P hge,ge,ce,he,u,cof1e,mode,mod1,adj,cof1,coadj,q;
                    335:   GFS sf;
                    336:
                    337:   for ( nv = 0, tvl = vl; tvl; tvl = NEXT(tvl), nv++);
                    338:   if ( nv == 1 ) {
                    339:     ugcdsf(pa,m,r);
                    340:     return;
                    341:   }
                    342:   /* find v s.t. min(deg(pa[i],v)+gethdeg(pa[i],v)) is minimal */
                    343:   tvl = vl;
                    344:   do {
                    345:     v = tvl->v;
                    346:     i = 0;
                    347:     do {
                    348:       d = getdeg(v,pa[i])+gethdeg(vl,v,pa[i]);
                    349:       if ( i == 0 || (d < d0) ) {
                    350:         d0 = d; i0 = i; v0 = v;
                    351:       }
                    352:     } while ( ++i < m );
                    353:     if ( tvl == vl || (d0 < dmin) ) {
                    354:       dmin = d0; imin = i0; vmin = v0;
                    355:     }
                    356:   } while ( (tvl = NEXT(tvl)) != 0 );
                    357:
                    358:   /* reorder variables so that vmin is the last variable */
                    359:   for ( nvl0 = 0, rvl0 = 0, tvl = vl; tvl; tvl = NEXT(tvl) )
                    360:     if ( tvl->v != vmin ) {
                    361:       NEXTVL(nvl0,nvl); nvl->v = tvl->v;
                    362:       NEXTVL(rvl0,rvl); rvl->v = tvl->v;
                    363:     }
                    364:   /* rvl = remaining variables */
                    365:   NEXT(rvl) = 0; rvl = rvl0;
                    366:   /* nvl = ...,vmin */
                    367:   NEXTVL(nvl0,nvl); nvl->v = vmin; NEXT(nvl) = 0; nvl = nvl0;
                    368:   MKV(vmin,x);
                    369:
                    370:   /* for content and primitive part */
                    371:   pc = (P *)ALLOCA(m*sizeof(P));
                    372:   ps = (P *)ALLOCA(m*sizeof(P));
                    373:   ph = (P *)ALLOCA(m*sizeof(P));
                    374:   /* separate the contents */
                    375:   for ( i = 0; i < m; i++ ) {
                    376:     reorderp(nvl,vl,pa[i],&t);
                    377:     cont_pp_mv_sf(nvl,rvl,t,&pc[i],&ps[i]);
                    378:     head_monomial(nvl,vmin,ps[i],&ph[i],&t);
                    379:   }
                    380:   ugcdsf(pc,m,&cont);
                    381:   ugcdsf(ph,m,&hg);
                    382:
                    383:   /* for hg*pp (used in check phase) */
                    384:   lps = (P *)ALLOCA(m*sizeof(P));
                    385:   for ( i = 0; i < m; i++ )
                    386:     mulp(nvl,hg,ps[i],&lps[i]);
                    387:
                    388:   while ( 1 ) {
                    389:     g = 0;
                    390:     cof1 = 0;
                    391:     hm = 0;
                    392:     itogfs(1,(GFS *)&mod);
                    393:     index = 0;
                    394:     for ( index = 0; getdeg(vmin,mod) <= d+1; index++ ) {
                    395:       /* evaluation pt */
                    396:       indextogfs(index,(GFS *)&s);
                    397:       substp(nvl,hg,vmin,s,&hge);
                    398:       if ( !hge )
                    399:         continue;
                    400:       for ( i = 0; i < m; i++ )
                    401:         substp(nvl,ps[i],vmin,s,&ph[i]);
                    402:       /* ge = GCD(ps[0]|x=s,...,ps[m-1]|x=s) */
                    403:       gcdsf(nvl,ph,m,&ge);
                    404:       head_monomial(nvl,vmin,ge,&ce,&he);
                    405:       if ( NUM(he) ) {
                    406:         *r = cont;
                    407:         return;
                    408:       }
                    409:       divgfs((GFS)hge,(GFS)ce,&sf); t = (P)sf;
                    410:       mulp(nvl,t,ge,&u); ge = u;
                    411:       divsp(nvl,ph[imin],ge,&t); mulp(nvl,hge,t,&cof1e);
                    412:       /* hm=0 : reset; he==hm : lucky */
                    413:       if ( !hm || !compp(nvl,he,hm) ) {
                    414:         substp(nvl,mod,vmin,s,&mode); divsp(nvl,mod,mode,&mod1);
                    415:         /* adj = mod/(mod|x=s)*(ge-g|x=s) */
                    416:         substp(nvl,g,vmin,s,&t);
                    417:         subp(nvl,ge,t,&u); mulp(nvl,mod1,u,&adj);
                    418:         /* coadj = mod/(mod|vmin=s)*(cof1e-cof1e|vmin=s) */
                    419:         substp(nvl,cof1,vmin,s,&t);
                    420:         subp(nvl,cof1e,t,&u); mulp(nvl,mod1,u,&coadj);
                    421:         if ( !adj ) {
                    422:           /* adj == gcd ? */
                    423:           for ( i = 0; i < m; i++ )
                    424:             if ( !divtp(nvl,lps[i],g,&t) )
                    425:               break;
                    426:           if ( i == m ) {
                    427:             cont_pp_mv_sf(nvl,rvl,g,&t,&u);
                    428:             mulp(nvl,cont,u,&t);
                    429:             reorderp(vl,nvl,t,r);
                    430:             return;
                    431:           }
                    432:         } else if ( !coadj ) {
                    433:           /* ps[imin]/coadj == gcd ? */
                    434:           if ( divtp(nvl,lps[imin],cof1,&q) ) {
                    435:             for ( i = 0; i < m; i++ )
                    436:               if ( !divtp(nvl,lps[i],q,&t) )
                    437:                 break;
                    438:             if ( i == m ) {
                    439:               cont_pp_mv_sf(nvl,rvl,q,&t,&u);
                    440:               mulp(nvl,cont,u,&t);
                    441:               reorderp(vl,nvl,t,r);
                    442:               return;
                    443:             }
                    444:           }
                    445:         }
                    446:         addp(nvl,g,adj,&t); g = t;
                    447:         addp(nvl,cof1,coadj,&t); cof1 = t;
                    448:         subp(nvl,x,s,&t); mulp(nvl,mod,t,&u); mod = u;
                    449:         hm = he;
                    450:       } else {
                    451:         d1 = homdeg(hm); d2 = homdeg(he);
                    452:         if ( d1 < d2 ) /* we use current hm */
                    453:           continue;
                    454:         else if ( d1 > d2 ) {
                    455:           /* use he */
                    456:           g = ge;
                    457:           cof1 = cof1e;
                    458:           hm = he;
                    459:           subp(nvl,x,s,&mod);
                    460:         } else {
                    461:           /* d1==d2, but hm!=he => both are unlucky */
                    462:           g = 0;
                    463:           cof1 = 0;
                    464:           itogfs(1,(GFS *)&mod);
                    465:         }
                    466:       }
                    467:     }
                    468:   }
                    469: }
                    470:
                    471: void head_monomial(VL vl,V v,P p,P *coef,P *term)
                    472: {
                    473:   P t,s,u;
                    474:   DCP dc;
                    475:   GFS one;
                    476:
                    477:   itogfs(1,&one);
                    478:   t = (P)one;
                    479:   while ( 1 ) {
                    480:     if ( NUM(p) || VR(p) == v ) {
                    481:       *coef = p;
                    482:       *term = t;
                    483:       return;
                    484:     } else {
                    485:       NEWDC(dc);
                    486:       COEF(dc) = (P)one; DEG(dc) = DEG(DC(p));
                    487:       MKP(VR(p),dc,s);
                    488:       mulp(vl,t,s,&u); t = u;
                    489:       p = COEF(DC(p));
                    490:     }
                    491:   }
                    492: }
                    493:
                    494: void cont_pp_mv_sf(VL vl,VL rvl,P p,P *c,P *pp)
                    495: {
                    496:   DP dp;
                    497:   MP t;
                    498:   int i,m;
                    499:   P *ps;
                    500:   struct order_spec *spec, *currentspec;
                    501:   extern struct order_spec *dp_current_spec;
                    502:
                    503:   currentspec = dp_current_spec;
                    504:   create_order_spec(0,0,&spec);
                    505:   initd(spec);
                    506:   ptod(vl,rvl,p,&dp);
                    507:   for ( t = BDY(dp), m = 0; t; t = NEXT(t), m++ );
                    508:   ps = (P *)ALLOCA(m*sizeof(P));
                    509:   for ( t = BDY(dp), i = 0; t; t = NEXT(t), i++ )
                    510:     ps[i] = (P)C(t);
                    511:   gcdsf(vl,ps,m,c);
                    512:   divsp(vl,p,*c,pp);
                    513:   initd(currentspec);
                    514: }
                    515:
                    516: void mfctrsf(VL vl, P f, DCP *dcp)
                    517: {
                    518:   DCP dc0,dc,dct,dcs,dcr;
                    519:   Obj obj;
                    520:
                    521:   simp_ff((Obj)f,&obj); f = (P)obj;
                    522:   sqfrsf(vl,f,&dct);
                    523:   dc = dc0 = dct; dct = NEXT(dct); NEXT(dc) = 0;
                    524:   for ( ; dct; dct = NEXT(dct) ) {
                    525:     mfctrsfmain(vl,COEF(dct),&dcs);
                    526:     for ( dcr = dcs; dcr; dcr = NEXT(dcr) )
                    527:       DEG(dcr) = DEG(dct);
                    528:     for ( ; NEXT(dc); dc = NEXT(dc) );
                    529:     NEXT(dc) = dcs;
                    530:   }
                    531:   *dcp = dc0;
                    532: }
                    533:
                    534: /* f : sqfr, non const */
                    535:
                    536: void mfctrsfmain(VL vl, P f, DCP *dcp)
                    537: {
                    538:   VL tvl,nvl,rvl;
                    539:   DCP dc,dc0,dc1,dc2,dct,lcfdc,dcs;
                    540:   int imin,inext,i,j,n,k,np;
                    541:   int *da;
                    542:   V vx,vy;
                    543:   V *va;
                    544:   P *l,*tl;
                    545:   P gcd,g,df,dfmin;
                    546:   P pa[2];
                    547:   P f0,pp0,spp0,c,c0,x,y,u,v,lcf,lcu,lcv,u0,v0,t,s;
                    548:   P ype,yme,fin;
                    549:   GFS ev,evy;
                    550:   P *fp0;
                    551:   int *mev,*win;
                    552:
                    553:   clctv(vl,f,&tvl); vl = tvl;
                    554:   if ( !vl )
                    555:     error("mfctrsfmain : cannot happen");
                    556:   if ( !NEXT(vl) ) {
                    557:     /* univariate */
                    558:     ufctrsf(f,&dc);
                    559:     /* remove lc */
                    560:     *dcp = NEXT(dc);
                    561:     return;
                    562:   }
                    563:   for ( n = 0, tvl = vl; tvl; tvl = NEXT(tvl), n++ );
                    564:   va = (V *)ALLOCA(n*sizeof(V));
                    565:   da = (int *)ALLOCA(n*sizeof(int));
                    566:   /* find v s.t. diff(f,v) is nonzero and deg(f,v) is minimal */
                    567:   imin = -1;
                    568:   for ( i = 0, tvl = vl; i < n; tvl = NEXT(tvl), i++ ) {
                    569:     va[i] = tvl->v;
                    570:     da[i] = getdeg(va[i],f);
                    571:     diffp(vl,f,va[i],&df);
                    572:     if ( !df )
                    573:       continue;
                    574:     if ( imin < 0 || da[i] < da[imin] ) {
                    575:       dfmin = df;
                    576:       imin = i;
                    577:     }
                    578:   }
                    579:   /* find v1 neq v s.t. deg(f,v) is minimal */
                    580:   inext = -1;
                    581:   for ( i = 0; i < n; i++ ) {
                    582:     if ( i == imin )
                    583:       continue;
                    584:     if ( inext < 0 || da[i] < da[inext] )
                    585:       inext = i;
                    586:   }
                    587:   pa[0] = f;
                    588:   pa[1] = dfmin;
                    589:   gcdsf(vl,pa,2,&gcd);
                    590:   if ( !NUM(gcd) ) {
                    591:     /* f = gcd * f/gcd */
                    592:     mfctrsfmain(vl,gcd,&dc1);
                    593:     divsp(vl,f,gcd,&g);
                    594:     mfctrsfmain(vl,g,&dc2);
                    595:     for ( dct = dc1; NEXT(dct); dct = NEXT(dct) );
                    596:     NEXT(dct) = dc2;
                    597:     *dcp = dc1;
                    598:     return;
                    599:   }
                    600:   /* create vl s.t. vl[0] = va[imin], vl[1] = va[inext] */
                    601:   nvl = 0;
                    602:   NEXTVL(nvl,tvl); tvl->v = va[imin];
                    603:   NEXTVL(nvl,tvl); tvl->v = va[inext];
                    604:   for ( i = 0; i < n; i++ ) {
                    605:     if ( i == imin || i == inext )
                    606:       continue;
                    607:     NEXTVL(nvl,tvl); tvl->v = va[i];
                    608:   }
                    609:   NEXT(tvl) = 0;
                    610:
                    611:   fin = f;
                    612:   reorderp(nvl,vl,f,&g); f = g;
                    613:   vx = nvl->v;
                    614:   vy = NEXT(nvl)->v;
                    615:   MKV(vx,x);
                    616:   MKV(vy,y);
                    617:   /* remaining variables */
                    618:   rvl = NEXT(NEXT(nvl));
                    619:   if ( !rvl ) {
                    620:     /* bivariate */
                    621:     sfbfctr(f,vx,vy,getdeg(vx,f),&dc1);
                    622:     for ( dc0 = 0; dc1; dc1 = NEXT(dc1) ) {
                    623:       NEXTDC(dc0,dc);
                    624:       DEG(dc) = ONE;
                    625:       reorderp(vl,nvl,COEF(dc1),&COEF(dc));
                    626:     }
                    627:     NEXT(dc) = 0;
                    628:     *dcp = dc0;
                    629:     return;
                    630:   }
                    631:   /* n >= 3;  nvl = (vx,vy,X) */
                    632:   /* find good evaluation pt for X */
                    633:   mev = (int *)CALLOC(n-2,sizeof(int));
                    634:   while ( 1 ) {
                    635:     /* lcf(mev)=0 => invalid */
                    636:     substvp_sf(nvl,rvl,COEF(DC(f)),mev,&t);
                    637:     if ( t ) {
                    638:       substvp_sf(nvl,rvl,f,mev,&f0);
                    639:       pa[0] = f0;
                    640:       diffp(nvl,f0,vx,&pa[1]);
                    641:       if ( pa[1] ) {
                    642:         gcdsf(nvl,pa,2,&gcd);
                    643:       /* XXX maybe we have to accept the case where gcd is a poly of y */
                    644:         if ( NUM(gcd) )
                    645:           break;
                    646:       }
                    647:     }
                    648:     /* XXX if generated indices exceed q of GF(q) => error in indextogfs */
                    649:     next_evaluation_point(mev,n-2);
                    650:   }
                    651:   /* f0 = f(x,y,mev) */
                    652:   /* separate content; f0 may have the content wrt x */
                    653:   cont_pp_sfp(nvl,f0,&c0,&pp0);
                    654:
                    655:   /* factorize pp0; pp0 = pp0(x,y+evy) = prod dc */
                    656:   sfbfctr_shift(pp0,vx,vy,getdeg(vx,pp0),&evy,&spp0,&dc); pp0 = spp0;
                    657:
                    658:   if ( !NEXT(dc) ) {
                    659:     /* f is irreducible */
                    660:     NEWDC(dc); DEG(dc) = ONE; COEF(dc) = fin; NEXT(dc) = 0;
                    661:     *dcp = dc;
                    662:     return;
                    663:   }
                    664:   /* ype = y+evy, yme = y-evy */
                    665:   addp(nvl,y,(P)evy,&ype); subp(nvl,y,(P)evy,&yme);
                    666:
                    667:   /* shift c0; c0 <- c0(y+evy) */
                    668:   substp(nvl,c0,vy,ype,&s); c0 = s;
                    669:
                    670:   /* shift f; f <- f(y+evy) */
                    671:   substp(nvl,f,vy,ype,&s); f = s;
                    672:
                    673:   /* now f(x,0,mev) = c0 * prod dc */
                    674:
                    675:   /* factorize lc_x(f) */
                    676:   lcf = COEF(DC(f));
                    677:   mfctrsf(nvl,lcf,&dct);
                    678:   /* skip the first element (= a number) */
                    679:   lcfdc = NEXT(dct);
                    680:
                    681:   /* np = number of bivariate factors */
                    682:   for ( np = 0, dct = dc; dct; dct = NEXT(dct), np++ );
                    683:   fp0 = (P *)ALLOCA((np+1)*sizeof(P));
                    684:   for ( i = 0, dct = dc; i < np; dct = NEXT(dct), i++ )
                    685:     fp0[i] = COEF(dct);
                    686:   fp0[np] = 0;
                    687:   l = tl = (P *)ALLOCA((np+1)*sizeof(P));
                    688:   win = W_ALLOC(np+1);
                    689:
                    690:   for ( k = 1, win[0] = 1, --np; ; ) {
                    691:     itogfs(1,(GFS *)&u0);
                    692:     /* u0 = product of selected factors */
                    693:     for ( i = 0; i < k; i++ ) {
                    694:       mulp(nvl,u0,fp0[win[i]],&t); u0 = t;
                    695:     }
                    696:     /* we have to consider the content */
                    697:     /* f0 = c0*u0*v0 */
                    698:     mulp(nvl,LC(u0),c0,&c); estimatelc_sf(nvl,rvl,c,lcfdc,mev,&lcu);
                    699:     divsp(nvl,pp0,u0,&v0);
                    700:     mulp(nvl,LC(v0),c0,&c); estimatelc_sf(nvl,rvl,c,lcfdc,mev,&lcv);
                    701:     mfctrsf_hensel(nvl,rvl,f,pp0,u0,v0,lcu,lcv,mev,&u);
                    702:     if ( u ) {
                    703:       /* save the factor */
                    704:       reorderp(vl,nvl,u,&t);
                    705:       /* y -> y-evy */
                    706:       substp(vl,t,vy,yme,tl++);
                    707:
                    708:       /* update f,pp0 */
                    709:       divsp(nvl,f,u,&t); f = t;
                    710:       divsp(nvl,pp0,u0,&t); pp0 = t;
                    711:       /* update win, fp0 */
                    712:       for ( i = 0; i < k-1; i++ )
                    713:       for ( j = win[i]+1; j < win[i+1]; j++ )
                    714:         fp0[j-i-1] = fp0[j];
                    715:       for ( j = win[k-1]+1; j <= np; j++ )
                    716:           fp0[j-k] = fp0[j];
                    717:       if ( ( np -= k ) < k ) break;
                    718:       if ( np-win[0]+1 < k )
                    719:         if ( ++k <= np ) {
                    720:           for ( i = 0; i < k; i++ )
                    721:             win[i] = i + 1;
                    722:           continue;
                    723:         } else
                    724:           break;
                    725:       else
                    726:         for ( i = 1; i < k; i++ )
                    727:           win[i] = win[0] + i;
                    728:     } else {
                    729:       if ( ncombi(1,np,k,win) == 0 ) {
                    730:         if ( k == np ) break;
                    731:         else
                    732:           for ( i = 0, ++k; i < k; i++ )
                    733:             win[i] = i + 1;
                    734:       }
                    735:     }
                    736:   }
                    737:   reorderp(vl,nvl,f,&t);
                    738:   /* y -> y-evy */
                    739:   substp(vl,t,vy,yme,tl++);
                    740:   *tl = 0;
                    741:   for ( dc0 = 0, i = 0; l[i]; i++ ) {
                    742:     NEXTDC(dc0,dc); DEG(dc) = ONE; COEF(dc) = l[i];
                    743:   }
                    744:   NEXT(dc) = 0; *dcp = dc0;
                    745: }
                    746:
                    747: void next_evaluation_point(int *e,int n)
                    748: {
                    749:   int i,t,j;
                    750:
                    751:   for ( i = n-1; i >= 0; i-- )
                    752:     if ( e[i] ) break;
                    753:   if ( i < 0 ) e[n-1] = 1;
                    754:   else if ( i == 0 ) {
                    755:     t = e[0]; e[0] = 0; e[n-1] = t+1;
                    756:   } else {
                    757:     e[i-1]++; t = e[i];
                    758:     for ( j = i; j < n-1; j++ )
                    759:       e[j] = 0;
                    760:     e[n-1] = t-1;
                    761:   }
                    762: }
                    763:
                    764: /*
                    765:  * dc : f1^E1*...*fk^Ek
                    766:  * find e1,...,ek s.t. fi(mev)^ei | c
                    767:  * and return f1^e1*...*fk^ek
                    768:  * vl = (vx,vy,rvl)
                    769:  */
                    770:
                    771: void estimatelc_sf(VL vl,VL rvl,P c,DCP dc,int *mev,P *lcp)
                    772: {
                    773:   DCP dct;
                    774:   P r,c1,c2,t,s,f;
                    775:   int i,d;
                    776:   Z q;
                    777:
                    778:   for ( dct = dc, r = (P)ONE; dct; dct = NEXT(dct) ) {
                    779:     if ( NUM(COEF(dct)) )
                    780:       continue;
                    781:     /* constant part */
                    782:     substvp_sf(vl,rvl,COEF(dct),mev,&f);
1.2     ! noro      783:     d = ZTOS(DEG(dct));
1.1       noro      784:     for ( i = 0, c1 = c; i < d; i++ )
                    785:       if ( !divtp(vl,c1,f,&c2) )
                    786:         break;
                    787:       else
                    788:         c1 = c2;
                    789:     if ( i ) {
1.2     ! noro      790:       STOZ(i,q);
1.1       noro      791:       pwrp(vl,COEF(dct),q,&s); mulp(vl,r,s,&t); r = t;
                    792:     }
                    793:   }
                    794:   *lcp = r;
                    795: }
                    796:
                    797: void substvp_sf(VL vl,VL rvl,P f,int *mev,P *r)
                    798: {
                    799:   int i;
                    800:   VL tvl;
                    801:   P g,t;
                    802:   GFS ev;
                    803:
                    804:   for ( g = f, i = 0, tvl = rvl; tvl; tvl = NEXT(tvl), i++ ) {
                    805:     if ( !mev )
                    806:       ev = 0;
                    807:     else
                    808:       indextogfs(mev[i],&ev);
                    809:     substp(vl,g,tvl->v,(P)ev,&t); g = t;
                    810:   }
                    811:   *r = g;
                    812: }
                    813:
                    814: /*
                    815:  * f <- f(X+sgn*mev)
                    816:  */
                    817:
                    818: void shift_sf(VL vl, VL rvl, P f, int *mev, int sgn, P *r)
                    819: {
                    820:   VL tvl;
                    821:   int i;
                    822:   P x,g,t,s;
                    823:   GFS ev;
                    824:
                    825:   for ( g = f, tvl = rvl, i = 0; tvl; tvl = NEXT(tvl), i++ ) {
                    826:     if ( !mev[i] )
                    827:       continue;
                    828:     indextogfs(mev[i],&ev);
                    829:     MKV(tvl->v,x);
                    830:     if ( sgn > 0 )
                    831:       addp(vl,x,(P)ev,&t);
                    832:     else
                    833:       subp(vl,x,(P)ev,&t);
                    834:     substp(vl,g,tvl->v,t,&s); g = s;
                    835:   }
                    836:   *r = g;
                    837: }
                    838:
                    839: /*
                    840:  * pp(f(0)) = u0*v0
                    841:  */
                    842:
                    843: void mfctrsf_hensel(VL vl,VL rvl,P f,P pp0,P u0,P v0,P lcu,P lcv,int *mev,P *up)
                    844: {
                    845:   VL tvl,onevl;
                    846:   P t,s,w,u,v,ff,si,wu,wv,fj,cont;
                    847:   UM ydy;
                    848:   V vx,vy;
                    849:   int dy,n,i,dbd,nv,j;
                    850:   int *md;
                    851:   P *uh,*vh;
                    852:   P x,du0,dv0,m,q,r,fin;
                    853:   P *cu,*cv;
                    854:   GFSN inv;
                    855:
                    856:   /* check the validity of lc's and adjust coeffs */
                    857:   /* f                -> lcu*lcv*x^(m+l)+... */
                    858:   mulp(vl,lcu,lcv,&t);
                    859:   if ( !divtp(vl,t,LC(f),&m) ) {
                    860:     *up = 0; return;
                    861:   }
                    862:   mulp(vl,m,f,&t); f = t;
                    863:   /* u0 = am x^m+ ... -> lcu*x^m + a(m-1)*(lcu(mev)/am)*x^(m-1)+... */
                    864:   /* v0 = bm x^l+ ... -> lcv*x^l + b(l-1)*(lcv(mev)/bl)*x^(l-1)+... */
                    865:   adjust_coef_sf(vl,rvl,lcu,u0,mev,&u);
                    866:   adjust_coef_sf(vl,rvl,lcv,v0,mev,&v);
                    867:
                    868:   /* f <- f(X+mev), u <- u(X+mev), v <- v(X+mev) */
                    869:   fin = f;
                    870:   shift_sf(vl,rvl,f,mev,1,&s); f = s;
                    871:   shift_sf(vl,rvl,u,mev,1,&s); u = s;
                    872:   shift_sf(vl,rvl,v,mev,1,&s); v = s;
                    873:
                    874:   vx = vl->v; vy = NEXT(vl)->v;
                    875:   n = getdeg(vx,f);
                    876:   dy = getdeg(vy,f)+1;
                    877:   MKV(vx,x);
                    878:   cu = (P *)ALLOCA((n+1)*sizeof(P));
                    879:   cv = (P *)ALLOCA((n+1)*sizeof(P));
                    880:
                    881:   /* ydy = y^dy */
                    882:   ydy = C_UMALLOC(dy); DEG(ydy) = dy; COEF(ydy)[dy] = _onesf();
                    883:   setmod_gfsn(ydy);
                    884:
                    885:   /* (R[y]/(y^dy))[x,X] */
                    886:   poly_to_gfsn_poly(vl,f,vy,&ff);
                    887:   poly_to_gfsn_poly(vl,u,vy,&t); u = t;
                    888:   poly_to_gfsn_poly(vl,v,vy,&t); v = t;
                    889:   substvp_sf(vl,rvl,u,0,&u0);
                    890:   substvp_sf(vl,rvl,v,0,&v0);
                    891:
                    892:   /* compute a(x,y), b(x,y) s.t. a*u0+b*v0 = 1 mod y^dy */
                    893:   extended_gcd_modyk(u0,v0,vx,vy,dy,&cu[0],&cv[0]);
                    894:
                    895:   /* dv0 = LC(v0)^(-1)*v0 mod y^dy */
                    896:   invgfsn((GFSN)LC(v0),&inv); mulp(vl,v0,(P)inv,&dv0);
                    897:
                    898:   /* cu[i]*u0+cv[i]*v0 = x^i mod y^dy */
                    899:   /* (x*cu[i])*u0+(x*cv[i])*v0 = x^(i+1) */
                    900:   /* x*cu[i] = q*dv0+r => cu[i+1] = r */
                    901:   /* cv[i+1]*v0 = x*cv[i]*v0+q*u0*dv0 = (x*cv[i]+q*u0*inv)*v0 */
                    902:   for ( i = 1; i <= n; i++ ) {
                    903:     mulp(vl,x,cu[i-1],&m); divsrp(vl,m,dv0,&q,&cu[i]);
                    904:     mulp(vl,x,cv[i-1],&m); mulp(vl,q,(P)inv,&t);
                    905:     mulp(vl,t,u0,&s);
                    906:     addp(vl,m,s,&cv[i]);
                    907:   }
                    908:
                    909: #if 0
                    910:   /* XXX : check */
                    911:   for ( i = 0; i <= n; i++ ) {
                    912:     mulp(vl,cu[i],u0,&m); mulp(vl,cv[i],v0,&s);
                    913:     addp(vl,m,s,&w);
                    914:     printexpr(vl,w);
                    915:     fprintf(asir_out,"\n");
                    916:   }
                    917: #endif
                    918:
                    919:   dbd = dbound(vx,f)+1;
                    920:
                    921:   /* extract homogeneous parts */
                    922:   W_CALLOC(dbd,P,uh); W_CALLOC(dbd,P,vh);
                    923:   for ( i = 0; i <= dbd; i++ ) {
                    924:     exthpc(vl,vx,u,i,&uh[i]); exthpc(vl,vx,v,i,&vh[i]);
                    925:   }
                    926:
                    927:   /* register degrees in each variables */
                    928:   for ( nv = 0, tvl = rvl; tvl; tvl = NEXT(tvl), nv++ );
                    929:   md = (int *)ALLOCA(nv*sizeof(int));
                    930:   for ( i = 0, tvl = rvl; i < nv; tvl = NEXT(tvl), i++ )
                    931:     md[i] = getdeg(tvl->v,f);
                    932:
                    933:   /* XXX for removing content of factor wrt vx */
                    934:   NEWVL(onevl); onevl->v = vx; NEXT(onevl) = 0;
                    935:
                    936:   for ( j = 1; j <= dbd; j++ ) {
                    937:     for ( i = 0, tvl = rvl; i < nv; tvl = NEXT(tvl), i++ )
                    938:       if ( getdeg(tvl->v,u)+getdeg(tvl->v,v) > md[i] ) {
                    939:         *up = 0;
                    940:         return;
                    941:       }
                    942:     for ( i = 0, t = 0; i <= j; i++ ) {
                    943:       mulp(vl,uh[i],vh[j-i],&s); addp(vl,s,t,&w); t = w;
                    944:     }
                    945:
                    946:     /* s = degree j part of (f-uv) */
                    947:     exthpc(vl,vx,ff,j,&fj); subp(vl,fj,t,&s);
                    948:     for ( i = 0, wu = 0, wv = 0; i <= n; i++ ) {
                    949:       if ( !s )
                    950:         si = 0;
                    951:       else if ( VR(s) == vx )
                    952:         coefp(s,i,&si);
                    953:       else if ( i == 0 )
                    954:         si = s;
                    955:       else
                    956:         si = 0;
                    957:       if ( si ) {
                    958:         mulp(vl,si,cv[i],&m); addp(vl,wu,m,&t); wu = t;
                    959:         mulp(vl,si,cu[i],&m); addp(vl,wv,m,&t); wv = t;
                    960:       }
                    961:     }
                    962:     if ( !wu ) {
                    963:       gfsn_poly_to_poly(vl,u,vy,&t);
                    964:       shift_sf(vl,rvl,t,mev,-1,&s);
                    965:       if ( divtp(vl,fin,s,&q) ) {
                    966:         cont_pp_mv_sf(vl,onevl,s,&cont,up);
                    967:         return;
                    968:       }
                    969:     }
                    970:     if ( !wv ) {
                    971:       gfsn_poly_to_poly(vl,v,vy,&t);
                    972:       shift_sf(vl,rvl,t,mev,-1,&s);
                    973:       if ( divtp(vl,fin,s,&q) ) {
                    974:         cont_pp_mv_sf(vl,onevl,q,&cont,up);
                    975:         return;
                    976:       }
                    977:     }
                    978:     addp(vl,u,wu,&t); u = t;
                    979:     addp(vl,uh[j],wu,&t); uh[j] = t;
                    980:     addp(vl,v,wv,&t); v = t;
                    981:     addp(vl,vh[j],wv,&t); vh[j] = t;
                    982:   }
                    983:   gfsn_poly_to_poly(vl,u,vy,&t);
                    984:   shift_sf(vl,rvl,t,mev,-1,&s);
                    985:   if ( divtp(vl,fin,s,&q) )
                    986:     cont_pp_mv_sf(vl,onevl,s,&cont,up);
                    987:   else
                    988:     *up = 0;
                    989: }
                    990:
                    991: void adjust_coef_sf(VL vl,VL rvl,P lcu,P u0,int *mev,P *r)
                    992: {
                    993:   P lcu0,cu;
                    994:   DCP dc0,dcu,dc;
                    995:
                    996:   substvp_sf(vl,rvl,lcu,mev,&lcu0);
                    997:   divsp(vl,lcu0,LC(u0),&cu);
                    998:   for ( dc0 = 0, dcu = DC(u0); dcu; dcu = NEXT(dcu) ) {
                    999:     if ( !dc0 ) {
                   1000:       NEXTDC(dc0,dc);
                   1001:       COEF(dc) = lcu;
                   1002:     } else {
                   1003:       NEXTDC(dc0,dc);
                   1004:       mulp(vl,cu,COEF(dcu),&COEF(dc));
                   1005:     }
                   1006:     DEG(dc) = DEG(dcu);
                   1007:   }
                   1008:   NEXT(dc) = 0;
                   1009:   MKP(VR(u0),dc0,*r);
                   1010: }
                   1011:
                   1012: void extended_gcd_modyk(P u0,P v0,V x,V y,int dy,P *cu,P *cv)
                   1013: {
                   1014:   BM g,h,a,b;
                   1015:
                   1016:   gfsn_univariate_to_sfbm(u0,dy,&g);
                   1017:   gfsn_univariate_to_sfbm(v0,dy,&h);
                   1018:   sfexgcd_by_hensel(g,h,dy,&a,&b);
                   1019:   sfbm_to_gfsn_univariate(a,x,y,cu);
                   1020:   sfbm_to_gfsn_univariate(b,x,y,cv);
                   1021: }
                   1022:
                   1023: /* (F[y])[x] -> F[x][y] */
                   1024:
                   1025: void gfsn_univariate_to_sfbm(P f,int dy,BM *r)
                   1026: {
                   1027:   int dx,d,i;
                   1028:   BM b;
                   1029:   UM cy;
                   1030:   DCP dc;
                   1031:
                   1032:   dx = getdeg(VR(f),f);
                   1033:   b = BMALLOC(dx,dy);
                   1034:   DEG(b) = dy;
                   1035:   for ( dc = DC(f); dc; dc = NEXT(dc) ) {
                   1036:     /* d : degree in x, cy : poly in y */
1.2     ! noro     1037:     d = ZTOS(DEG(dc));
1.1       noro     1038:     cy = BDY((GFSN)COEF(dc));
                   1039:     for ( i = DEG(cy); i >= 0; i-- )
                   1040:       COEF(COEF(b)[i])[d] = COEF(cy)[i];
                   1041:   }
                   1042:   for ( i = 0; i <= dy; i++ )
                   1043:     degum(COEF(b)[i],dx);
                   1044:   *r = b;
                   1045: }
                   1046:
                   1047: void sfbm_to_gfsn_univariate(BM f,V x,V y,P *r)
                   1048: {
                   1049:   P g;
                   1050:   VL vl;
                   1051:
                   1052:   sfbmtop(f,x,y,&g);
                   1053:   NEWVL(vl); vl->v = x;
                   1054:   NEWVL(NEXT(vl)); NEXT(vl)->v = y;
                   1055:   NEXT(NEXT(vl)) = 0;
                   1056:   poly_to_gfsn_poly(vl,g,y,r);
                   1057: }
                   1058:
                   1059: void poly_to_gfsn_poly(VL vl,P f,V v,P *r)
                   1060: {
                   1061:   VL tvl,nvl0,nvl;
                   1062:   P g;
                   1063:
                   1064:   /* (x,y,...,v,...) -> (x,y,...,v) */
                   1065:   for ( nvl0 = 0, tvl = vl; tvl; tvl = NEXT(tvl) ) {
                   1066:     if ( tvl->v != v ) {
                   1067:       NEXTVL(nvl0,nvl);
                   1068:       nvl->v = tvl->v;
                   1069:     }
                   1070:   }
                   1071:   NEXTVL(nvl0,nvl);
                   1072:   nvl->v = v;
                   1073:   NEXT(nvl) = 0;
                   1074:   reorderp(nvl0,vl,f,&g);
                   1075:   poly_to_gfsn_poly_main(g,v,r);
                   1076: }
                   1077:
                   1078: void poly_to_gfsn_poly_main(P f,V v,P *r)
                   1079: {
                   1080:   int d;
                   1081:   UM u;
                   1082:   GFSN g;
                   1083:   DCP dc,dct,dc0;
                   1084:
                   1085:   if ( !f )
                   1086:     *r = f;
                   1087:   else if ( NUM(f) || VR(f) == v ) {
                   1088:     d = getdeg(v,f);
                   1089:     u = UMALLOC(d);
                   1090:     ptosfum(f,u);
                   1091:     MKGFSN(u,g);
                   1092:     *r = (P)g;
                   1093:   } else {
                   1094:     for ( dc0 = 0, dct = DC(f); dct; dct = NEXT(dct) ) {
                   1095:       NEXTDC(dc0,dc);
                   1096:       DEG(dc) = DEG(dct);
                   1097:       poly_to_gfsn_poly_main(COEF(dct),v,&COEF(dc));
                   1098:     }
                   1099:     NEXT(dc) = 0;
                   1100:     MKP(VR(f),dc0,*r);
                   1101:   }
                   1102: }
                   1103:
                   1104: void gfsn_poly_to_poly(VL vl,P f,V v,P *r)
                   1105: {
                   1106:   VL tvl,nvl0,nvl;
                   1107:   P g;
                   1108:
                   1109:   gfsn_poly_to_poly_main(f,v,&g);
                   1110:   /* (x,y,...,v,...) -> (x,y,...,v) */
                   1111:   for ( nvl0 = 0, tvl = vl; tvl; tvl = NEXT(tvl) ) {
                   1112:     if ( tvl->v != v ) {
                   1113:       NEXTVL(nvl0,nvl);
                   1114:       nvl->v = tvl->v;
                   1115:     }
                   1116:   }
                   1117:   NEXTVL(nvl0,nvl);
                   1118:   nvl->v = v;
                   1119:   NEXT(nvl) = 0;
                   1120:   reorderp(vl,nvl0,g,r);
                   1121: }
                   1122:
                   1123: void gfsn_poly_to_poly_main(P f,V v,P *r)
                   1124: {
                   1125:   DCP dc,dc0,dct;
                   1126:
                   1127:   if ( !f )
                   1128:     *r = f;
                   1129:   else if ( NUM(f) ) {
                   1130:     if ( NID((Num)f) == N_GFSN )
                   1131:       sfumtop(v,BDY((GFSN)f),r);
                   1132:     else
                   1133:       *r = f;
                   1134:   } else {
                   1135:     for ( dc0 = 0, dct = DC(f); dct; dct = NEXT(dct) ) {
                   1136:       NEXTDC(dc0,dc);
                   1137:       DEG(dc) = DEG(dct);
                   1138:       gfsn_poly_to_poly_main(COEF(dct),v,&COEF(dc));
                   1139:     }
                   1140:     NEXT(dc) = 0;
                   1141:     MKP(VR(f),dc0,*r);
                   1142:   }
                   1143: }
                   1144:
                   1145: void printsfum(UM f)
                   1146: {
                   1147:   int i;
                   1148:
                   1149:   for ( i = DEG(f); i >= 0; i-- ) {
                   1150:     printf("+(");
                   1151:     printf("%d",IFTOF(COEF(f)[i]));
                   1152:     printf(")*y^%d",i);
                   1153:   }
                   1154: }
                   1155:
                   1156: void printsfbm(BM f)
                   1157: {
                   1158:   int i;
                   1159:
                   1160:   for ( i = DEG(f); i >= 0; i-- ) {
                   1161:     printf("+(");
                   1162:     printsfum(COEF(f)[i]);
                   1163:     printf(")*y^%d",i);
                   1164:   }
                   1165: }
                   1166:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>