Annotation of OpenXM_contrib2/asir2018/engine/dist.c, Revision 1.3
1.1 noro 1: /*
2: * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
3: * All rights reserved.
4: *
5: * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
6: * non-exclusive and royalty-free license to use, copy, modify and
7: * redistribute, solely for non-commercial and non-profit purposes, the
8: * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
9: * conditions of this Agreement. For the avoidance of doubt, you acquire
10: * only a limited right to use the SOFTWARE hereunder, and FLL or any
11: * third party developer retains all rights, including but not limited to
12: * copyrights, in and to the SOFTWARE.
13: *
14: * (1) FLL does not grant you a license in any way for commercial
15: * purposes. You may use the SOFTWARE only for non-commercial and
16: * non-profit purposes only, such as academic, research and internal
17: * business use.
18: * (2) The SOFTWARE is protected by the Copyright Law of Japan and
19: * international copyright treaties. If you make copies of the SOFTWARE,
20: * with or without modification, as permitted hereunder, you shall affix
21: * to all such copies of the SOFTWARE the above copyright notice.
22: * (3) An explicit reference to this SOFTWARE and its copyright owner
23: * shall be made on your publication or presentation in any form of the
24: * results obtained by use of the SOFTWARE.
25: * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
26: * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
27: * for such modification or the source code of the modified part of the
28: * SOFTWARE.
29: *
30: * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
31: * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
32: * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
33: * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
34: * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
35: * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
36: * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
37: * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
38: * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
39: * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
40: * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
41: * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
42: * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
43: * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
44: * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
45: * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
46: * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
47: *
1.3 ! noro 48: * $OpenXM: OpenXM_contrib2/asir2018/engine/dist.c,v 1.2 2018/09/28 08:20:28 noro Exp $
1.1 noro 49: */
50: #include "ca.h"
51:
52: #define ORD_REVGRADLEX 0
53: #define ORD_GRADLEX 1
54: #define ORD_LEX 2
55: #define ORD_BREVGRADLEX 3
56: #define ORD_BGRADLEX 4
57: #define ORD_BLEX 5
58: #define ORD_BREVREV 6
59: #define ORD_BGRADREV 7
60: #define ORD_BLEXREV 8
61: #define ORD_ELIM 9
62: #define ORD_WEYL_ELIM 10
63: #define ORD_HOMO_WW_DRL 11
64: #define ORD_DRL_ZIGZAG 12
65: #define ORD_HOMO_WW_DRL_ZIGZAG 13
66:
67: int cmpdl_drl_zigzag(), cmpdl_homo_ww_drl_zigzag();
68: int cmpdl_top_weight();
69:
70: int (*cmpdl)()=cmpdl_revgradlex;
71: int (*cmpdl_tie_breaker)();
72: int (*primitive_cmpdl[3])() = {cmpdl_revgradlex,cmpdl_gradlex,cmpdl_lex};
73:
74: Obj current_top_weight;
75: int current_top_weight_len;
76:
77: int do_weyl;
78:
79: int dp_nelim,dp_fcoeffs;
80: struct order_spec *dp_current_spec;
81: struct modorder_spec *dp_current_modspec;
82: int *dp_dl_work;
83:
84: void comm_muld_trunc(VL vl,DP p1,DP p2,DL dl,DP *pr);
85: void comm_quod(VL vl,DP p1,DP p2,DP *pr);
86: void muldm_trunc(VL vl,DP p,MP m0,DL dl,DP *pr);
87: void muldc_trunc(VL vl,DP p,Obj c,DL dl,DP *pr);
88: int create_order_spec(VL vl,Obj obj,struct order_spec **specp);
89: void create_modorder_spec(int id,LIST shift,struct modorder_spec **s);
90:
91: void order_init()
92: {
93: struct order_spec *spec;
94:
95: create_order_spec(0,0,&spec);
96: initd(spec);
97: create_modorder_spec(0,0,&dp_current_modspec);
98: }
99:
100: int has_sfcoef_p(Obj f);
101:
102: int has_sfcoef(DP f)
103: {
104: MP t;
105:
106: if ( !f )
107: return 0;
108: for ( t = BDY(f); t; t = NEXT(t) )
109: if ( has_sfcoef_p(t->c) )
110: break;
111: return t ? 1 : 0;
112: }
113:
114: int has_sfcoef_p(Obj f)
115: {
116: DCP dc;
117:
118: if ( !f )
119: return 0;
120: else if ( NUM(f) )
121: return (NID((Num)f) == N_GFS) ? 1 : 0;
122: else if ( POLY(f) ) {
123: for ( dc = DC((P)f); dc; dc = NEXT(dc) )
124: if ( has_sfcoef_p((Obj)COEF(dc)) )
125: return 1;
126: return 0;
127: } else
128: return 0;
129: }
130:
131: extern Obj nd_top_weight;
132:
133: void reset_top_weight()
134: {
135: cmpdl = cmpdl_tie_breaker;
136: cmpdl_tie_breaker = 0;
137: nd_top_weight = 0;
138: current_top_weight = 0;
139: current_top_weight_len = 0;
140: }
141:
142: void initd(struct order_spec *spec)
143: {
144: int len,i,k,row;
145: Q **mat;
146:
147: switch ( spec->id ) {
148: case 3:
149: cmpdl = cmpdl_composite;
150: dp_dl_work = (int *)MALLOC_ATOMIC(spec->nv*sizeof(int));
151: break;
152: case 2:
153: cmpdl = cmpdl_matrix;
154: dp_dl_work = (int *)MALLOC_ATOMIC(spec->nv*sizeof(int));
155: break;
156: case 1:
157: cmpdl = cmpdl_order_pair;
158: break;
159: default:
160: switch ( spec->ord.simple ) {
161: case ORD_REVGRADLEX:
162: cmpdl = cmpdl_revgradlex; break;
163: case ORD_GRADLEX:
164: cmpdl = cmpdl_gradlex; break;
165: case ORD_BREVGRADLEX:
166: cmpdl = cmpdl_brevgradlex; break;
167: case ORD_BGRADLEX:
168: cmpdl = cmpdl_bgradlex; break;
169: case ORD_BLEX:
170: cmpdl = cmpdl_blex; break;
171: case ORD_BREVREV:
172: cmpdl = cmpdl_brevrev; break;
173: case ORD_BGRADREV:
174: cmpdl = cmpdl_bgradrev; break;
175: case ORD_BLEXREV:
176: cmpdl = cmpdl_blexrev; break;
177: case ORD_ELIM:
178: cmpdl = cmpdl_elim; break;
179: case ORD_WEYL_ELIM:
180: cmpdl = cmpdl_weyl_elim; break;
181: case ORD_HOMO_WW_DRL:
182: cmpdl = cmpdl_homo_ww_drl; break;
183: case ORD_DRL_ZIGZAG:
184: cmpdl = cmpdl_drl_zigzag; break;
185: case ORD_HOMO_WW_DRL_ZIGZAG:
186: cmpdl = cmpdl_homo_ww_drl_zigzag; break;
187: case ORD_LEX: default:
188: cmpdl = cmpdl_lex; break;
189: }
190: break;
191: }
192: if ( current_top_weight ) {
193: cmpdl_tie_breaker = cmpdl;
194: cmpdl = cmpdl_top_weight;
195: if ( OID(current_top_weight) == O_VECT ) {
196: mat = (Q **)&BDY((VECT)current_top_weight);
197: row = 1;
198: } else {
199: mat = (Q **)BDY((MAT)current_top_weight);
200: row = ((MAT)current_top_weight)->row;
201: }
202: for ( k = 0, len = 0; k < row; k++ )
203: for ( i = 0; i < spec->nv; i++ )
204: if ( mat[k][i] )
205: len = MAX(mpz_size(BDY((Z)mat[k][i])),len);
206: current_top_weight_len = len;
207: }
208: dp_current_spec = spec;
209: }
210:
1.3 ! noro 211: int dpm_ordtype;
1.1 noro 212:
213: void ptod(VL vl,VL dvl,P p,DP *pr)
214: {
215: int n,i,j,k;
216: VL tvl;
217: V v;
218: DL d;
219: MP m;
220: DCP dc;
221: DCP *w;
222: DP r,s,t,u;
223: P x,c;
224:
225: if ( !p )
226: *pr = 0;
227: else if ( OID(p) > O_P )
228: error("ptod : only polynomials can be converted.");
229: else {
230: for ( n = 0, tvl = dvl; tvl; tvl = NEXT(tvl), n++ );
231: if ( NUM(p) ) {
232: NEWDL(d,n);
233: NEWMP(m); m->dl = d; C(m) = (Obj)p; NEXT(m) = 0; MKDP(n,m,*pr); (*pr)->sugar = 0;
234: } else {
235: for ( i = 0, tvl = dvl, v = VR(p);
236: tvl && tvl->v != v; tvl = NEXT(tvl), i++ );
237: if ( !tvl ) {
238: for ( dc = DC(p), k = 0; dc; dc = NEXT(dc), k++ );
239: w = (DCP *)ALLOCA(k*sizeof(DCP));
240: for ( dc = DC(p), j = 0; j < k; dc = NEXT(dc), j++ )
241: w[j] = dc;
242:
243: for ( j = k-1, s = 0, MKV(v,x); j >= 0; j-- ) {
244: ptod(vl,dvl,COEF(w[j]),&t); pwrp(vl,x,DEG(w[j]),&c);
245: muldc(vl,t,(Obj)c,&r); addd(vl,r,s,&t); s = t;
246: }
247: *pr = s;
248: } else {
249: for ( dc = DC(p), k = 0; dc; dc = NEXT(dc), k++ );
250: w = (DCP *)ALLOCA(k*sizeof(DCP));
251: for ( dc = DC(p), j = 0; j < k; dc = NEXT(dc), j++ )
252: w[j] = dc;
253:
254: for ( j = k-1, s = 0; j >= 0; j-- ) {
255: ptod(vl,dvl,COEF(w[j]),&t);
1.2 noro 256: NEWDL(d,n); d->d[i] = ZTOS(DEG(w[j]));
1.1 noro 257: d->td = MUL_WEIGHT(d->d[i],i);
258: NEWMP(m); m->dl = d; C(m) = (Obj)ONE; NEXT(m) = 0; MKDP(n,m,u); u->sugar = d->td;
259: comm_muld(vl,t,u,&r); addd(vl,r,s,&t); s = t;
260: }
261: *pr = s;
262: }
263: }
264: }
265: #if 0
266: if ( !dp_fcoeffs && has_sfcoef(*pr) )
267: dp_fcoeffs = N_GFS;
268: #endif
269: }
270:
271: void dtop(VL vl,VL dvl,DP p,Obj *pr)
272: {
273: int n,i,j,k;
274: DL d;
275: MP m;
276: MP *a;
277: P r;
278: Obj t,w,s,u;
279: Z q;
280: VL tvl;
281:
282: if ( !p )
283: *pr = 0;
284: else {
285: for ( k = 0, m = BDY(p); m; m = NEXT(m), k++ );
286: a = (MP *)ALLOCA(k*sizeof(MP));
287: for ( j = 0, m = BDY(p); j < k; m = NEXT(m), j++ )
288: a[j] = m;
289:
290: for ( n = p->nv, j = k-1, s = 0; j >= 0; j-- ) {
291: m = a[j];
292: t = C(m);
293: if ( NUM(t) && NID((Num)t) == N_M ) {
294: mptop((P)t,(P *)&u); t = u;
295: }
296: for ( i = 0, d = m->dl, tvl = dvl;
297: i < n; tvl = NEXT(tvl), i++ ) {
1.2 noro 298: MKV(tvl->v,r); STOZ(d->d[i],q); pwrp(vl,r,q,(P *)&u);
1.1 noro 299: arf_mul(vl,t,(Obj)u,&w); t = w;
300: }
301: arf_add(vl,s,t,&u); s = u;
302: }
303: *pr = s;
304: }
305: }
306:
307: void nodetod(NODE node,DP *dp)
308: {
309: NODE t;
310: int len,i,td;
311: Q e;
312: DL d;
313: MP m;
314: DP u;
315:
316: for ( t = node, len = 0; t; t = NEXT(t), len++ );
317: NEWDL(d,len);
318: for ( t = node, i = 0, td = 0; i < len; t = NEXT(t), i++ ) {
319: e = (Q)BDY(t);
320: if ( !e )
321: d->d[i] = 0;
322: else if ( !NUM(e) || !RATN(e) || !INT(e) )
323: error("nodetod : invalid input");
324: else {
1.2 noro 325: d->d[i] = ZTOS((Q)e); td += MUL_WEIGHT(d->d[i],i);
1.1 noro 326: }
327: }
328: d->td = td;
329: NEWMP(m); m->dl = d; C(m) = (Obj)ONE; NEXT(m) = 0;
330: MKDP(len,m,u); u->sugar = td; *dp = u;
331: }
332:
333: void nodetodpm(NODE node,Obj pos,DPM *dp)
334: {
335: NODE t;
336: int len,i,td;
337: Q e;
338: DL d;
339: DMM m;
340: DPM u;
341:
342: for ( t = node, len = 0; t; t = NEXT(t), len++ );
343: NEWDL(d,len);
344: for ( t = node, i = 0, td = 0; i < len; t = NEXT(t), i++ ) {
345: e = (Q)BDY(t);
346: if ( !e )
347: d->d[i] = 0;
348: else if ( !NUM(e) || !RATN(e) || !INT(e) )
349: error("nodetodpm : invalid input");
350: else {
1.2 noro 351: d->d[i] = ZTOS((Q)e); td += MUL_WEIGHT(d->d[i],i);
1.1 noro 352: }
353: }
354: d->td = td;
1.2 noro 355: NEWDMM(m); m->dl = d; m->pos = ZTOS((Q)pos); C(m) = (Obj)ONE; NEXT(m) = 0;
1.1 noro 356: MKDPM(len,m,u); u->sugar = td; *dp = u;
357: }
358:
359: void dtodpm(DP d,int pos,DPM *dp)
360: {
361: DMM mr0,mr;
362: MP m;
363:
364: if ( !d ) *dp = 0;
365: else {
366: for ( m = BDY(d), mr0 = 0; m; m = NEXT(m) ) {
367: NEXTDMM(mr0,mr);
368: mr->dl = m->dl;
369: mr->pos = pos;
370: C(mr) = C(m);
371: }
372: MKDPM(d->nv,mr0,*dp); (*dp)->sugar = d->sugar;
373: }
374: }
375:
376: int sugard(MP m)
377: {
378: int s;
379:
380: for ( s = 0; m; m = NEXT(m) )
381: s = MAX(s,m->dl->td);
382: return s;
383: }
384:
385: void addd(VL vl,DP p1,DP p2,DP *pr)
386: {
387: int n;
388: MP m1,m2,mr=0,mr0;
389: Obj t;
390: DL d;
391:
392: if ( !p1 )
393: *pr = p2;
394: else if ( !p2 )
395: *pr = p1;
396: else {
397: if ( OID(p1) <= O_R ) {
398: n = NV(p2); NEWDL(d,n);
399: NEWMP(m1); m1->dl = d; C(m1) = (Obj)p1; NEXT(m1) = 0;
400: MKDP(n,m1,p1); (p1)->sugar = 0;
401: }
402: if ( OID(p2) <= O_R ) {
403: n = NV(p1); NEWDL(d,n);
404: NEWMP(m2); m2->dl = d; C(m2) = (Obj)p2; NEXT(m2) = 0;
405: MKDP(n,m2,p2); (p2)->sugar = 0;
406: }
407: for ( n = NV(p1), m1 = BDY(p1), m2 = BDY(p2), mr0 = 0; m1 && m2; )
408: switch ( (*cmpdl)(n,m1->dl,m2->dl) ) {
409: case 0:
410: arf_add(vl,C(m1),C(m2),&t);
411: if ( t ) {
412: NEXTMP(mr0,mr); mr->dl = m1->dl; C(mr) = t;
413: }
414: m1 = NEXT(m1); m2 = NEXT(m2); break;
415: case 1:
416: NEXTMP(mr0,mr); mr->dl = m1->dl; C(mr) = C(m1);
417: m1 = NEXT(m1); break;
418: case -1:
419: NEXTMP(mr0,mr); mr->dl = m2->dl; C(mr) = C(m2);
420: m2 = NEXT(m2); break;
421: }
422: if ( !mr0 )
423: if ( m1 )
424: mr0 = m1;
425: else if ( m2 )
426: mr0 = m2;
427: else {
428: *pr = 0;
429: return;
430: }
431: else if ( m1 )
432: NEXT(mr) = m1;
433: else if ( m2 )
434: NEXT(mr) = m2;
435: else
436: NEXT(mr) = 0;
437: MKDP(NV(p1),mr0,*pr);
438: if ( *pr )
439: (*pr)->sugar = MAX(p1->sugar,p2->sugar);
440: }
441: }
442:
443: /* for F4 symbolic reduction */
444:
445: void symb_addd(DP p1,DP p2,DP *pr)
446: {
447: int n;
448: MP m1,m2,mr=0,mr0;
449:
450: if ( !p1 )
451: *pr = p2;
452: else if ( !p2 )
453: *pr = p1;
454: else {
455: for ( n = NV(p1), m1 = BDY(p1), m2 = BDY(p2), mr0 = 0; m1 && m2; ) {
456: NEXTMP(mr0,mr); C(mr) = (Obj)ONE;
457: switch ( (*cmpdl)(n,m1->dl,m2->dl) ) {
458: case 0:
459: mr->dl = m1->dl;
460: m1 = NEXT(m1); m2 = NEXT(m2); break;
461: case 1:
462: mr->dl = m1->dl;
463: m1 = NEXT(m1); break;
464: case -1:
465: mr->dl = m2->dl;
466: m2 = NEXT(m2); break;
467: }
468: }
469: if ( !mr0 )
470: if ( m1 )
471: mr0 = m1;
472: else if ( m2 )
473: mr0 = m2;
474: else {
475: *pr = 0;
476: return;
477: }
478: else if ( m1 )
479: NEXT(mr) = m1;
480: else if ( m2 )
481: NEXT(mr) = m2;
482: else
483: NEXT(mr) = 0;
484: MKDP(NV(p1),mr0,*pr);
485: if ( *pr )
486: (*pr)->sugar = MAX(p1->sugar,p2->sugar);
487: }
488: }
489:
490: /*
491: * destructive merge of two list
492: *
493: * p1, p2 : list of DL
494: * return : a merged list
495: */
496:
497: NODE symb_merge(NODE m1,NODE m2,int n)
498: {
499: NODE top=0,prev,cur,m=0,t;
500: DL d1,d2;
501:
502: if ( !m1 )
503: return m2;
504: else if ( !m2 )
505: return m1;
506: else {
507: switch ( (*cmpdl)(n,(DL)BDY(m1),(DL)BDY(m2)) ) {
508: case 0:
509: top = m1; m = NEXT(m2);
510: break;
511: case 1:
512: top = m1; m = m2;
513: break;
514: case -1:
515: top = m2; m = m1;
516: break;
517: }
518: prev = top; cur = NEXT(top);
519: /* BDY(prev) > BDY(m) always holds */
520: while ( cur && m ) {
521: d1 = (DL)BDY(cur);
522: d2 = (DL)BDY(m);
523: #if 1
524: switch ( (*cmpdl)(n,(DL)BDY(cur),(DL)BDY(m)) ) {
525: #else
526: /* XXX only valid for DRL */
527: if ( d1->td > d2->td )
528: c = 1;
529: else if ( d1->td < d2->td )
530: c = -1;
531: else {
532: for ( i = n-1; i >= 0 && d1->d[i] == d2->d[i]; i-- );
533: if ( i < 0 )
534: c = 0;
535: else if ( d1->d[i] < d2->d[i] )
536: c = 1;
537: else
538: c = -1;
539: }
540: switch ( c ) {
541: #endif
542: case 0:
543: m = NEXT(m);
544: prev = cur; cur = NEXT(cur);
545: break;
546: case 1:
547: t = NEXT(cur); NEXT(cur) = m; m = t;
548: prev = cur; cur = NEXT(cur);
549: break;
550: case -1:
551: NEXT(prev) = m; m = cur;
552: prev = NEXT(prev); cur = NEXT(prev);
553: break;
554: }
555: }
556: if ( !cur )
557: NEXT(prev) = m;
558: return top;
559: }
560: }
561:
562: void _adddl(int n,DL d1,DL d2,DL d3)
563: {
564: int i;
565:
566: d3->td = d1->td+d2->td;
567: for ( i = 0; i < n; i++ )
568: d3->d[i] = d1->d[i]+d2->d[i];
569: }
570:
1.3 ! noro 571: void _addtodl(int n,DL d1,DL d2)
! 572: {
! 573: int i;
! 574:
! 575: d2->td += d1->td;
! 576: for ( i = 0; i < n; i++ )
! 577: d2->d[i] += d1->d[i];
! 578: }
! 579:
! 580: void _copydl(int n,DL d1,DL d2)
! 581: {
! 582: int i;
! 583:
! 584: d2->td = d1->td;
! 585: for ( i = 0; i < n; i++ )
! 586: d2->d[i] = d1->d[i];
! 587: }
! 588:
! 589: int _eqdl(int n,DL d1,DL d2)
! 590: {
! 591: int i;
! 592:
! 593: if ( d2->td != d1->td ) return 0;
! 594: for ( i = 0; i < n; i++ )
! 595: if ( d2->d[i] != d1->d[i] ) return 0;
! 596: return 1;
! 597: }
! 598:
1.1 noro 599: /* m1 <- m1 U dl*f, destructive */
600:
601: NODE mul_dllist(DL dl,DP f);
602:
603: NODE symb_mul_merge(NODE m1,DL dl,DP f,int n)
604: {
605: NODE top,prev,cur,n1;
606: DP g;
607: DL t,s;
608: MP m;
609:
610: if ( !m1 )
611: return mul_dllist(dl,f);
612: else if ( !f )
613: return m1;
614: else {
615: m = BDY(f);
616: NEWDL_NOINIT(t,n);
617: _adddl(n,m->dl,dl,t);
618: top = m1; prev = 0; cur = m1;
619: while ( m ) {
620: switch ( (*cmpdl)(n,(DL)BDY(cur),t) ) {
621: case 0:
622: prev = cur; cur = NEXT(cur);
623: if ( !cur ) {
624: MKDP(n,m,g);
625: NEXT(prev) = mul_dllist(dl,g);
626: return top;
627: }
628: m = NEXT(m);
629: if ( m ) _adddl(n,m->dl,dl,t);
630: break;
631: case 1:
632: prev = cur; cur = NEXT(cur);
633: if ( !cur ) {
634: MKDP(n,m,g);
635: NEXT(prev) = mul_dllist(dl,g);
636: return top;
637: }
638: break;
639: case -1:
640: NEWDL_NOINIT(s,n);
641: s->td = t->td;
642: bcopy(t->d,s->d,n*sizeof(int));
643: NEWNODE(n1);
644: n1->body = (pointer)s;
645: NEXT(n1) = cur;
646: if ( !prev ) {
647: top = n1; cur = n1;
648: } else {
649: NEXT(prev) = n1; prev = n1;
650: }
651: m = NEXT(m);
652: if ( m ) _adddl(n,m->dl,dl,t);
653: break;
654: }
655: }
656: return top;
657: }
658: }
659:
660: DLBUCKET symb_merge_bucket(DLBUCKET m1,DLBUCKET m2,int n)
661: {
662: DLBUCKET top,prev,cur,m,t;
663:
664: if ( !m1 )
665: return m2;
666: else if ( !m2 )
667: return m1;
668: else {
669: if ( m1->td == m2->td ) {
670: top = m1;
671: BDY(top) = symb_merge(BDY(top),BDY(m2),n);
672: m = NEXT(m2);
673: } else if ( m1->td > m2->td ) {
674: top = m1; m = m2;
675: } else {
676: top = m2; m = m1;
677: }
678: prev = top; cur = NEXT(top);
679: /* prev->td > m->td always holds */
680: while ( cur && m ) {
681: if ( cur->td == m->td ) {
682: BDY(cur) = symb_merge(BDY(cur),BDY(m),n);
683: m = NEXT(m);
684: prev = cur; cur = NEXT(cur);
685: } else if ( cur->td > m->td ) {
686: t = NEXT(cur); NEXT(cur) = m; m = t;
687: prev = cur; cur = NEXT(cur);
688: } else {
689: NEXT(prev) = m; m = cur;
690: prev = NEXT(prev); cur = NEXT(prev);
691: }
692: }
693: if ( !cur )
694: NEXT(prev) = m;
695: return top;
696: }
697: }
698:
699: void subd(VL vl,DP p1,DP p2,DP *pr)
700: {
701: DP t;
702:
703: if ( !p2 )
704: *pr = p1;
705: else {
706: chsgnd(p2,&t); addd(vl,p1,t,pr);
707: }
708: }
709:
710: void chsgnd(DP p,DP *pr)
711: {
712: MP m,mr=0,mr0;
713: Obj r;
714:
715: if ( !p )
716: *pr = 0;
717: else if ( OID(p) <= O_R ) {
718: arf_chsgn((Obj)p,&r); *pr = (DP)r;
719: } else {
720: for ( mr0 = 0, m = BDY(p); m; m = NEXT(m) ) {
721: NEXTMP(mr0,mr); arf_chsgn(C(m),&C(mr)); mr->dl = m->dl;
722: }
723: NEXT(mr) = 0; MKDP(NV(p),mr0,*pr);
724: if ( *pr )
725: (*pr)->sugar = p->sugar;
726: }
727: }
728:
729: void muld(VL vl,DP p1,DP p2,DP *pr)
730: {
731: if ( ! do_weyl )
732: comm_muld(vl,p1,p2,pr);
733: else
734: weyl_muld(vl,p1,p2,pr);
735: }
736:
737: void comm_muld(VL vl,DP p1,DP p2,DP *pr)
738: {
739: MP m;
740: DP s,t,u;
741: int i,l,l1;
742: static MP *w;
743: static int wlen;
744:
745: if ( !p1 || !p2 )
746: *pr = 0;
747: else if ( OID(p1) != O_DP )
748: muldc(vl,p2,(Obj)p1,pr);
749: else if ( OID(p2) != O_DP )
750: muldc(vl,p1,(Obj)p2,pr);
751: else {
752: for ( m = BDY(p1), l1 = 0; m; m = NEXT(m), l1++ );
753: for ( m = BDY(p2), l = 0; m; m = NEXT(m), l++ );
754: if ( l1 < l ) {
755: t = p1; p1 = p2; p2 = t;
756: l = l1;
757: }
758: if ( l > wlen ) {
759: if ( w ) GCFREE(w);
760: w = (MP *)MALLOC(l*sizeof(MP));
761: wlen = l;
762: }
763: for ( m = BDY(p2), i = 0; i < l; m = NEXT(m), i++ )
764: w[i] = m;
765: for ( s = 0, i = l-1; i >= 0; i-- ) {
766: muldm(vl,p1,w[i],&t); addd(vl,s,t,&u); s = u;
767: }
768: bzero(w,l*sizeof(MP));
769: *pr = s;
770: }
771: }
772:
773: /* discard terms which is not a multiple of dl */
774:
775: void comm_muld_trunc(VL vl,DP p1,DP p2,DL dl,DP *pr)
776: {
777: MP m;
778: DP s,t,u;
779: int i,l,l1;
780: static MP *w;
781: static int wlen;
782:
783: if ( !p1 || !p2 )
784: *pr = 0;
785: else if ( OID(p1) != O_DP )
786: muldc_trunc(vl,p2,(Obj)p1,dl,pr);
787: else if ( OID(p2) != O_DP )
788: muldc_trunc(vl,p1,(Obj)p2,dl,pr);
789: else {
790: for ( m = BDY(p1), l1 = 0; m; m = NEXT(m), l1++ );
791: for ( m = BDY(p2), l = 0; m; m = NEXT(m), l++ );
792: if ( l1 < l ) {
793: t = p1; p1 = p2; p2 = t;
794: l = l1;
795: }
796: if ( l > wlen ) {
797: if ( w ) GCFREE(w);
798: w = (MP *)MALLOC(l*sizeof(MP));
799: wlen = l;
800: }
801: for ( m = BDY(p2), i = 0; i < l; m = NEXT(m), i++ )
802: w[i] = m;
803: for ( s = 0, i = l-1; i >= 0; i-- ) {
804: muldm_trunc(vl,p1,w[i],dl,&t); addd(vl,s,t,&u); s = u;
805: }
806: bzero(w,l*sizeof(MP));
807: *pr = s;
808: }
809: }
810:
811: void comm_quod(VL vl,DP p1,DP p2,DP *pr)
812: {
813: MP m=0,m0;
814: DP s,t;
815: int i,n,sugar;
816: DL d1,d2,d;
817: Q a,b;
818:
819: if ( !p2 )
820: error("comm_quod : invalid input");
821: if ( !p1 )
822: *pr = 0;
823: else {
824: n = NV(p1);
825: d2 = BDY(p2)->dl;
826: m0 = 0;
827: sugar = p1->sugar;
828: while ( p1 ) {
829: d1 = BDY(p1)->dl;
830: NEWDL(d,n);
831: d->td = d1->td - d2->td;
832: for ( i = 0; i < n; i++ )
833: d->d[i] = d1->d[i]-d2->d[i];
834: NEXTMP(m0,m);
835: m->dl = d;
836: divq((Q)BDY(p1)->c,(Q)BDY(p2)->c,&a); chsgnq(a,&b);
837: C(m) = (Obj)b;
838: muldm_trunc(vl,p2,m,d2,&t);
839: addd(vl,p1,t,&s); p1 = s;
840: C(m) = (Obj)a;
841: }
842: if ( m0 ) {
843: NEXT(m) = 0; MKDP(n,m0,*pr);
844: } else
845: *pr = 0;
846: /* XXX */
847: if ( *pr )
848: (*pr)->sugar = sugar - d2->td;
849: }
850: }
851:
852: void muldm(VL vl,DP p,MP m0,DP *pr)
853: {
854: MP m,mr=0,mr0;
855: Obj c;
856: DL d;
857: int n;
858:
859: if ( !p )
860: *pr = 0;
861: else {
862: for ( mr0 = 0, m = BDY(p), c = C(m0), d = m0->dl, n = NV(p);
863: m; m = NEXT(m) ) {
864: NEXTMP(mr0,mr);
865: if ( NUM(C(m)) && RATN(C(m)) && NUM(c) && RATN(c) )
866: mulq((Q)C(m),(Q)c,(Q *)&C(mr));
867: else
868: arf_mul(vl,C(m),c,&C(mr));
869: adddl(n,m->dl,d,&mr->dl);
870: }
871: NEXT(mr) = 0; MKDP(NV(p),mr0,*pr);
872: if ( *pr )
873: (*pr)->sugar = p->sugar + m0->dl->td;
874: }
875: }
876:
877: void muldm_trunc(VL vl,DP p,MP m0,DL dl,DP *pr)
878: {
879: MP m,mr=0,mr0;
880: Obj c;
881: DL d,tdl;
882: int n,i;
883:
884: if ( !p )
885: *pr = 0;
886: else {
887: n = NV(p);
888: NEWDL(tdl,n);
889: for ( mr0 = 0, m = BDY(p), c = C(m0), d = m0->dl;
890: m; m = NEXT(m) ) {
891: _adddl(n,m->dl,d,tdl);
892: for ( i = 0; i < n; i++ )
893: if ( tdl->d[i] < dl->d[i] )
894: break;
895: if ( i < n )
896: continue;
897: NEXTMP(mr0,mr);
898: mr->dl = tdl;
899: NEWDL(tdl,n);
900: if ( NUM(C(m)) && RATN(C(m)) && NUM(c) && RATN(c) )
901: mulq((Q)C(m),(Q)c,(Q *)&C(mr));
902: else
903: arf_mul(vl,C(m),(Obj)c,&C(mr));
904: }
905: if ( mr0 ) {
906: NEXT(mr) = 0; MKDP(NV(p),mr0,*pr);
907: } else
908: *pr = 0;
909: if ( *pr )
910: (*pr)->sugar = p->sugar + m0->dl->td;
911: }
912: }
913:
914: void weyl_muld(VL vl,DP p1,DP p2,DP *pr)
915: {
916: MP m;
917: DP s,t,u;
918: int i,l;
919: static MP *w;
920: static int wlen;
921:
922: if ( !p1 || !p2 )
923: *pr = 0;
924: else if ( OID(p1) != O_DP )
925: muldc(vl,p2,(Obj)p1,pr);
926: else if ( OID(p2) != O_DP )
927: muldc(vl,p1,(Obj)p2,pr);
928: else {
929: for ( m = BDY(p1), l = 0; m; m = NEXT(m), l++ );
930: if ( l > wlen ) {
931: if ( w ) GCFREE(w);
932: w = (MP *)MALLOC(l*sizeof(MP));
933: wlen = l;
934: }
935: for ( m = BDY(p1), i = 0; i < l; m = NEXT(m), i++ )
936: w[i] = m;
937: for ( s = 0, i = l-1; i >= 0; i-- ) {
938: weyl_muldm(vl,w[i],p2,&t); addd(vl,s,t,&u); s = u;
939: }
940: bzero(w,l*sizeof(MP));
941: *pr = s;
942: }
943: }
944:
945: void actm(VL vl,int nv,MP m1,MP m2,DP *pr)
946: {
947: DL d1,d2,d;
948: int n2,i,j,k;
949: Z jq,c,c1;
950: MP m;
951: Obj t;
952:
953: d1 = m1->dl;
954: d2 = m2->dl;
955: for ( i = 0; i < nv; i++ )
956: if ( d1->d[i] > d2->d[i] ) {
957: *pr = 0; return;
958: }
959: NEWDL(d,nv);
960: c = ONE;
961: for ( i = 0; i < nv; i++ ) {
962: for ( j = d2->d[i], k = d1->d[i]; k > 0; k--, j-- ) {
1.2 noro 963: STOZ(j,jq); mulz(c,jq,&c1); c = c1;
1.1 noro 964: }
965: d->d[i] = d2->d[i]-d1->d[i];
966: }
967: arf_mul(vl,C(m1),C(m2),&t);
968: NEWMP(m);
969: arf_mul(vl,(Obj)c,t,&C(m));
970: m->dl = d;
971: MKDP(nv,m,*pr);
972: }
973:
974: void weyl_actd(VL vl,DP p1,DP p2,DP *pr)
975: {
976: int n;
977: MP m1,m2;
978: DP d,r,s;
979:
980: if ( !p1 || !p2 ) *pr = 0;
981: else {
982: n = NV(p1);
983: r = 0;
984: for ( m1 = BDY(p1); m1; m1 = NEXT(m1) )
985: for ( m2 = BDY(p2); m2; m2 = NEXT(m2) ) {
986: actm(vl,n,m1,m2,&d);
987: addd(vl,r,d,&s); r = s;
988: }
989: *pr = r;
990: }
991: }
992:
993: /* monomial * polynomial */
994:
995: void weyl_muldm(VL vl,MP m0,DP p,DP *pr)
996: {
997: DP r,t,t1;
998: MP m;
999: DL d0;
1000: int n,n2,l,i,j,tlen;
1001: static MP *w,*psum;
1002: static struct cdl *tab;
1003: static int wlen;
1004: static int rtlen;
1005:
1006: if ( !p )
1007: *pr = 0;
1008: else {
1009: for ( m = BDY(p), l = 0; m; m = NEXT(m), l++ );
1010: if ( l > wlen ) {
1011: if ( w ) GCFREE(w);
1012: w = (MP *)MALLOC(l*sizeof(MP));
1013: wlen = l;
1014: }
1015: for ( m = BDY(p), i = 0; i < l; m = NEXT(m), i++ )
1016: w[i] = m;
1017:
1018: n = NV(p); n2 = n>>1;
1019: d0 = m0->dl;
1020: for ( i = 0, tlen = 1; i < n2; i++ )
1021: tlen *= d0->d[n2+i]+1;
1022: if ( tlen > rtlen ) {
1023: if ( tab ) GCFREE(tab);
1024: if ( psum ) GCFREE(psum);
1025: rtlen = tlen;
1026: tab = (struct cdl *)MALLOC(rtlen*sizeof(struct cdl));
1027: psum = (MP *)MALLOC(rtlen*sizeof(MP));
1028: }
1029: bzero(psum,tlen*sizeof(MP));
1030: for ( i = l-1; i >= 0; i-- ) {
1031: bzero(tab,tlen*sizeof(struct cdl));
1032: weyl_mulmm(vl,m0,w[i],n,tab,tlen);
1033: for ( j = 0; j < tlen; j++ ) {
1034: if ( tab[j].c ) {
1035: NEWMP(m); m->dl = tab[j].d; C(m) = (Obj)tab[j].c; NEXT(m) = psum[j];
1036: psum[j] = m;
1037: }
1038: }
1039: }
1040: for ( j = tlen-1, r = 0; j >= 0; j-- )
1041: if ( psum[j] ) {
1042: MKDP(n,psum[j],t); addd(vl,r,t,&t1); r = t1;
1043: }
1044: if ( r )
1045: r->sugar = p->sugar + m0->dl->td;
1046: *pr = r;
1047: }
1048: }
1049:
1050: /* m0 = x0^d0*x1^d1*... * dx0^e0*dx1^e1*... */
1051: /* rtab : array of length (e0+1)*(e1+1)*... */
1052:
1053: void weyl_mulmm(VL vl,MP m0,MP m1,int n,struct cdl *rtab,int rtablen)
1054: {
1055: Obj c,c0,c1;
1056: DL d,d0,d1,dt;
1057: int i,j,a,b,k,l,n2,s,min,curlen;
1058: struct cdl *p;
1059: static Z *ctab;
1060: static struct cdl *tab;
1061: static int tablen;
1062: static struct cdl *tmptab;
1063: static int tmptablen;
1064:
1065:
1066: if ( !m0 || !m1 ) {
1067: rtab[0].c = 0;
1068: rtab[0].d = 0;
1069: return;
1070: }
1071: c0 = C(m0); c1 = C(m1);
1072: arf_mul(vl,c0,c1,&c);
1073: d0 = m0->dl; d1 = m1->dl;
1074: n2 = n>>1;
1075: curlen = 1;
1076: NEWDL(d,n);
1077: if ( n & 1 )
1078: /* offset of h-degree */
1079: d->td = d->d[n-1] = d0->d[n-1]+d1->d[n-1];
1080: else
1081: d->td = 0;
1082: rtab[0].c = c;
1083: rtab[0].d = d;
1084:
1085: if ( rtablen > tmptablen ) {
1086: if ( tmptab ) GCFREE(tmptab);
1087: tmptab = (struct cdl *)MALLOC(rtablen*sizeof(struct cdl));
1088: tmptablen = rtablen;
1089: }
1090: for ( i = 0; i < n2; i++ ) {
1091: a = d0->d[i]; b = d1->d[n2+i];
1092: k = d0->d[n2+i]; l = d1->d[i];
1093:
1094: /* degree of xi^a*(Di^k*xi^l)*Di^b */
1095: a += l;
1096: b += k;
1097: s = MUL_WEIGHT(a,i)+MUL_WEIGHT(b,n2+i);
1098:
1099: if ( !k || !l ) {
1100: for ( j = 0, p = rtab; j < curlen; j++, p++ ) {
1101: if ( p->c ) {
1102: dt = p->d;
1103: dt->d[i] = a;
1104: dt->d[n2+i] = b;
1105: dt->td += s;
1106: }
1107: }
1108: curlen *= k+1;
1109: continue;
1110: }
1111: if ( k+1 > tablen ) {
1112: if ( tab ) GCFREE(tab);
1113: if ( ctab ) GCFREE(ctab);
1114: tablen = k+1;
1115: tab = (struct cdl *)MALLOC(tablen*sizeof(struct cdl));
1116: ctab = (Z *)MALLOC(tablen*sizeof(Q));
1117: }
1118: /* compute xi^a*(Di^k*xi^l)*Di^b */
1119: min = MIN(k,l);
1120: mkwc(k,l,ctab);
1121: bzero(tab,(k+1)*sizeof(struct cdl));
1122: if ( n & 1 )
1123: for ( j = 0; j <= min; j++ ) {
1124: NEWDL(d,n);
1125: d->d[i] = a-j; d->d[n2+i] = b-j;
1126: d->td = s;
1127: d->d[n-1] = s-(MUL_WEIGHT(a-j,i)+MUL_WEIGHT(b-j,n2+i));
1128: tab[j].d = d;
1129: tab[j].c = (Obj)ctab[j];
1130: }
1131: else
1132: for ( j = 0; j <= min; j++ ) {
1133: NEWDL(d,n);
1134: d->d[i] = a-j; d->d[n2+i] = b-j;
1135: d->td = MUL_WEIGHT(a-j,i)+MUL_WEIGHT(b-j,n2+i); /* XXX */
1136: tab[j].d = d;
1137: tab[j].c = (Obj)ctab[j];
1138: }
1139: bzero(ctab,(min+1)*sizeof(Q));
1140: comm_muld_tab(vl,n,rtab,curlen,tab,k+1,tmptab);
1141: curlen *= k+1;
1142: bcopy(tmptab,rtab,curlen*sizeof(struct cdl));
1143: }
1144: }
1145:
1146: /* direct product of two cdl tables
1147: rt[] = [
1148: t[0]*t1[0],...,t[n-1]*t1[0],
1149: t[0]*t1[1],...,t[n-1]*t1[1],
1150: ...
1151: t[0]*t1[n1-1],...,t[n-1]*t1[n1-1]
1152: ]
1153: */
1154:
1155: void comm_muld_tab(VL vl,int nv,struct cdl *t,int n,struct cdl *t1,int n1,struct cdl *rt)
1156: {
1157: int i,j;
1158: struct cdl *p;
1159: Obj c;
1160: DL d;
1161:
1162: bzero(rt,n*n1*sizeof(struct cdl));
1163: for ( j = 0, p = rt; j < n1; j++ ) {
1164: c = (Obj)t1[j].c;
1165: d = t1[j].d;
1166: if ( !c )
1167: break;
1168: for ( i = 0; i < n; i++, p++ ) {
1169: if ( t[i].c ) {
1170: arf_mul(vl,(Obj)t[i].c,c,(Obj *)&p->c);
1171: adddl(nv,t[i].d,d,&p->d);
1172: }
1173: }
1174: }
1175: }
1176:
1177: void muldc(VL vl,DP p,Obj c,DP *pr)
1178: {
1179: MP m,mr=0,mr0;
1180:
1181: if ( !p || !c )
1182: *pr = 0;
1183: else if ( NUM(c) && UNIQ((Q)c) )
1184: *pr = p;
1185: else if ( NUM(c) && MUNIQ((Q)c) )
1186: chsgnd(p,pr);
1187: else {
1188: for ( mr0 = 0, m = BDY(p); m; m = NEXT(m) ) {
1189: NEXTMP(mr0,mr);
1190: if ( NUM(C(m)) && RATN(C(m)) && NUM(c) && RATN(c) )
1191: mulq((Q)C(m),(Q)c,(Q *)&C(mr));
1192: else
1193: arf_mul(vl,C(m),c,&C(mr));
1194: mr->dl = m->dl;
1195: }
1196: NEXT(mr) = 0; MKDP(NV(p),mr0,*pr);
1197: if ( *pr )
1198: (*pr)->sugar = p->sugar;
1199: }
1200: }
1201:
1202: void divdc(VL vl,DP p,Obj c,DP *pr)
1203: {
1204: Obj inv;
1205:
1206: arf_div(vl,(Obj)ONE,c,&inv);
1207: muld(vl,p,(DP)inv,pr);
1208: }
1209:
1210: void muldc_trunc(VL vl,DP p,Obj c,DL dl,DP *pr)
1211: {
1212: MP m,mr=0,mr0;
1213: DL mdl;
1214: int i,n;
1215:
1216: if ( !p || !c ) {
1217: *pr = 0; return;
1218: }
1219: n = NV(p);
1220: for ( mr0 = 0, m = BDY(p); m; m = NEXT(m) ) {
1221: mdl = m->dl;
1222: for ( i = 0; i < n; i++ )
1223: if ( mdl->d[i] < dl->d[i] )
1224: break;
1225: if ( i < n )
1226: break;
1227: NEXTMP(mr0,mr);
1228: if ( NUM(C(m)) && RATN(C(m)) && NUM(c) && RATN(c) )
1229: mulq((Q)C(m),(Q)c,(Q *)&C(mr));
1230: else
1231: arf_mul(vl,C(m),c,&C(mr));
1232: mr->dl = m->dl;
1233: }
1234: NEXT(mr) = 0; MKDP(NV(p),mr0,*pr);
1235: if ( *pr )
1236: (*pr)->sugar = p->sugar;
1237: }
1238:
1239: void divsdc(VL vl,DP p,P c,DP *pr)
1240: {
1241: MP m,mr=0,mr0;
1242:
1243: if ( !c )
1244: error("disvsdc : division by 0");
1245: else if ( !p )
1246: *pr = 0;
1247: else if ( OID(c) > O_P )
1248: error("divsdc : invalid argument");
1249: else {
1250: for ( mr0 = 0, m = BDY(p); m; m = NEXT(m) ) {
1251: NEXTMP(mr0,mr); divsp(vl,(P)C(m),c,(P *)&C(mr)); mr->dl = m->dl;
1252: }
1253: NEXT(mr) = 0; MKDP(NV(p),mr0,*pr);
1254: if ( *pr )
1255: (*pr)->sugar = p->sugar;
1256: }
1257: }
1258:
1259: void adddl(int n,DL d1,DL d2,DL *dr)
1260: {
1261: DL dt;
1262: int i;
1263:
1264: *dr = dt = (DL)MALLOC_ATOMIC((n+1)*sizeof(int));
1265: dt->td = d1->td + d2->td;
1266: for ( i = 0; i < n; i++ )
1267: dt->d[i] = d1->d[i]+d2->d[i];
1268: }
1269:
1270: /* d1 += d2 */
1271:
1272: void adddl_destructive(int n,DL d1,DL d2)
1273: {
1274: int i;
1275:
1276: d1->td += d2->td;
1277: for ( i = 0; i < n; i++ )
1278: d1->d[i] += d2->d[i];
1279: }
1280:
1281: int compd(VL vl,DP p1,DP p2)
1282: {
1283: int n,t;
1284: MP m1,m2;
1285:
1286: if ( !p1 )
1287: return p2 ? -1 : 0;
1288: else if ( !p2 )
1289: return 1;
1290: else if ( NV(p1) != NV(p2) ) {
1291: error("compd : size mismatch");
1292: return 0; /* XXX */
1293: } else {
1294: for ( n = NV(p1), m1 = BDY(p1), m2 = BDY(p2);
1295: m1 && m2; m1 = NEXT(m1), m2 = NEXT(m2) )
1296: if ( (t = (*cmpdl)(n,m1->dl,m2->dl)) ||
1297: (t = arf_comp(vl,C(m1),C(m2)) ) )
1298: return t;
1299: if ( m1 )
1300: return 1;
1301: else if ( m2 )
1302: return -1;
1303: else
1304: return 0;
1305: }
1306: }
1307:
1308: int cmpdl_lex(int n,DL d1,DL d2)
1309: {
1310: int i;
1311:
1312: for ( i = 0; i < n && d1->d[i] == d2->d[i]; i++ );
1313: return i == n ? 0 : (d1->d[i] > d2->d[i] ? 1 : -1);
1314: }
1315:
1316: int cmpdl_revlex(int n,DL d1,DL d2)
1317: {
1318: int i;
1319:
1320: for ( i = n - 1; i >= 0 && d1->d[i] == d2->d[i]; i-- );
1321: return i < 0 ? 0 : (d1->d[i] < d2->d[i] ? 1 : -1);
1322: }
1323:
1324: int cmpdl_gradlex(int n,DL d1,DL d2)
1325: {
1326: if ( d1->td > d2->td )
1327: return 1;
1328: else if ( d1->td < d2->td )
1329: return -1;
1330: else
1331: return cmpdl_lex(n,d1,d2);
1332: }
1333:
1334: int cmpdl_revgradlex(int n,DL d1,DL d2)
1335: {
1336: register int i,c;
1337: register int *p1,*p2;
1338:
1339: if ( d1->td > d2->td )
1340: return 1;
1341: else if ( d1->td < d2->td )
1342: return -1;
1343: else {
1344: i = n-1;
1345: p1 = d1->d+n-1;
1346: p2 = d2->d+n-1;
1347: while ( i >= 7 ) {
1348: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1349: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1350: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1351: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1352: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1353: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1354: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1355: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1356: i -= 8;
1357: }
1358: switch ( i ) {
1359: case 6:
1360: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1361: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1362: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1363: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1364: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1365: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1366: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1367: return 0;
1368: case 5:
1369: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1370: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1371: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1372: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1373: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1374: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1375: return 0;
1376: case 4:
1377: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1378: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1379: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1380: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1381: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1382: return 0;
1383: case 3:
1384: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1385: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1386: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1387: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1388: return 0;
1389: case 2:
1390: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1391: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1392: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1393: return 0;
1394: case 1:
1395: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1396: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1397: return 0;
1398: case 0:
1399: c = (*p1--) - (*p2--); if ( c ) goto LAST;
1400: return 0;
1401: default:
1402: return 0;
1403: }
1404: LAST:
1405: if ( c > 0 ) return -1;
1406: else return 1;
1407: }
1408: }
1409:
1410: int cmpdl_blex(int n,DL d1,DL d2)
1411: {
1412: int c;
1413:
1414: if ( (c = cmpdl_lex(n-1,d1,d2)) )
1415: return c;
1416: else {
1417: c = d1->d[n-1] - d2->d[n-1];
1418: return c > 0 ? 1 : c < 0 ? -1 : 0;
1419: }
1420: }
1421:
1422: int cmpdl_bgradlex(int n,DL d1,DL d2)
1423: {
1424: int e1,e2,c;
1425:
1426: e1 = d1->td - d1->d[n-1]; e2 = d2->td - d2->d[n-1];
1427: if ( e1 > e2 )
1428: return 1;
1429: else if ( e1 < e2 )
1430: return -1;
1431: else {
1432: c = cmpdl_lex(n-1,d1,d2);
1433: if ( c )
1434: return c;
1435: else
1436: return d1->td > d2->td ? 1 : d1->td < d2->td ? -1 : 0;
1437: }
1438: }
1439:
1440: int cmpdl_brevgradlex(int n,DL d1,DL d2)
1441: {
1442: int e1,e2,c;
1443:
1444: e1 = d1->td - d1->d[n-1]; e2 = d2->td - d2->d[n-1];
1445: if ( e1 > e2 )
1446: return 1;
1447: else if ( e1 < e2 )
1448: return -1;
1449: else {
1450: c = cmpdl_revlex(n-1,d1,d2);
1451: if ( c )
1452: return c;
1453: else
1454: return d1->td > d2->td ? 1 : d1->td < d2->td ? -1 : 0;
1455: }
1456: }
1457:
1458: int cmpdl_brevrev(int n,DL d1,DL d2)
1459: {
1460: int e1,e2,f1,f2,c,i;
1461:
1462: for ( i = 0, e1 = 0, e2 = 0; i < dp_nelim; i++ ) {
1463: e1 += d1->d[i]; e2 += d2->d[i];
1464: }
1465: f1 = d1->td - e1; f2 = d2->td - e2;
1466: if ( e1 > e2 )
1467: return 1;
1468: else if ( e1 < e2 )
1469: return -1;
1470: else {
1471: c = cmpdl_revlex(dp_nelim,d1,d2);
1472: if ( c )
1473: return c;
1474: else if ( f1 > f2 )
1475: return 1;
1476: else if ( f1 < f2 )
1477: return -1;
1478: else {
1479: for ( i = n - 1; i >= dp_nelim && d1->d[i] == d2->d[i]; i-- );
1480: return i < dp_nelim ? 0 : (d1->d[i] < d2->d[i] ? 1 : -1);
1481: }
1482: }
1483: }
1484:
1485: int cmpdl_bgradrev(int n,DL d1,DL d2)
1486: {
1487: int e1,e2,f1,f2,c,i;
1488:
1489: for ( i = 0, e1 = 0, e2 = 0; i < dp_nelim; i++ ) {
1490: e1 += d1->d[i]; e2 += d2->d[i];
1491: }
1492: f1 = d1->td - e1; f2 = d2->td - e2;
1493: if ( e1 > e2 )
1494: return 1;
1495: else if ( e1 < e2 )
1496: return -1;
1497: else {
1498: c = cmpdl_lex(dp_nelim,d1,d2);
1499: if ( c )
1500: return c;
1501: else if ( f1 > f2 )
1502: return 1;
1503: else if ( f1 < f2 )
1504: return -1;
1505: else {
1506: for ( i = n - 1; i >= dp_nelim && d1->d[i] == d2->d[i]; i-- );
1507: return i < dp_nelim ? 0 : (d1->d[i] < d2->d[i] ? 1 : -1);
1508: }
1509: }
1510: }
1511:
1512: int cmpdl_blexrev(int n,DL d1,DL d2)
1513: {
1514: int e1,e2,f1,f2,c,i;
1515:
1516: for ( i = 0, e1 = 0, e2 = 0; i < dp_nelim; i++ ) {
1517: e1 += d1->d[i]; e2 += d2->d[i];
1518: }
1519: f1 = d1->td - e1; f2 = d2->td - e2;
1520: c = cmpdl_lex(dp_nelim,d1,d2);
1521: if ( c )
1522: return c;
1523: else if ( f1 > f2 )
1524: return 1;
1525: else if ( f1 < f2 )
1526: return -1;
1527: else {
1528: for ( i = n - 1; i >= dp_nelim && d1->d[i] == d2->d[i]; i-- );
1529: return i < dp_nelim ? 0 : (d1->d[i] < d2->d[i] ? 1 : -1);
1530: }
1531: }
1532:
1533: int cmpdl_elim(int n,DL d1,DL d2)
1534: {
1535: int e1,e2,i;
1536:
1537: for ( i = 0, e1 = 0, e2 = 0; i < dp_nelim; i++ ) {
1538: e1 += d1->d[i]; e2 += d2->d[i];
1539: }
1540: if ( e1 > e2 )
1541: return 1;
1542: else if ( e1 < e2 )
1543: return -1;
1544: else
1545: return cmpdl_revgradlex(n,d1,d2);
1546: }
1547:
1548: int cmpdl_weyl_elim(int n,DL d1,DL d2)
1549: {
1550: int e1,e2,i;
1551:
1552: for ( i = 1, e1 = 0, e2 = 0; i <= dp_nelim; i++ ) {
1553: e1 += d1->d[n-i]; e2 += d2->d[n-i];
1554: }
1555: if ( e1 > e2 )
1556: return 1;
1557: else if ( e1 < e2 )
1558: return -1;
1559: else if ( d1->td > d2->td )
1560: return 1;
1561: else if ( d1->td < d2->td )
1562: return -1;
1563: else return -cmpdl_revlex(n,d1,d2);
1564: }
1565:
1566: /*
1567: a special ordering
1568: 1. total order
1569: 2. (-w,w) for the first 2*m variables
1570: 3. DRL for the first 2*m variables
1571: */
1572:
1573: extern int *current_weyl_weight_vector;
1574:
1575: int cmpdl_homo_ww_drl(int n,DL d1,DL d2)
1576: {
1577: int e1,e2,m,i;
1578: int *p1,*p2;
1579:
1580: if ( d1->td > d2->td )
1581: return 1;
1582: else if ( d1->td < d2->td )
1583: return -1;
1584:
1585: m = n>>1;
1586: for ( i = 0, e1 = e2 = 0, p1 = d1->d, p2 = d2->d; i < m; i++ ) {
1587: e1 += current_weyl_weight_vector[i]*(p1[m+i] - p1[i]);
1588: e2 += current_weyl_weight_vector[i]*(p2[m+i] - p2[i]);
1589: }
1590: if ( e1 > e2 )
1591: return 1;
1592: else if ( e1 < e2 )
1593: return -1;
1594:
1595: e1 = d1->td - d1->d[n-1];
1596: e2 = d2->td - d2->d[n-1];
1597: if ( e1 > e2 )
1598: return 1;
1599: else if ( e1 < e2 )
1600: return -1;
1601:
1602: for ( i= n - 1, p1 = d1->d+n-1, p2 = d2->d+n-1;
1603: i >= 0 && *p1 == *p2; i--, p1--, p2-- );
1604: return i < 0 ? 0 : (*p1 < *p2 ? 1 : -1);
1605: }
1606:
1607: int cmpdl_drl_zigzag(int n,DL d1,DL d2)
1608: {
1609: int i,t,m;
1610: int *p1,*p2;
1611:
1612: if ( d1->td > d2->td )
1613: return 1;
1614: else if ( d1->td < d2->td )
1615: return -1;
1616: else {
1617: m = n>>1;
1618: for ( i= m - 1, p1 = d1->d, p2 = d2->d; i >= 0; i-- ) {
1619: if ( (t = p1[m+i] - p2[m+i]) ) return t > 0 ? -1 : 1;
1620: if ( (t = p1[i] - p2[i]) ) return t > 0 ? -1 : 1;
1621: }
1622: return 0;
1623: }
1624: }
1625:
1626: int cmpdl_homo_ww_drl_zigzag(int n,DL d1,DL d2)
1627: {
1628: int e1,e2,m,i,t;
1629: int *p1,*p2;
1630:
1631: if ( d1->td > d2->td )
1632: return 1;
1633: else if ( d1->td < d2->td )
1634: return -1;
1635:
1636: m = n>>1;
1637: for ( i = 0, e1 = e2 = 0, p1 = d1->d, p2 = d2->d; i < m; i++ ) {
1638: e1 += current_weyl_weight_vector[i]*(p1[m+i] - p1[i]);
1639: e2 += current_weyl_weight_vector[i]*(p2[m+i] - p2[i]);
1640: }
1641: if ( e1 > e2 )
1642: return 1;
1643: else if ( e1 < e2 )
1644: return -1;
1645:
1646: e1 = d1->td - d1->d[n-1];
1647: e2 = d2->td - d2->d[n-1];
1648: if ( e1 > e2 )
1649: return 1;
1650: else if ( e1 < e2 )
1651: return -1;
1652:
1653: for ( i= m - 1, p1 = d1->d, p2 = d2->d; i >= 0; i-- ) {
1654: if ( (t = p1[m+i] - p2[m+i]) ) return t > 0 ? -1 : 1;
1655: if ( (t = p1[i] - p2[i]) ) return t > 0 ? -1 : 1;
1656: }
1657: return 0;
1658: }
1659:
1660: int cmpdl_order_pair(int n,DL d1,DL d2)
1661: {
1662: int e1,e2,i,j,l;
1663: int *t1,*t2;
1664: int len,head;
1665: struct order_pair *pair;
1666:
1667: len = dp_current_spec->ord.block.length;
1668: if ( n != dp_current_spec->nv )
1669: error("cmpdl_order_pair : incompatible order specification");
1670: pair = dp_current_spec->ord.block.order_pair;
1671:
1672: head = 0;
1673: for ( i = 0, t1 = d1->d, t2 = d2->d; i < len; i++ ) {
1674: l = pair[i].length;
1675: switch ( pair[i].order ) {
1676: case 0:
1677: for ( j = 0, e1 = e2 = 0; j < l; j++ ) {
1678: e1 += MUL_WEIGHT(t1[j],head+j);
1679: e2 += MUL_WEIGHT(t2[j],head+j);
1680: }
1681: if ( e1 > e2 )
1682: return 1;
1683: else if ( e1 < e2 )
1684: return -1;
1685: else {
1686: for ( j = l - 1; j >= 0 && t1[j] == t2[j]; j-- );
1687: if ( j >= 0 )
1688: return t1[j] < t2[j] ? 1 : -1;
1689: }
1690: break;
1691: case 1:
1692: for ( j = 0, e1 = e2 = 0; j < l; j++ ) {
1693: e1 += MUL_WEIGHT(t1[j],head+j);
1694: e2 += MUL_WEIGHT(t2[j],head+j);
1695: }
1696: if ( e1 > e2 )
1697: return 1;
1698: else if ( e1 < e2 )
1699: return -1;
1700: else {
1701: for ( j = 0; j < l && t1[j] == t2[j]; j++ );
1702: if ( j < l )
1703: return t1[j] > t2[j] ? 1 : -1;
1704: }
1705: break;
1706: case 2:
1707: for ( j = 0; j < l && t1[j] == t2[j]; j++ );
1708: if ( j < l )
1709: return t1[j] > t2[j] ? 1 : -1;
1710: break;
1711: default:
1712: error("cmpdl_order_pair : invalid order"); break;
1713: }
1714: t1 += l; t2 += l; head += l;
1715: }
1716: return 0;
1717: }
1718:
1719: int cmpdl_composite(int nv,DL d1,DL d2)
1720: {
1721: int n,i,j,k,start,s,len;
1722: int *dw;
1723: struct sparse_weight *sw;
1724: struct weight_or_block *worb;
1725: int *w,*t1,*t2;
1726:
1727: n = dp_current_spec->ord.composite.length;
1728: worb = dp_current_spec->ord.composite.w_or_b;
1729: w = dp_dl_work;
1730: for ( i = 0, t1 = d1->d, t2 = d2->d; i < nv; i++ )
1731: w[i] = t1[i]-t2[i];
1732: for ( i = 0; i < n; i++, worb++ ) {
1733: len = worb->length;
1734: switch ( worb->type ) {
1735: case IS_DENSE_WEIGHT:
1736: dw = worb->body.dense_weight;
1737: for ( j = 0, s = 0; j < len; j++ )
1738: s += dw[j]*w[j];
1739: if ( s > 0 ) return 1;
1740: else if ( s < 0 ) return -1;
1741: break;
1742: case IS_SPARSE_WEIGHT:
1743: sw = worb->body.sparse_weight;
1744: for ( j = 0, s = 0; j < len; j++ )
1745: s += sw[j].value*w[sw[j].pos];
1746: if ( s > 0 ) return 1;
1747: else if ( s < 0 ) return -1;
1748: break;
1749: case IS_BLOCK:
1750: start = worb->body.block.start;
1751: switch ( worb->body.block.order ) {
1752: case 0:
1753: for ( j = 0, k = start, s = 0; j < len; j++, k++ ) {
1754: s += MUL_WEIGHT(w[k],k);
1755: }
1756: if ( s > 0 ) return 1;
1757: else if ( s < 0 ) return -1;
1758: else {
1759: for ( j = k-1; j >= start && w[j] == 0; j-- );
1760: if ( j >= start )
1761: return w[j] < 0 ? 1 : -1;
1762: }
1763: break;
1764: case 1:
1765: for ( j = 0, k = start, s = 0; j < len; j++, k++ ) {
1766: s += MUL_WEIGHT(w[k],k);
1767: }
1768: if ( s > 0 ) return 1;
1769: else if ( s < 0 ) return -1;
1770: else {
1771: for ( j = 0, k = start; j < len && w[j] == 0; j++, k++ );
1772: if ( j < len )
1773: return w[j] > 0 ? 1 : -1;
1774: }
1775: break;
1776: case 2:
1777: for ( j = 0, k = start; j < len && w[j] == 0; j++, k++ );
1778: if ( j < len )
1779: return w[j] > 0 ? 1 : -1;
1780: break;
1781: }
1782: break;
1783: }
1784: }
1785: return 0;
1786: }
1787:
1788: int cmpdl_matrix(int n,DL d1,DL d2)
1789: {
1790: int *v,*w,*t1,*t2;
1791: int s,i,j,len;
1792: int **matrix;
1793:
1794: for ( i = 0, t1 = d1->d, t2 = d2->d, w = dp_dl_work; i < n; i++ )
1795: w[i] = t1[i]-t2[i];
1796: len = dp_current_spec->ord.matrix.row;
1797: matrix = dp_current_spec->ord.matrix.matrix;
1798: for ( j = 0; j < len; j++ ) {
1799: v = matrix[j];
1800: for ( i = 0, s = 0; i < n; i++ )
1801: s += v[i]*w[i];
1802: if ( s > 0 )
1803: return 1;
1804: else if ( s < 0 )
1805: return -1;
1806: }
1807: return 0;
1808: }
1809:
1810: int cmpdl_top_weight(int n,DL d1,DL d2)
1811: {
1812: int *w;
1813: Z **mat;
1814: Z *a;
1815: mpz_t sum;
1816: int len,i,sgn,tsgn,row,k;
1817: int *t1,*t2;
1818:
1819: w = (int *)ALLOCA(n*sizeof(int));
1820: len = current_top_weight_len+3;
1821: t1 = d1->d; t2 = d2->d;
1822: for ( i = 0; i < n; i++ ) w[i] = t1[i]-t2[i];
1823: mpz_init_set_ui(sum,0);
1824: if ( OID(current_top_weight) == O_VECT ) {
1825: mat = (Z **)&BDY((VECT)current_top_weight);
1826: row = 1;
1827: } else {
1828: mat = (Z **)BDY((MAT)current_top_weight);
1829: row = ((MAT)current_top_weight)->row;
1830: }
1831: for ( k = 0; k < row; k++ ) {
1832: a = mat[k];
1833: for ( i = 0; i < n; i++ ) {
1834: if ( !a[i] || !w[i] ) continue;
1835: if ( w[i] > 0 )
1836: mpz_addmul_ui(sum,BDY(a[i]),(unsigned int)w[i]);
1837: else
1838: mpz_submul_ui(sum,BDY(a[i]),(unsigned int)(-w[i]));
1839: }
1840: sgn = mpz_sgn(sum);
1841: if ( sgn > 0 ) return 1;
1842: else if ( sgn < 0 ) return -1;
1843: }
1844: return (*cmpdl_tie_breaker)(n,d1,d2);
1845: }
1846:
1847: GeoBucket create_bucket()
1848: {
1849: GeoBucket g;
1850:
1851: g = CALLOC(1,sizeof(struct oGeoBucket));
1852: g->m = 32;
1853: return g;
1854: }
1855:
1856: int length(NODE d);
1857:
1858: void add_bucket(GeoBucket g,NODE d,int nv)
1859: {
1860: int l,k,m;
1861:
1862: l = length(d);
1863: for ( k = 0, m = 1; l > m; k++, m <<= 1 );
1864: /* 2^(k-1) < l <= 2^k */
1865: d = symb_merge(g->body[k],d,nv);
1866: for ( ; length(d) > (1<<(k)); k++ ) {
1867: g->body[k] = 0;
1868: d = symb_merge(g->body[k+1],d,nv);
1869: }
1870: g->body[k] = d;
1871: g->m = MAX(g->m,k);
1872: }
1873:
1874: DL remove_head_bucket(GeoBucket g,int nv)
1875: {
1876: int j,i,c,m;
1877: DL d;
1878:
1879: j = -1;
1880: m = g->m;
1881: for ( i = 0; i <= m; i++ ) {
1882: if ( !g->body[i] )
1883: continue;
1884: if ( j < 0 ) j = i;
1885: else {
1886: c = (*cmpdl)(nv,g->body[i]->body,g->body[j]->body);
1887: if ( c > 0 )
1888: j = i;
1889: else if ( c == 0 )
1890: g->body[i] = NEXT(g->body[i]);
1891: }
1892: }
1893: if ( j < 0 )
1894: return 0;
1895: else {
1896: d = g->body[j]->body;
1897: g->body[j] = NEXT(g->body[j]);
1898: return d;
1899: }
1900: }
1901:
1902: /* DPV functions */
1903:
1904: void adddv(VL vl,DPV p1,DPV p2,DPV *pr)
1905: {
1906: int i,len;
1907: DP *e;
1908:
1909: if ( !p1 || !p2 )
1910: error("adddv : invalid argument");
1911: else if ( p1->len != p2->len )
1912: error("adddv : size mismatch");
1913: else {
1914: len = p1->len;
1915: e = (DP *)MALLOC(p1->len*sizeof(DP));
1916: for ( i = 0; i < len; i++ )
1917: addd(vl,p1->body[i],p2->body[i],&e[i]);
1918: MKDPV(len,e,*pr);
1919: (*pr)->sugar = MAX(p1->sugar,p2->sugar);
1920: }
1921: }
1922:
1923: void subdv(VL vl,DPV p1,DPV p2,DPV *pr)
1924: {
1925: int i,len;
1926: DP *e;
1927:
1928: if ( !p1 || !p2 )
1929: error("subdv : invalid argument");
1930: else if ( p1->len != p2->len )
1931: error("subdv : size mismatch");
1932: else {
1933: len = p1->len;
1934: e = (DP *)MALLOC(p1->len*sizeof(DP));
1935: for ( i = 0; i < len; i++ )
1936: subd(vl,p1->body[i],p2->body[i],&e[i]);
1937: MKDPV(len,e,*pr);
1938: (*pr)->sugar = MAX(p1->sugar,p2->sugar);
1939: }
1940: }
1941:
1942: void chsgndv(DPV p1,DPV *pr)
1943: {
1944: int i,len;
1945: DP *e;
1946:
1947: if ( !p1 )
1948: error("subdv : invalid argument");
1949: else {
1950: len = p1->len;
1951: e = (DP *)MALLOC(p1->len*sizeof(DP));
1952: for ( i = 0; i < len; i++ )
1953: chsgnd(p1->body[i],&e[i]);
1954: MKDPV(len,e,*pr);
1955: (*pr)->sugar = p1->sugar;
1956: }
1957: }
1958:
1959: void muldv(VL vl,DP p1,DPV p2,DPV *pr)
1960: {
1961: int i,len;
1962: DP *e;
1963:
1964: len = p2->len;
1965: e = (DP *)MALLOC(p2->len*sizeof(DP));
1966: if ( !p1 ) {
1967: MKDPV(len,e,*pr);
1968: (*pr)->sugar = 0;
1969: } else {
1970: for ( i = 0; i < len; i++ )
1971: muld(vl,p1,p2->body[i],&e[i]);
1972: MKDPV(len,e,*pr);
1973: (*pr)->sugar = p1->sugar + p2->sugar;
1974: }
1975: }
1976:
1977: int compdv(VL vl,DPV p1,DPV p2)
1978: {
1979: int i,t,len;
1980:
1981: if ( p1->len != p2->len ) {
1982: error("compdv : size mismatch");
1983: return 0; /* XXX */
1984: } else {
1985: len = p1->len;
1986: for ( i = 0; i < len; i++ )
1987: if ( (t = compd(vl,p1->body[i],p2->body[i])) )
1988: return t;
1989: return 0;
1990: }
1991: }
1992:
1993: int ni_next(int *a,int n)
1994: {
1995: int i,j,k,kj;
1996:
1997: /* find the first nonzero a[j] */
1998: for ( j = 0; j < n && a[j] == 0; j++ );
1999: /* find the first zero a[k] after a[j] */
2000: for ( k = j; k < n && a[k] == 1; k++ );
2001: if ( k == n ) return 0;
2002: /* a[0] = 0, ... , a[j-1] = 0, a[j] = 1, ..., a[k-1] = 1, a[k] = 0 */
2003: /* a[0] = 1,..., a[k-j-2] = 1, a[k-j-1] = 0, ..., a[k-1] = 0, a[k] = 1 */
2004: kj = k-j-1;
2005: for ( i = 0; i < kj; i++ ) a[i] = 1;
2006: for ( ; i < k; i++ ) a[i] = 0;
2007: a[k] = 1;
2008: return 1;
2009: }
2010:
2011: int comp_nbm(NBM a,NBM b)
2012: {
2013: int d,i,ai,bi;
2014: unsigned int *ab,*bb;
2015:
2016: if ( a->d > b->d ) return 1;
2017: else if ( a->d < b->d ) return -1;
2018: else {
2019: d = a->d; ab = a->b; bb = b->b;
2020: #if 0
2021: w = (d+31)/32;
2022: for ( i = 0; i < w; i++ )
2023: if ( ab[i] > bb[i] ) return 1;
2024: else if ( ab[i] < bb[i] ) return -1;
2025: #else
2026: for ( i = 0; i < d; i++ ) {
2027: ai = NBM_GET(ab,i);
2028: bi = NBM_GET(bb,i);
2029: if ( ai > bi ) return 1;
2030: else if ( ai < bi ) return -1;
2031: }
2032: #endif
2033: return 0;
2034: }
2035: }
2036:
2037: NBM mul_nbm(NBM a,NBM b)
2038: {
2039: int ad,bd,d,i,j;
2040: unsigned int *ab,*bb,*mb;
2041: NBM m;
2042:
2043: ad = a->d; bd = b->d; ab = a->b; bb = b->b;
2044: d = ad + bd;
2045: NEWNBM(m); NEWNBMBDY(m,d);
2046: m->d = d; mulp(CO,a->c,b->c,&m->c); mb = m->b;
2047: j = 0;
2048: for ( i = 0; i < ad; i++, j++ )
2049: if ( NBM_GET(ab,i) ) NBM_SET(mb,j);
2050: else NBM_CLR(mb,j);
2051: for ( i = 0; i < bd; i++, j++ )
2052: if ( NBM_GET(bb,i) ) NBM_SET(mb,j);
2053: else NBM_CLR(mb,j);
2054: return m;
2055: }
2056:
2057: NBP nbmtonbp(NBM m)
2058: {
2059: NODE n;
2060: NBP u;
2061:
2062: MKNODE(n,m,0);
2063: MKNBP(u,n);
2064: return u;
2065: }
2066:
2067: /* a=c*x*rest -> a0= x*rest, ah=x, ar=rest */
2068:
2069: P separate_nbm(NBM a,NBP *a0,NBP *ah,NBP *ar)
2070: {
2071: int i,d1;
2072: NBM t;
2073:
2074: if ( !a->d ) error("separate_nbm : invalid argument");
2075:
2076: if ( a0 ) {
2077: NEWNBM(t); t->d = a->d; t->b = a->b; t->c = (P)ONE;
2078: *a0 = nbmtonbp(t);
2079: }
2080:
2081: if ( ah ) {
2082: NEWNBM(t); NEWNBMBDY(t,1); t->d = 1; t->c = (P)ONE;
2083: if ( NBM_GET(a->b,0) ) NBM_SET(t->b,0);
2084: else NBM_CLR(t->b,0);
2085: *ah = nbmtonbp(t);
2086: }
2087:
2088: if ( ar ) {
2089: d1 = a->d-1;
2090: NEWNBM(t); NEWNBMBDY(t,d1); t->d = d1; t->c = (P)ONE;
2091: for ( i = 0; i < d1; i++ ) {
2092: if ( NBM_GET(a->b,i+1) ) NBM_SET(t->b,i);
2093: else NBM_CLR(t->b,i);
2094: }
2095: *ar = nbmtonbp(t);
2096: }
2097:
2098: return a->c;
2099: }
2100:
2101: /* a=c*rest*x -> a0= rest*x, ar=rest, at=x */
2102:
2103: P separate_tail_nbm(NBM a,NBP *a0,NBP *ar,NBP *at)
2104: {
2105: int i,d,d1;
2106: NBM t;
2107:
2108: if ( !(d=a->d) ) error("separate_tail_nbm : invalid argument");
2109:
2110: if ( a0 ) {
2111: NEWNBM(t); t->d = a->d; t->b = a->b; t->c = (P)ONE;
2112: *a0 = nbmtonbp(t);
2113: }
2114:
2115: d1 = a->d-1;
2116: if ( at ) {
2117: NEWNBM(t); NEWNBMBDY(t,1); t->d = 1; t->c = (P)ONE;
2118: if ( NBM_GET(a->b,d1) ) NBM_SET(t->b,0);
2119: else NBM_CLR(t->b,0);
2120: *at = nbmtonbp(t);
2121: }
2122:
2123: if ( ar ) {
2124: NEWNBM(t); NEWNBMBDY(t,d1); t->d = d1; t->c = (P)ONE;
2125: for ( i = 0; i < d1; i++ ) {
2126: if ( NBM_GET(a->b,i) ) NBM_SET(t->b,i);
2127: else NBM_CLR(t->b,i);
2128: }
2129: *ar = nbmtonbp(t);
2130: }
2131:
2132: return a->c;
2133: }
2134:
2135: NBP make_xky(int k)
2136: {
2137: int k1,i;
2138: NBM t;
2139:
2140: NEWNBM(t); NEWNBMBDY(t,k); t->d = k; t->c = (P)ONE;
2141: k1 = k-1;
2142: for ( i = 0; i < k1; i++ ) NBM_SET(t->b,i);
2143: NBM_CLR(t->b,i);
2144: return nbmtonbp(t);
2145: }
2146:
2147: /* a=c*x^(k-1)*y*rest -> a0= x^(k-1)*y*rest, ah=x^(k-1)*y, ar=rest */
2148:
2149: P separate_xky_nbm(NBM a,NBP *a0,NBP *ah,NBP *ar)
2150: {
2151: int i,d1,k,k1;
2152: NBM t;
2153:
2154: if ( !a->d )
2155: error("separate_nbm : invalid argument");
2156: for ( i = 0; i < a->d && NBM_GET(a->b,i); i++ );
2157: if ( i == a->d )
2158: error("separate_nbm : invalid argument");
2159: k1 = i;
2160: k = i+1;
2161:
2162: if ( a0 ) {
2163: NEWNBM(t); t->d = a->d; t->b = a->b; t->c = (P)ONE;
2164: *a0 = nbmtonbp(t);
2165: }
2166:
2167: if ( ah ) {
2168: NEWNBM(t); NEWNBMBDY(t,k); t->d = k; t->c = (P)ONE;
2169: for ( i = 0; i < k1; i++ ) NBM_SET(t->b,i);
2170: NBM_CLR(t->b,i);
2171: *ah = nbmtonbp(t);
2172: }
2173:
2174: if ( ar ) {
2175: d1 = a->d-k;
2176: NEWNBM(t); NEWNBMBDY(t,d1); t->d = d1; t->c = (P)ONE;
2177: for ( i = 0; i < d1; i++ ) {
2178: if ( NBM_GET(a->b,i+k) ) NBM_SET(t->b,i);
2179: else NBM_CLR(t->b,i);
2180: }
2181: *ar = nbmtonbp(t);
2182: }
2183:
2184: return a->c;
2185: }
2186:
2187: void shuffle_mulnbp(VL vl,NBP p1,NBP p2, NBP *rp);
2188: void harmonic_mulnbp(VL vl,NBP p1,NBP p2, NBP *rp);
2189: void mulnbmnbp(VL vl,NBM m,NBP p, NBP *rp);
2190: void mulnbpnbm(VL vl,NBP p,NBM m, NBP *rp);
2191:
2192: NBP shuffle_mul_nbm(NBM a,NBM b)
2193: {
2194: NBP u,a0,ah,ar,b0,bh,br,a1,b1,t;
2195: P ac,bc,c;
2196:
2197: if ( !a->d || !b->d )
2198: u = nbmtonbp(mul_nbm(a,b));
2199: else {
2200: ac = separate_nbm(a,&a0,&ah,&ar);
2201: bc = separate_nbm(b,&b0,&bh,&br);
2202: mulp(CO,ac,bc,&c);
2203: shuffle_mulnbp(CO,ar,b0,&t); mulnbp(CO,ah,t,&a1);
2204: shuffle_mulnbp(CO,a0,br,&t); mulnbp(CO,bh,t,&b1);
2205: addnbp(CO,a1,b1,&t); mulnbp(CO,(NBP)c,t,&u);
2206: }
2207: return u;
2208: }
2209:
2210: NBP harmonic_mul_nbm(NBM a,NBM b)
2211: {
2212: NBP u,a0,ah,ar,b0,bh,br,a1,b1,t,s,abk,ab1;
2213: P ac,bc,c;
2214:
2215: if ( !a->d || !b->d )
2216: u = nbmtonbp(mul_nbm(a,b));
2217: else {
2218: mulp(CO,a->c,b->c,&c);
2219: ac = separate_xky_nbm(a,&a0,&ah,&ar);
2220: bc = separate_xky_nbm(b,&b0,&bh,&br);
2221: mulp(CO,ac,bc,&c);
2222: harmonic_mulnbp(CO,ar,b0,&t); mulnbp(CO,ah,t,&a1);
2223: harmonic_mulnbp(CO,a0,br,&t); mulnbp(CO,bh,t,&b1);
2224: abk = make_xky(((NBM)BDY(BDY(ah)))->d+((NBM)BDY(BDY(bh)))->d);
2225: harmonic_mulnbp(CO,ar,br,&t); mulnbp(CO,abk,t,&ab1);
2226: addnbp(CO,a1,b1,&t); addnbp(CO,t,ab1,&s); mulnbp(CO,(NBP)c,s,&u);
2227: }
2228: return u;
2229:
2230: }
2231:
2232: void addnbp(VL vl,NBP p1,NBP p2, NBP *rp)
2233: {
2234: NODE b1,b2,br=0,br0;
2235: NBM m1,m2,m;
2236: P c;
2237:
2238: if ( !p1 )
2239: *rp = p2;
2240: else if ( !p2 )
2241: *rp = p1;
2242: else {
2243: for ( b1 = BDY(p1), b2 = BDY(p2), br0 = 0; b1 && b2; ) {
2244: m1 = (NBM)BDY(b1); m2 = (NBM)BDY(b2);
2245: switch ( comp_nbm(m1,m2) ) {
2246: case 0:
2247: addp(CO,m1->c,m2->c,&c);
2248: if ( c ) {
2249: NEXTNODE(br0,br);
2250: NEWNBM(m); m->d = m1->d; m->c = c; m->b = m1->b;
2251: BDY(br) = (pointer)m;
2252: }
2253: b1 = NEXT(b1); b2 = NEXT(b2); break;
2254: case 1:
2255: NEXTNODE(br0,br); BDY(br) = BDY(b1);
2256: b1 = NEXT(b1); break;
2257: case -1:
2258: NEXTNODE(br0,br); BDY(br) = BDY(b2);
2259: b2 = NEXT(b2); break;
2260: }
2261: }
2262: if ( !br0 )
2263: if ( b1 )
2264: br0 = b1;
2265: else if ( b2 )
2266: br0 = b2;
2267: else {
2268: *rp = 0;
2269: return;
2270: }
2271: else if ( b1 )
2272: NEXT(br) = b1;
2273: else if ( b2 )
2274: NEXT(br) = b2;
2275: else
2276: NEXT(br) = 0;
2277: MKNBP(*rp,br0);
2278: }
2279: }
2280:
2281: void subnbp(VL vl,NBP p1,NBP p2, NBP *rp)
2282: {
2283: NBP t;
2284:
2285: chsgnnbp(p2,&t);
2286: addnbp(vl,p1,t,rp);
2287: }
2288:
2289: void chsgnnbp(NBP p,NBP *rp)
2290: {
2291: NODE r0,r=0,b;
2292: NBM m,m1;
2293:
2294: for ( r0 = 0, b = BDY(p); b; b = NEXT(b) ) {
2295: NEXTNODE(r0,r);
2296: m = (NBM)BDY(b);
2297: NEWNBM(m1); m1->d = m->d; m1->b = m->b; chsgnp(m->c,&m1->c);
2298: BDY(r) = m1;
2299: }
2300: if ( r0 ) NEXT(r) = 0;
2301: MKNBP(*rp,r0);
2302: }
2303:
2304: void mulnbp(VL vl,NBP p1,NBP p2, NBP *rp)
2305: {
2306: NODE b,n;
2307: NBP r,t,s;
2308: NBM m;
2309:
2310: if ( !p1 || !p2 ) {
2311: *rp = 0; return;
2312: }
2313: if ( OID(p1) != O_NBP ) {
2314: if ( !POLY(p1) )
2315: error("mulnbp : invalid argument");
2316: NEWNBM(m); m->d = 0; m->b = 0; m->c = (P)p1;
2317: MKNODE(n,m,0); MKNBP(p1,n);
2318: }
2319: if ( OID(p2) != O_NBP ) {
2320: if ( !POLY(p2) )
2321: error("mulnbp : invalid argument");
2322: NEWNBM(m); m->d = 0; m->b = 0; m->c = (P)p2;
2323: MKNODE(n,m,0); MKNBP(p2,n);
2324: }
2325: if ( length(BDY(p1)) < length(BDY(p2)) ) {
2326: for ( r = 0, b = BDY(p1); b; b = NEXT(b) ) {
2327: mulnbmnbp(vl,(NBM)BDY(b),p2,&t);
2328: addnbp(vl,r,t,&s); r = s;
2329: }
2330: *rp = r;
2331: } else {
2332: for ( r = 0, b = BDY(p2); b; b = NEXT(b) ) {
2333: mulnbpnbm(vl,p1,(NBM)BDY(b),&t);
2334: addnbp(vl,r,t,&s); r = s;
2335: }
2336: *rp = r;
2337: }
2338: }
2339:
2340: void mulnbmnbp(VL vl,NBM m,NBP p, NBP *rp)
2341: {
2342: NODE b,r0,r=0;
2343:
2344: if ( !p ) *rp = 0;
2345: else {
2346: for ( r0 = 0, b = BDY(p); b; b = NEXT(b) ) {
2347: NEXTNODE(r0,r);
2348: BDY(r) = mul_nbm(m,(NBM)BDY(b));
2349: }
2350: if ( r0 ) NEXT(r) = 0;
2351: MKNBP(*rp,r0);
2352: }
2353: }
2354:
2355: void mulnbpnbm(VL vl,NBP p,NBM m, NBP *rp)
2356: {
2357: NODE b,r0,r=0;
2358:
2359: if ( !p ) *rp = 0;
2360: else {
2361: for ( r0 = 0, b = BDY(p); b; b = NEXT(b) ) {
2362: NEXTNODE(r0,r);
2363: BDY(r) = mul_nbm((NBM)BDY(b),m);
2364: }
2365: if ( r0 ) NEXT(r) = 0;
2366: MKNBP(*rp,r0);
2367: }
2368: }
2369:
2370: void pwrnbp(VL vl,NBP a,Z q,NBP *c)
2371: {
2372: NBP a1,a2;
2373: Z q1,r1,two;
2374: NBM m;
2375: NODE r;
2376:
2377: if ( !q ) {
2378: NEWNBM(m); m->d = 0; m->c = (P)ONE; m->b = 0;
2379: MKNODE(r,m,0); MKNBP(*c,r);
2380: } else if ( !a )
2381: *c = 0;
2382: else if ( UNIQ(q) )
2383: *c = a;
2384: else {
1.2 noro 2385: STOZ(2,two);
1.1 noro 2386: divqrz(q,two,&q1,&r1);
2387: pwrnbp(vl,a,q1,&a1);
2388: mulnbp(vl,a1,a1,&a2);
2389: if ( r1 )
2390: mulnbp(vl,a2,a,c);
2391: else
2392: *c = a2;
2393: }
2394: }
2395:
2396: int compnbp(VL vl,NBP p1,NBP p2)
2397: {
2398: NODE n1,n2;
2399: NBM m1,m2;
2400: int t;
2401:
2402: if ( !p1 )
2403: return p2 ? -1 : 0;
2404: else if ( !p2 )
2405: return 1;
2406: else {
2407: for ( n1 = BDY(p1), n2 = BDY(p2);
2408: n1 && n2; n1 = NEXT(n1), n2 = NEXT(n2) ) {
2409: m1 = (NBM)BDY(n1); m2 = (NBM)BDY(n2);
2410: if ( (t = comp_nbm(m1,m2)) || (t = compp(CO,m1->c,m2->c) ) )
2411: return t;
2412: }
2413: if ( n1 )
2414: return 1;
2415: else if ( n2 )
2416: return -1;
2417: else
2418: return 0;
2419: }
2420: }
2421:
2422: void shuffle_mulnbp(VL vl,NBP p1,NBP p2, NBP *rp)
2423: {
2424: NODE b1,b2,n;
2425: NBP r,t,s;
2426: NBM m;
2427:
2428: if ( !p1 || !p2 ) {
2429: *rp = 0; return;
2430: }
2431: if ( OID(p1) != O_NBP ) {
2432: if ( !POLY(p1) )
2433: error("shuffle_mulnbp : invalid argument");
2434: NEWNBM(m); m->d = 0; m->b = 0; m->c = (P)p1;
2435: MKNODE(n,m,0); MKNBP(p1,n);
2436: }
2437: if ( OID(p2) != O_NBP ) {
2438: if ( !POLY(p2) )
2439: error("shuffle_mulnbp : invalid argument");
2440: NEWNBM(m); m->d = 0; m->b = 0; m->c = (P)p2;
2441: MKNODE(n,m,0); MKNBP(p2,n);
2442: }
2443: for ( r = 0, b1 = BDY(p1); b1; b1 = NEXT(b1) )
2444: for ( m = BDY(b1), b2 = BDY(p2); b2; b2 = NEXT(b2) ) {
2445: t = shuffle_mul_nbm(m,(NBM)BDY(b2));
2446: addnbp(vl,r,t,&s); r = s;
2447: }
2448: *rp = r;
2449: }
2450:
2451: void harmonic_mulnbp(VL vl,NBP p1,NBP p2, NBP *rp)
2452: {
2453: NODE b1,b2,n;
2454: NBP r,t,s;
2455: NBM m;
2456:
2457: if ( !p1 || !p2 ) {
2458: *rp = 0; return;
2459: }
2460: if ( OID(p1) != O_NBP ) {
2461: if ( !POLY(p1) )
2462: error("harmonic_mulnbp : invalid argument");
2463: NEWNBM(m); m->d = 0; m->b = 0; m->c = (P)p1;
2464: MKNODE(n,m,0); MKNBP(p1,n);
2465: }
2466: if ( OID(p2) != O_NBP ) {
2467: if ( !POLY(p2) )
2468: error("harmonic_mulnbp : invalid argument");
2469: NEWNBM(m); m->d = 0; m->b = 0; m->c = (P)p2;
2470: MKNODE(n,m,0); MKNBP(p2,n);
2471: }
2472: for ( r = 0, b1 = BDY(p1); b1; b1 = NEXT(b1) )
2473: for ( m = BDY(b1), b2 = BDY(p2); b2; b2 = NEXT(b2) ) {
2474: t = harmonic_mul_nbm(m,(NBM)BDY(b2));
2475: addnbp(vl,r,t,&s); r = s;
2476: }
2477: *rp = r;
2478: }
2479:
2480: #if 0
2481: NBP shuffle_mul_nbm(NBM a,NBM b)
2482: {
2483: int ad,bd,d,i,ai,bi,bit,s;
2484: int *ab,*bb,*wmb,*w;
2485: NBM wm,tm;
2486: P c,c1;
2487: NODE r,t,t1,p;
2488: NBP u;
2489:
2490: ad = a->d; bd = b->d; ab = a->b; bb = b->b;
2491: d = ad + bd;
2492: w = (int *)ALLOCA(d*sizeof(int));
2493: NEWNBM(wm); NEWNBMBDY(wm,d); wmb = wm->b;
2494: for ( i = 0; i < ad; i++ ) w[i] = 1;
2495: for ( ; i < d; i++ ) w[i] = 0;
2496: mulp(CO,a->c,b->c,&c);
2497: r = 0;
2498: do {
2499: wm->d = d; wm->c = c;
2500: ai = 0; bi = 0;
2501: for ( i = 0; i < d; i++ ) {
2502: if ( w[i] ) { bit = NBM_GET(ab,ai); ai++; }
2503: else { bit = NBM_GET(bb,bi); bi++; }
2504: if ( bit ) NBM_SET(wmb,i);
2505: else NBM_CLR(wmb,i);
2506: }
2507: for ( p = 0, t = r; t; p = t, t = NEXT(t) ) {
2508: tm = (NBM)BDY(t);
2509: s = comp_nbm(tm,wm);
2510: if ( s < 0 ) {
2511: /* insert */
2512: MKNODE(t1,wm,t);
2513: if ( !p ) r = t1;
2514: else NEXT(p) = t1;
2515: NEWNBM(wm); NEWNBMBDY(wm,d); wmb = wm->b;
2516: break;
2517: } else if ( s == 0 ) {
2518: /* add coefs */
2519: addp(CO,tm->c,c,&c1);
2520: if ( c1 ) tm->c = c1;
2521: else NEXT(p) = NEXT(t);
2522: break;
2523: }
2524: }
2525: if ( !t ) {
2526: /* append */
2527: MKNODE(t1,wm,t);
2528: if ( !p ) r = t1;
2529: else NEXT(p) = t1;
2530: NEWNBM(wm); NEWNBMBDY(wm,d); wmb = wm->b;
2531: }
2532: } while ( ni_next(w,d) );
2533: MKNBP(u,r);
2534: return u;
2535: }
2536:
2537: int nbmtoxky(NBM a,int *b)
2538: {
2539: int d,i,j,k;
2540: int *p;
2541:
2542: d = a->d; p = a->b;
2543: for ( i = j = 0, k = 1; i < d; i++ ) {
2544: if ( !NBM_GET(p,i) ) {
2545: b[j++] = k;
2546: k = 1;
2547: } else k++;
2548: }
2549: return j;
2550: }
2551:
2552: NBP harmonic_mul_nbm(NBM a,NBM b)
2553: {
2554: int da,db,d,la,lb,lmax,lmin,l,lab,la1,lb1,lab1;
2555: int i,j,k,ia,ib,s;
2556: int *wa,*wb,*w,*wab,*wa1,*wmb;
2557: P c,c1;
2558: NBM wm,tm;
2559: NODE r,t1,t,p;
2560: NBP u;
2561:
2562: da = a->d; db = b->d; d = da+db;
2563: wa = (int *)ALLOCA(da*sizeof(int));
2564: wb = (int *)ALLOCA(db*sizeof(int));
2565: la = nbmtoxky(a,wa);
2566: lb = nbmtoxky(b,wb);
2567: mulp(CO,a->c,b->c,&c);
2568: /* wa[0],..,wa[la-1] <-> x^wa[0]y x^wa[1]y .. */
2569: /* lmax : total length */
2570: lmax = la+lb;
2571: lmin = la>lb?la:lb;
2572: w = (int *)ALLOCA(lmax*sizeof(int));
2573: /* position of a+b */
2574: wab = (int *)ALLOCA(lmax*sizeof(int));
2575: /* position of a */
2576: wa1 = (int *)ALLOCA(lmax*sizeof(int));
2577: NEWNBM(wm); NEWNBMBDY(wm,d); wmb = wm->b;
2578: for ( l = lmin, r = 0; l <= lmax; l++ ) {
2579: lab = lmax - l;
2580: la1 = la - lab;
2581: lb1 = lb - lab;
2582: lab1 = l-lab;
2583: /* partion l into three parts: a, b, a+b */
2584: /* initialize wab */
2585: for ( i = 0; i < lab; i++ ) wab[i] = 1;
2586: for ( ; i < l; i++ ) wab[i] = 0;
2587: do {
2588: /* initialize wa1 */
2589: for ( i = 0; i < la1; i++ ) wa1[i] = 1;
2590: for ( ; i < lab1; i++ ) wa1[i] = 0;
2591: do {
2592: ia = 0; ib = 0;
2593: for ( i = j = 0; i < l; i++ )
2594: if ( wab[i] ) w[i] = wa[ia++]+wb[ib++];
2595: else if ( wa1[j++] ) w[i] = wa[ia++];
2596: else w[i] = wb[ib++];
2597: for ( i = j = 0; i < l; i++ ) {
2598: for ( k = w[i]-1; k > 0; k--, j++ ) NBM_SET(wmb,j);
2599: NBM_CLR(wmb,j); j++;
2600: }
2601: wm->d = j; wm->c = c;
2602: for ( p = 0, t = r; t; p = t, t = NEXT(t) ) {
2603: tm = (NBM)BDY(t);
2604: s = comp_nbm(tm,wm);
2605: if ( s < 0 ) {
2606: /* insert */
2607: MKNODE(t1,wm,t);
2608: if ( !p ) r = t1;
2609: else NEXT(p) = t1;
2610: NEWNBM(wm); NEWNBMBDY(wm,d); wmb = wm->b;
2611: break;
2612: } else if ( s == 0 ) {
2613: /* add coefs */
2614: addp(CO,tm->c,c,&c1);
2615: if ( c1 ) tm->c = c1;
2616: else NEXT(p) = NEXT(t);
2617: break;
2618: }
2619: }
2620: if ( !t ) {
2621: /* append */
2622: MKNODE(t1,wm,t);
2623: if ( !p ) r = t1;
2624: else NEXT(p) = t1;
2625: NEWNBM(wm); NEWNBMBDY(wm,d); wmb = wm->b;
2626: }
2627: } while ( ni_next(wa1,lab1) );
2628: } while ( ni_next(wab,l) );
2629: }
2630: MKNBP(u,r);
2631: return u;
2632: }
2633: #endif
2634:
2635: /* DPM functions */
2636:
1.3 ! noro 2637: DMMstack dmm_stack;
! 2638:
! 2639: // data=[Ink,...,In0,Base]
! 2640: // Ini = a list of module monomials
! 2641: // Base=an order spec for polynomial ring or module
! 2642: void set_schreyer_order(NODE data)
! 2643: {
! 2644: DMMstack t;
! 2645: int len,i;
! 2646: NODE in;
! 2647: struct order_spec *base;
! 2648:
! 2649: if ( !data ) {
! 2650: dmm_stack = 0;
! 2651: if ( dp_current_spec && dp_current_spec->id >= 256 )
! 2652: dpm_ordtype = dp_current_spec->ispot;
! 2653: else
! 2654: dpm_ordtype = 0;
! 2655: return;
! 2656: } else if ( NEXT(data) == 0 ) {
! 2657: create_order_spec(0,BDY(data),&base);
! 2658: NEWDMMstack(t);
! 2659: t->in = 0;
! 2660: t->rank = 0;
! 2661: t->ordtype = base->ispot;
! 2662: t->next = 0;
! 2663: dmm_stack = t;
! 2664: dpm_ordtype = 2;
! 2665: } else {
! 2666: set_schreyer_order(NEXT(data));
! 2667: in = BDY((LIST)BDY(data));
! 2668: len = length(in);
! 2669: NEWDMMstack(t);
! 2670: t->in = 0;
! 2671: t->rank = len;
! 2672: t->in = (DMM *)MALLOC((len+1)*sizeof(DMM));
! 2673: t->ordtype = 0;
! 2674: t->next = dmm_stack;
! 2675: dmm_stack = t;
! 2676: for ( i = 1; i <= len; i++, in = NEXT(in) ) {
! 2677: t->in[i] = BDY((DPM)BDY(in));
! 2678: }
! 2679: }
! 2680: }
! 2681:
! 2682: int compdmm_schreyer(int n,DMM m1,DMM m2)
! 2683: {
! 2684: DL d1,d2;
! 2685: int pos1,pos2,t;
! 2686: DMM *in;
! 2687: DMMstack s;
! 2688:
! 2689: NEWDL(d1,n); _copydl(n,m1->dl,d1); pos1 = m1->pos;
! 2690: NEWDL(d2,n); _copydl(n,m2->dl,d2); pos2 = m2->pos;
! 2691: for ( s = dmm_stack; s->in; s = NEXT(s) ) {
! 2692: in = s->in;
! 2693: _addtodl(n,in[pos1]->dl,d1);
! 2694: _addtodl(n,in[pos2]->dl,d2);
! 2695: if ( _eqdl(n,d1,d2) && in[pos1]->pos == in[pos2]->pos ) {
! 2696: if ( pos1 < pos2 ) return 1;
! 2697: else if ( pos1 > pos2 ) return -1;
! 2698: else return 0;
! 2699: }
! 2700: pos1 = in[pos1]->pos;
! 2701: pos2 = in[pos2]->pos;
! 2702: }
! 2703: // comparison by the bottom order
! 2704: if ( s->ordtype == 1 ) {
! 2705: if ( pos1 < pos2 ) return 1;
! 2706: else if ( pos1 > pos2 ) return -1;
! 2707: else return (*cmpdl)(n,d1,d2);
! 2708: } else {
! 2709: t = (*cmpdl)(n,d1,d2);
! 2710: if ( t ) return t;
! 2711: else if ( pos1 < pos2 ) return 1;
! 2712: else if ( pos1 > pos2 ) return -1;
! 2713: else return 0;
! 2714: }
! 2715: }
! 2716:
1.1 noro 2717: int compdmm(int n,DMM m1,DMM m2)
2718: {
2719: int t;
2720:
1.3 ! noro 2721: if ( dpm_ordtype == 1 ) {
1.1 noro 2722: if ( m1->pos < m2->pos ) return 1;
2723: else if ( m1->pos > m2->pos ) return -1;
2724: else return (*cmpdl)(n,m1->dl,m2->dl);
1.3 ! noro 2725: } else if ( dpm_ordtype == 0 ) {
1.1 noro 2726: t = (*cmpdl)(n,m1->dl,m2->dl);
2727: if ( t ) return t;
2728: else if ( m1->pos < m2->pos ) return 1;
2729: else if ( m1->pos > m2->pos ) return -1;
2730: else return 0;
1.3 ! noro 2731: } else if ( dpm_ordtype == 2 ) {
! 2732: return compdmm_schreyer(n,m1,m2);
1.1 noro 2733: }
2734: }
2735:
2736: void adddpm(VL vl,DPM p1,DPM p2,DPM *pr)
2737: {
2738: int n;
2739: DMM m1,m2,mr=0,mr0;
2740: Obj t;
2741: DL d;
2742:
2743: if ( !p1 )
2744: *pr = p2;
2745: else if ( !p2 )
2746: *pr = p1;
2747: else {
2748: for ( n = NV(p1), m1 = BDY(p1), m2 = BDY(p2), mr0 = 0; m1 && m2; )
2749: switch ( compdmm(n,m1,m2) ) {
2750: case 0:
2751: arf_add(vl,C(m1),C(m2),&t);
2752: if ( t ) {
2753: NEXTDMM(mr0,mr); mr->pos = m1->pos; mr->dl = m1->dl; C(mr) = t;
2754: }
2755: m1 = NEXT(m1); m2 = NEXT(m2); break;
2756: case 1:
2757: NEXTDMM(mr0,mr); mr->pos = m1->pos; mr->dl = m1->dl; C(mr) = C(m1);
2758: m1 = NEXT(m1); break;
2759: case -1:
2760: NEXTDMM(mr0,mr); mr->pos = m2->pos; mr->dl = m2->dl; C(mr) = C(m2);
2761: m2 = NEXT(m2); break;
2762: }
2763: if ( !mr0 )
2764: if ( m1 )
2765: mr0 = m1;
2766: else if ( m2 )
2767: mr0 = m2;
2768: else {
2769: *pr = 0;
2770: return;
2771: }
2772: else if ( m1 )
2773: NEXT(mr) = m1;
2774: else if ( m2 )
2775: NEXT(mr) = m2;
2776: else
2777: NEXT(mr) = 0;
2778: MKDPM(NV(p1),mr0,*pr);
2779: if ( *pr )
2780: (*pr)->sugar = MAX(p1->sugar,p2->sugar);
2781: }
2782: }
2783:
2784: void subdpm(VL vl,DPM p1,DPM p2,DPM *pr)
2785: {
2786: DPM t;
2787:
2788: if ( !p2 )
2789: *pr = p1;
2790: else {
2791: chsgndpm(p2,&t); adddpm(vl,p1,t,pr);
2792: }
2793: }
2794:
2795: void chsgndpm(DPM p,DPM *pr)
2796: {
2797: DMM m,mr=0,mr0;
2798: Obj r;
2799:
2800: if ( !p )
2801: *pr = 0;
2802: else {
2803: for ( mr0 = 0, m = BDY(p); m; m = NEXT(m) ) {
2804: NEXTDMM(mr0,mr); arf_chsgn(C(m),&C(mr)); mr->pos = m->pos; mr->dl = m->dl;
2805: }
2806: NEXT(mr) = 0; MKDPM(NV(p),mr0,*pr);
2807: if ( *pr )
2808: (*pr)->sugar = p->sugar;
2809: }
2810: }
2811:
2812: void mulcdpm(VL vl,Obj c,DPM p,DPM *pr)
2813: {
2814: DMM m,mr=0,mr0;
2815:
2816: if ( !p || !c )
2817: *pr = 0;
2818: else if ( NUM(c) && UNIQ((Q)c) )
2819: *pr = p;
2820: else if ( NUM(c) && MUNIQ((Q)c) )
2821: chsgndpm(p,pr);
2822: else {
2823: for ( mr0 = 0, m = BDY(p); m; m = NEXT(m) ) {
2824: NEXTDMM(mr0,mr);
2825: arf_mul(vl,C(m),c,&C(mr));
2826: mr->pos = m->pos;
2827: mr->dl = m->dl;
2828: }
2829: NEXT(mr) = 0; MKDPM(NV(p),mr0,*pr);
2830: if ( *pr )
2831: (*pr)->sugar = p->sugar;
2832: }
2833: }
2834:
2835: void comm_mulmpdpm(VL vl,MP m0,DPM p,DPM *pr)
2836: {
2837: DMM m,mr=0,mr0;
2838: DL d;
2839: Obj c;
2840: int n;
2841:
2842: if ( !p )
2843: *pr = 0;
2844: else {
2845: n = NV(p);
2846: d = m0->dl;
2847: c = C(m0);
2848: for ( mr0 = 0, m = BDY(p); m; m = NEXT(m) ) {
2849: NEXTDMM(mr0,mr);
2850: arf_mul(vl,C(m),c,&C(mr));
2851: mr->pos = m->pos;
2852: adddl(n,m->dl,d,&mr->dl);
2853: }
2854: NEXT(mr) = 0; MKDPM(NV(p),mr0,*pr);
2855: if ( *pr )
2856: (*pr)->sugar = p->sugar;
2857: }
2858: }
2859:
2860: void weyl_mulmpdpm(VL vl,MP m0,DPM p,DPM *pr)
2861: {
2862: DPM r,t,t1;
2863: DMM m;
2864: DL d0;
2865: int n,n2,l,i,j,tlen;
2866: struct oMP mp;
2867: static DMM *w,*psum;
2868: static struct cdl *tab;
2869: static int wlen;
2870: static int rtlen;
2871:
2872: if ( !p )
2873: *pr = 0;
2874: else {
2875: for ( m = BDY(p), l = 0; m; m = NEXT(m), l++ );
2876: if ( l > wlen ) {
2877: if ( w ) GCFREE(w);
2878: w = (DMM *)MALLOC(l*sizeof(DMM));
2879: wlen = l;
2880: }
2881: for ( m = BDY(p), i = 0; i < l; m = NEXT(m), i++ )
2882: w[i] = m;
2883:
2884: n = NV(p); n2 = n>>1;
2885: d0 = m0->dl;
2886: for ( i = 0, tlen = 1; i < n2; i++ )
2887: tlen *= d0->d[n2+i]+1;
2888: if ( tlen > rtlen ) {
2889: if ( tab ) GCFREE(tab);
2890: if ( psum ) GCFREE(psum);
2891: rtlen = tlen;
2892: tab = (struct cdl *)MALLOC(rtlen*sizeof(struct cdl));
2893: psum = (DMM *)MALLOC(rtlen*sizeof(DMM));
2894: }
2895: bzero(psum,tlen*sizeof(DMM));
2896: for ( i = l-1; i >= 0; i-- ) {
2897: bzero(tab,tlen*sizeof(struct cdl));
2898: mp.dl = w[i]->dl; mp.c = C(w[i]); mp.next = 0;
2899: weyl_mulmm(vl,m0,&mp,n,tab,tlen);
2900: for ( j = 0; j < tlen; j++ ) {
2901: if ( tab[j].c ) {
2902: NEWDMM(m); m->dl = tab[j].d; m->pos = w[i]->pos; C(m) = (Obj)tab[j].c; NEXT(m) = psum[j];
2903: psum[j] = m;
2904: }
2905: }
2906: }
2907: for ( j = tlen-1, r = 0; j >= 0; j-- )
2908: if ( psum[j] ) {
2909: MKDPM(n,psum[j],t); adddpm(vl,r,t,&t1); r = t1;
2910: }
2911: if ( r )
2912: r->sugar = p->sugar + m0->dl->td;
2913: *pr = r;
2914: }
2915: }
2916:
2917: void mulobjdpm(VL vl,Obj p1,DPM p2,DPM *pr)
2918: {
2919: MP m;
2920: DPM s,t,u;
2921:
2922: if ( !p1 || !p2 )
2923: *pr = 0;
2924: else if ( OID(p1) != O_DP )
2925: mulcdpm(vl,p1,p2,pr);
2926: else {
2927: s = 0;
2928: for ( m = BDY((DP)p1); m; m = NEXT(m) ) {
2929: if ( do_weyl )
2930: weyl_mulmpdpm(vl,m,p2,&t);
2931: else
2932: comm_mulmpdpm(vl,m,p2,&t);
2933: adddpm(vl,s,t,&u); s = u;
2934: }
2935: *pr = s;
2936: }
2937: }
2938:
2939: int compdpm(VL vl,DPM p1,DPM p2)
2940: {
2941: int n,t;
2942: DMM m1,m2;
2943:
2944: if ( !p1 )
2945: return p2 ? -1 : 0;
2946: else if ( !p2 )
2947: return 1;
2948: else if ( NV(p1) != NV(p2) ) {
2949: error("compdpm : size mismatch");
2950: return 0; /* XXX */
2951: } else {
2952: for ( n = NV(p1), m1 = BDY(p1), m2 = BDY(p2);
2953: m1 && m2; m1 = NEXT(m1), m2 = NEXT(m2) )
2954: if ( (t = compdmm(n,m1,m2)) ||
2955: (t = arf_comp(vl,C(m1),C(m2)) ) )
2956: return t;
2957: if ( m1 )
2958: return 1;
2959: else if ( m2 )
2960: return -1;
2961: else
2962: return 0;
2963: }
2964: }
2965:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>