[BACK]Return to bfct CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2018 / lib

Annotation of OpenXM_contrib2/asir2018/lib/bfct, Revision 1.1

1.1     ! noro        1: /*
        !             2:  * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
        !             3:  * All rights reserved.
        !             4:  *
        !             5:  * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
        !             6:  * non-exclusive and royalty-free license to use, copy, modify and
        !             7:  * redistribute, solely for non-commercial and non-profit purposes, the
        !             8:  * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
        !             9:  * conditions of this Agreement. For the avoidance of doubt, you acquire
        !            10:  * only a limited right to use the SOFTWARE hereunder, and FLL or any
        !            11:  * third party developer retains all rights, including but not limited to
        !            12:  * copyrights, in and to the SOFTWARE.
        !            13:  *
        !            14:  * (1) FLL does not grant you a license in any way for commercial
        !            15:  * purposes. You may use the SOFTWARE only for non-commercial and
        !            16:  * non-profit purposes only, such as academic, research and internal
        !            17:  * business use.
        !            18:  * (2) The SOFTWARE is protected by the Copyright Law of Japan and
        !            19:  * international copyright treaties. If you make copies of the SOFTWARE,
        !            20:  * with or without modification, as permitted hereunder, you shall affix
        !            21:  * to all such copies of the SOFTWARE the above copyright notice.
        !            22:  * (3) An explicit reference to this SOFTWARE and its copyright owner
        !            23:  * shall be made on your publication or presentation in any form of the
        !            24:  * results obtained by use of the SOFTWARE.
        !            25:  * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
        !            26:  * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
        !            27:  * for such modification or the source code of the modified part of the
        !            28:  * SOFTWARE.
        !            29:  *
        !            30:  * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
        !            31:  * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
        !            32:  * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
        !            33:  * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
        !            34:  * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
        !            35:  * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
        !            36:  * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
        !            37:  * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
        !            38:  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
        !            39:  * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
        !            40:  * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
        !            41:  * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
        !            42:  * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
        !            43:  * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
        !            44:  * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
        !            45:  * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
        !            46:  * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
        !            47:  *
        !            48:  * $OpenXM$
        !            49:  */
        !            50: /* requires 'primdec' */
        !            51:
        !            52: #define TMP_S ssssssss
        !            53: #define TMP_DS dssssssss
        !            54: #define TMP_T dtttttttt
        !            55: #define TMP_DT tttttttt
        !            56: #define TMP_Y1 yyyyyyyy1
        !            57: #define TMP_DY1 dyyyyyyyy1
        !            58: #define TMP_Y2 yyyyyyyy2
        !            59: #define TMP_DY2 dyyyyyyyy2
        !            60:
        !            61: if (!module_definedp("gr")) load("gr")$ else{ }$
        !            62: if (!module_definedp("primdec")) load("primdec")$ else{ }$
        !            63: module bfct $
        !            64:   /* Empty for now. It will be used in a future. */
        !            65: endmodule $
        !            66:
        !            67: /* toplevel */
        !            68:
        !            69: def bfunction(F)
        !            70: {
        !            71:        V = vars(F);
        !            72:        N = length(V);
        !            73:        D = newvect(N);
        !            74:
        !            75:        for ( I = 0; I < N; I++ )
        !            76:                D[I] = [deg(F,V[I]),V[I]];
        !            77:        qsort(D,compare_first);
        !            78:        for ( V = [], I = 0; I < N; I++ )
        !            79:                V = cons(D[I][1],V);
        !            80:        return bfct_via_gbfct_weight(F,V);
        !            81: }
        !            82:
        !            83: /* annihilating ideal of F^s */
        !            84:
        !            85: def ann(F)
        !            86: {
        !            87:        if ( member(s,vars(F)) )
        !            88:                error("ann : the variable 's' is reserved.");
        !            89:        V = vars(F);
        !            90:        N = length(V);
        !            91:        D = newvect(N);
        !            92:
        !            93:        for ( I = 0; I < N; I++ )
        !            94:                D[I] = [deg(F,V[I]),V[I]];
        !            95:        qsort(D,compare_first);
        !            96:        for ( V = [], I = N-1; I >= 0; I-- )
        !            97:                V = cons(D[I][1],V);
        !            98:
        !            99:        for ( I = N-1, DV = []; I >= 0; I-- )
        !           100:                DV = cons(strtov("d"+rtostr(V[I])),DV);
        !           101:
        !           102:        W = append([TMP_Y1,TMP_Y2,TMP_T],V);
        !           103:        DW = append([TMP_DY1,TMP_DY2,TMP_DT],DV);
        !           104:
        !           105:        B = [1-TMP_Y1*TMP_Y2,TMP_T-TMP_Y1*F];
        !           106:        for ( I = 0; I < N; I++ ) {
        !           107:                B = cons(DV[I]+TMP_Y1*diff(F,V[I])*TMP_DT,B);
        !           108:        }
        !           109:
        !           110:        /* homogenized (heuristics) */
        !           111:        dp_nelim(2);
        !           112:        G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6);
        !           113:        G1 = [];
        !           114:        for ( T = G0; T != []; T = cdr(T) ) {
        !           115:                E = car(T); VL = vars(E);
        !           116:                if ( !member(TMP_Y1,VL) && !member(TMP_Y2,VL) )
        !           117:                        G1 = cons(E,G1);
        !           118:        }
        !           119:        G2 = map(psi,G1,TMP_T,TMP_DT);
        !           120:        G3 = map(subst,G2,TMP_T,-1-s);
        !           121:        return G3;
        !           122: }
        !           123:
        !           124: /*
        !           125:  * compute J_f|s=r, where r = the minimal integral root of global b_f(s)
        !           126:  * ann0(F) returns [MinRoot,Ideal]
        !           127:  */
        !           128:
        !           129: def ann0(F)
        !           130: {
        !           131:        F = subst(F,s,TMP_S);
        !           132:        Ann = ann(F);
        !           133:        Bf = bfunction(F);
        !           134:
        !           135:        FList = cdr(fctr(Bf));
        !           136:        for ( T = FList, Min = 0; T != []; T = cdr(T) ) {
        !           137:                LF = car(car(T));
        !           138:                Root = -coef(LF,0)/coef(LF,1);
        !           139:                if ( dn(Root) == 1 && Root < Min )
        !           140:                        Min = Root;
        !           141:        }
        !           142:        return [Min,map(subst,Ann,s,Min,TMP_S,s,TMP_DS,ds)];
        !           143: }
        !           144:
        !           145: def psi(F,T,DT)
        !           146: {
        !           147:        D = dp_ptod(F,[T,DT]);
        !           148:        Wmax = weight(D);
        !           149:        D1 = dp_rest(D);
        !           150:        for ( ; D1; D1 = dp_rest(D1) )
        !           151:                if ( weight(D1) > Wmax )
        !           152:                        Wmax = weight(D1);
        !           153:        for ( D1 = D, Dmax = 0; D1; D1 = dp_rest(D1) )
        !           154:                if ( weight(D1) == Wmax )
        !           155:                        Dmax += dp_hm(D1);
        !           156:        if ( Wmax >= 0 )
        !           157:                Dmax = dp_weyl_mul(<<Wmax,0>>,Dmax);
        !           158:        else
        !           159:                Dmax = dp_weyl_mul(<<0,-Wmax>>,Dmax);
        !           160:        Rmax = dp_dtop(Dmax,[T,DT]);
        !           161:        R = b_subst(subst(Rmax,DT,1),T);
        !           162:        return R;
        !           163: }
        !           164:
        !           165: def weight(D)
        !           166: {
        !           167:        V = dp_etov(D);
        !           168:        return V[1]-V[0];
        !           169: }
        !           170:
        !           171: def compare_first(A,B)
        !           172: {
        !           173:        A0 = car(A);
        !           174:        B0 = car(B);
        !           175:        if ( A0 > B0 )
        !           176:                return 1;
        !           177:        else if ( A0 < B0 )
        !           178:                return -1;
        !           179:        else
        !           180:                return 0;
        !           181: }
        !           182:
        !           183: /* generic b-function w.r.t. weight vector W */
        !           184:
        !           185: def generic_bfct(F,V,DV,W)
        !           186: {
        !           187:        N = length(V);
        !           188:        N2 = N*2;
        !           189:
        !           190:        /* If W is a list, convert it to a vector */
        !           191:        if ( type(W) == 4 )
        !           192:                W = newvect(length(W),W);
        !           193:        dp_weyl_set_weight(W);
        !           194:
        !           195:        /* create a term order M in D<x,d> (DRL) */
        !           196:        M = newmat(N2,N2);
        !           197:        for ( J = 0; J < N2; J++ )
        !           198:                M[0][J] = 1;
        !           199:        for ( I = 1; I < N2; I++ )
        !           200:                M[I][N2-I] = -1;
        !           201:
        !           202:        VDV = append(V,DV);
        !           203:
        !           204:        /* create a non-term order MW in D<x,d> */
        !           205:        MW = newmat(N2+1,N2);
        !           206:        for ( J = 0; J < N; J++ )
        !           207:                MW[0][J] = -W[J];
        !           208:        for ( ; J < N2; J++ )
        !           209:                MW[0][J] = W[J-N];
        !           210:        for ( I = 1; I <= N2; I++ )
        !           211:                for ( J = 0; J < N2; J++ )
        !           212:                        MW[I][J] = M[I-1][J];
        !           213:
        !           214:        /* create a homogenized term order MWH in D<x,d,h> */
        !           215:        MWH = newmat(N2+2,N2+1);
        !           216:        for ( J = 0; J <= N2; J++ )
        !           217:                MWH[0][J] = 1;
        !           218:        for ( I = 1; I <= N2+1; I++ )
        !           219:                for ( J = 0; J < N2; J++ )
        !           220:                        MWH[I][J] = MW[I-1][J];
        !           221:
        !           222:        /* homogenize F */
        !           223:        VDVH = append(VDV,[h]);
        !           224:        FH = map(dp_dtop,map(dp_homo,map(dp_ptod,F,VDV)),VDVH);
        !           225:
        !           226:        /* compute a groebner basis of FH w.r.t. MWH */
        !           227:        dp_gr_flags(["Top",1,"NoRA",1]);
        !           228:        GH = dp_weyl_gr_main(FH,VDVH,0,1,11);
        !           229:        dp_gr_flags(["Top",0,"NoRA",0]);
        !           230:
        !           231:        /* dehomigenize GH */
        !           232:        G = map(subst,GH,h,1);
        !           233:
        !           234:        /* G is a groebner basis w.r.t. a non term order MW */
        !           235:        /* take the initial part w.r.t. (-W,W) */
        !           236:        GIN = map(initial_part,G,VDV,MW,W);
        !           237:
        !           238:        /* GIN is a groebner basis w.r.t. a term order M */
        !           239:        /* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */
        !           240:
        !           241:        /* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */
        !           242:        for ( I = 0, T = 0; I < N; I++ )
        !           243:                T += W[I]*V[I]*DV[I];
        !           244:        B = weyl_minipoly(GIN,VDV,0,T); /* M represents DRL order */
        !           245:        return B;
        !           246: }
        !           247:
        !           248: /* all term reduction + interreduce */
        !           249: def generic_bfct_1(F,V,DV,W)
        !           250: {
        !           251:        N = length(V);
        !           252:        N2 = N*2;
        !           253:
        !           254:        /* If W is a list, convert it to a vector */
        !           255:        if ( type(W) == 4 )
        !           256:                W = newvect(length(W),W);
        !           257:        dp_weyl_set_weight(W);
        !           258:
        !           259:        /* create a term order M in D<x,d> (DRL) */
        !           260:        M = newmat(N2,N2);
        !           261:        for ( J = 0; J < N2; J++ )
        !           262:                M[0][J] = 1;
        !           263:        for ( I = 1; I < N2; I++ )
        !           264:                M[I][N2-I] = -1;
        !           265:
        !           266:        VDV = append(V,DV);
        !           267:
        !           268:        /* create a non-term order MW in D<x,d> */
        !           269:        MW = newmat(N2+1,N2);
        !           270:        for ( J = 0; J < N; J++ )
        !           271:                MW[0][J] = -W[J];
        !           272:        for ( ; J < N2; J++ )
        !           273:                MW[0][J] = W[J-N];
        !           274:        for ( I = 1; I <= N2; I++ )
        !           275:                for ( J = 0; J < N2; J++ )
        !           276:                        MW[I][J] = M[I-1][J];
        !           277:
        !           278:        /* create a homogenized term order MWH in D<x,d,h> */
        !           279:        MWH = newmat(N2+2,N2+1);
        !           280:        for ( J = 0; J <= N2; J++ )
        !           281:                MWH[0][J] = 1;
        !           282:        for ( I = 1; I <= N2+1; I++ )
        !           283:                for ( J = 0; J < N2; J++ )
        !           284:                        MWH[I][J] = MW[I-1][J];
        !           285:
        !           286:        /* homogenize F */
        !           287:        VDVH = append(VDV,[h]);
        !           288:        FH = map(dp_dtop,map(dp_homo,map(dp_ptod,F,VDV)),VDVH);
        !           289:
        !           290:        /* compute a groebner basis of FH w.r.t. MWH */
        !           291: /*     dp_gr_flags(["Top",1,"NoRA",1]); */
        !           292:        GH = dp_weyl_gr_main(FH,VDVH,0,1,11);
        !           293: /*     dp_gr_flags(["Top",0,"NoRA",0]); */
        !           294:
        !           295:        /* dehomigenize GH */
        !           296:        G = map(subst,GH,h,1);
        !           297:
        !           298:        /* G is a groebner basis w.r.t. a non term order MW */
        !           299:        /* take the initial part w.r.t. (-W,W) */
        !           300:        GIN = map(initial_part,G,VDV,MW,W);
        !           301:
        !           302:        /* GIN is a groebner basis w.r.t. a term order M */
        !           303:        /* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */
        !           304:
        !           305:        /* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */
        !           306:        for ( I = 0, T = 0; I < N; I++ )
        !           307:                T += W[I]*V[I]*DV[I];
        !           308:        B = weyl_minipoly(GIN,VDV,0,T); /* M represents DRL order */
        !           309:        return B;
        !           310: }
        !           311:
        !           312: def initial_part(F,V,MW,W)
        !           313: {
        !           314:        N2 = length(V);
        !           315:        N = N2/2;
        !           316:        dp_ord(MW);
        !           317:        DF = dp_ptod(F,V);
        !           318:        R = dp_hm(DF);
        !           319:        DF = dp_rest(DF);
        !           320:
        !           321:        E = dp_etov(R);
        !           322:        for ( I = 0, TW = 0; I < N; I++ )
        !           323:                TW += W[I]*(-E[I]+E[N+I]);
        !           324:        RW = TW;
        !           325:
        !           326:        for ( ; DF; DF = dp_rest(DF) ) {
        !           327:                E = dp_etov(DF);
        !           328:                for ( I = 0, TW = 0; I < N; I++ )
        !           329:                        TW += W[I]*(-E[I]+E[N+I]);
        !           330:                if ( TW == RW )
        !           331:                        R += dp_hm(DF);
        !           332:                else if ( TW < RW )
        !           333:                        break;
        !           334:                else
        !           335:                        error("initial_part : cannot happen");
        !           336:        }
        !           337:        return dp_dtop(R,V);
        !           338:
        !           339: }
        !           340:
        !           341: /* b-function of F ? */
        !           342:
        !           343: def bfct(F)
        !           344: {
        !           345:        /* XXX */
        !           346:        F = replace_vars_f(F);
        !           347:
        !           348:        V = vars(F);
        !           349:        N = length(V);
        !           350:        D = newvect(N);
        !           351:
        !           352:        for ( I = 0; I < N; I++ )
        !           353:                D[I] = [deg(F,V[I]),V[I]];
        !           354:        qsort(D,compare_first);
        !           355:        for ( V = [], I = 0; I < N; I++ )
        !           356:                V = cons(D[I][1],V);
        !           357:        for ( I = N-1, DV = []; I >= 0; I-- )
        !           358:                DV = cons(strtov("d"+rtostr(V[I])),DV);
        !           359:        V1 = cons(s,V); DV1 = cons(ds,DV);
        !           360:
        !           361:        G0 = indicial1(F,reverse(V));
        !           362:        G1 = dp_weyl_gr_main(G0,append(V1,DV1),0,1,0);
        !           363:        Minipoly = weyl_minipoly(G1,append(V1,DV1),0,s);
        !           364:        return Minipoly;
        !           365: }
        !           366:
        !           367: /* called from bfct() only */
        !           368:
        !           369: def indicial1(F,V)
        !           370: {
        !           371:        W = append([y1,t],V);
        !           372:        N = length(V);
        !           373:        B = [t-y1*F];
        !           374:        for ( I = N-1, DV = []; I >= 0; I-- )
        !           375:                DV = cons(strtov("d"+rtostr(V[I])),DV);
        !           376:        DW = append([dy1,dt],DV);
        !           377:        for ( I = 0; I < N; I++ ) {
        !           378:                B = cons(DV[I]+y1*diff(F,V[I])*dt,B);
        !           379:        }
        !           380:        dp_nelim(1);
        !           381:
        !           382:        /* homogenized (heuristics) */
        !           383:        G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6);
        !           384:        G1 = map(subst,G0,y1,1);
        !           385:        G2 = map(psi,G1,t,dt);
        !           386:        G3 = map(subst,G2,t,-s-1);
        !           387:        return G3;
        !           388: }
        !           389:
        !           390: /* b-function computation via generic_bfct() (experimental) */
        !           391:
        !           392: def bfct_via_gbfct(F)
        !           393: {
        !           394:        V = vars(F);
        !           395:        N = length(V);
        !           396:        D = newvect(N);
        !           397:
        !           398:        for ( I = 0; I < N; I++ )
        !           399:                D[I] = [deg(F,V[I]),V[I]];
        !           400:        qsort(D,compare_first);
        !           401:        for ( V = [], I = 0; I < N; I++ )
        !           402:                V = cons(D[I][1],V);
        !           403:        V = reverse(V);
        !           404:        for ( I = N-1, DV = []; I >= 0; I-- )
        !           405:                DV = cons(strtov("d"+rtostr(V[I])),DV);
        !           406:
        !           407:        B = [TMP_T-F];
        !           408:        for ( I = 0; I < N; I++ ) {
        !           409:                B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
        !           410:        }
        !           411:        V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV);
        !           412:        W = newvect(N+1);
        !           413:        W[0] = 1;
        !           414:        R = generic_bfct(B,V1,DV1,W);
        !           415:
        !           416:        return subst(R,s,-s-1);
        !           417: }
        !           418:
        !           419: /* use an order s.t. [t,x,y,z,...,dt,dx,dy,dz,...,h] */
        !           420:
        !           421: def bfct_via_gbfct_weight(F,V)
        !           422: {
        !           423:        N = length(V);
        !           424:        D = newvect(N);
        !           425:        Wt = getopt(weight);
        !           426:        if ( type(Wt) != 4 ) {
        !           427:                for ( I = 0, Wt = []; I < N; I++ )
        !           428:                        Wt = cons(1,Wt);
        !           429:        }
        !           430:        Tdeg = w_tdeg(F,V,Wt);
        !           431:        WtV = newvect(2*(N+1)+1);
        !           432:        WtV[0] = Tdeg;
        !           433:        WtV[N+1] = 1;
        !           434:        /* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */
        !           435:        for ( I = 1; I <= N; I++ ) {
        !           436:                WtV[I] = Wt[I-1];
        !           437:                WtV[N+1+I] = Tdeg-Wt[I-1]+1;
        !           438:        }
        !           439:        WtV[2*(N+1)] = 1;
        !           440:        dp_set_weight(WtV);
        !           441:        for ( I = N-1, DV = []; I >= 0; I-- )
        !           442:                DV = cons(strtov("d"+rtostr(V[I])),DV);
        !           443:
        !           444:        B = [TMP_T-F];
        !           445:        for ( I = 0; I < N; I++ ) {
        !           446:                B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
        !           447:        }
        !           448:        V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV);
        !           449:        W = newvect(N+1);
        !           450:        W[0] = 1;
        !           451:        R = generic_bfct_1(B,V1,DV1,W);
        !           452:        dp_set_weight(0);
        !           453:        return subst(R,s,-s-1);
        !           454: }
        !           455:
        !           456: /* use an order s.t. [x,y,z,...,t,dx,dy,dz,...,dt,h] */
        !           457:
        !           458: def bfct_via_gbfct_weight_1(F,V)
        !           459: {
        !           460:        N = length(V);
        !           461:        D = newvect(N);
        !           462:        Wt = getopt(weight);
        !           463:        if ( type(Wt) != 4 ) {
        !           464:                for ( I = 0, Wt = []; I < N; I++ )
        !           465:                        Wt = cons(1,Wt);
        !           466:        }
        !           467:        Tdeg = w_tdeg(F,V,Wt);
        !           468:        WtV = newvect(2*(N+1)+1);
        !           469:        /* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */
        !           470:        for ( I = 0; I < N; I++ ) {
        !           471:                WtV[I] = Wt[I];
        !           472:                WtV[N+1+I] = Tdeg-Wt[I]+1;
        !           473:        }
        !           474:        WtV[N] = Tdeg;
        !           475:        WtV[2*N+1] = 1;
        !           476:        WtV[2*(N+1)] = 1;
        !           477:        dp_set_weight(WtV);
        !           478:        for ( I = N-1, DV = []; I >= 0; I-- )
        !           479:                DV = cons(strtov("d"+rtostr(V[I])),DV);
        !           480:
        !           481:        B = [TMP_T-F];
        !           482:        for ( I = 0; I < N; I++ ) {
        !           483:                B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
        !           484:        }
        !           485:        V1 = append(V,[TMP_T]); DV1 = append(DV,[TMP_DT]);
        !           486:        W = newvect(N+1);
        !           487:        W[N] = 1;
        !           488:        R = generic_bfct_1(B,V1,DV1,W);
        !           489:        dp_set_weight(0);
        !           490:        return subst(R,s,-s-1);
        !           491: }
        !           492:
        !           493: def bfct_via_gbfct_weight_2(F,V)
        !           494: {
        !           495:        N = length(V);
        !           496:        D = newvect(N);
        !           497:        Wt = getopt(weight);
        !           498:        if ( type(Wt) != 4 ) {
        !           499:                for ( I = 0, Wt = []; I < N; I++ )
        !           500:                        Wt = cons(1,Wt);
        !           501:        }
        !           502:        Tdeg = w_tdeg(F,V,Wt);
        !           503:
        !           504:        /* a weight for the first GB computation */
        !           505:        /* [t,x1,...,xn,dt,dx1,...,dxn,h] */
        !           506:        WtV = newvect(2*(N+1)+1);
        !           507:        WtV[0] = Tdeg;
        !           508:        WtV[N+1] = 1;
        !           509:        WtV[2*(N+1)] = 1;
        !           510:        /* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */
        !           511:        for ( I = 1; I <= N; I++ ) {
        !           512:                WtV[I] = Wt[I-1];
        !           513:                WtV[N+1+I] = Tdeg-Wt[I-1]+1;
        !           514:        }
        !           515:        dp_set_weight(WtV);
        !           516:
        !           517:        /* a weight for the second GB computation */
        !           518:        /* [x1,...,xn,t,dx1,...,dxn,dt,h] */
        !           519:        WtV2 = newvect(2*(N+1)+1);
        !           520:        WtV2[N] = Tdeg;
        !           521:        WtV2[2*N+1] = 1;
        !           522:        WtV2[2*(N+1)] = 1;
        !           523:        for ( I = 0; I < N; I++ ) {
        !           524:                WtV2[I] = Wt[I];
        !           525:                WtV2[N+1+I] = Tdeg-Wt[I]+1;
        !           526:        }
        !           527:
        !           528:        for ( I = N-1, DV = []; I >= 0; I-- )
        !           529:                DV = cons(strtov("d"+rtostr(V[I])),DV);
        !           530:
        !           531:        B = [TMP_T-F];
        !           532:        for ( I = 0; I < N; I++ ) {
        !           533:                B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
        !           534:        }
        !           535:        V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV);
        !           536:        V2 = append(V,[TMP_T]); DV2 = append(DV,[TMP_DT]);
        !           537:        W = newvect(N+1,[1]);
        !           538:        dp_weyl_set_weight(W);
        !           539:
        !           540:        VDV = append(V1,DV1);
        !           541:        N1 = length(V1);
        !           542:        N2 = N1*2;
        !           543:
        !           544:        /* create a non-term order MW in D<x,d> */
        !           545:        MW = newmat(N2+1,N2);
        !           546:        for ( J = 0; J < N1; J++ ) {
        !           547:                MW[0][J] = -W[J]; MW[0][N1+J] = W[J];
        !           548:        }
        !           549:        for ( J = 0; J < N2; J++ ) MW[1][J] = 1;
        !           550:        for ( I = 2; I <= N2; I++ ) MW[I][N2-I+1] = -1;
        !           551:
        !           552:        /* homogenize F */
        !           553:        VDVH = append(VDV,[h]);
        !           554:        FH = map(dp_dtop,map(dp_homo,map(dp_ptod,B,VDV)),VDVH);
        !           555:
        !           556:        /* compute a groebner basis of FH w.r.t. MWH */
        !           557:        GH = dp_weyl_gr_main(FH,VDVH,0,1,11);
        !           558:
        !           559:        /* dehomigenize GH */
        !           560:        G = map(subst,GH,h,1);
        !           561:
        !           562:        /* G is a groebner basis w.r.t. a non term order MW */
        !           563:        /* take the initial part w.r.t. (-W,W) */
        !           564:        GIN = map(initial_part,G,VDV,MW,W);
        !           565:
        !           566:        /* GIN is a groebner basis w.r.t. a term order M */
        !           567:        /* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */
        !           568:
        !           569:        /* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */
        !           570:        for ( I = 0, T = 0; I < N1; I++ )
        !           571:                T += W[I]*V1[I]*DV1[I];
        !           572:
        !           573:        /* change of ordering from VDV to VDV2 */
        !           574:        VDV2 = append(V2,DV2);
        !           575:        dp_set_weight(WtV2);
        !           576:        for ( Pind = 0; ; Pind++ ) {
        !           577:                Prime = lprime(Pind);
        !           578:                GIN2 = dp_weyl_gr_main(GIN,VDV2,0,-Prime,0);
        !           579:                if ( GIN2 ) break;
        !           580:        }
        !           581:
        !           582:        R = weyl_minipoly(GIN2,VDV2,0,T); /* M represents DRL order */
        !           583:        dp_set_weight(0);
        !           584:        return subst(R,s,-s-1);
        !           585: }
        !           586:
        !           587: /* minimal polynomial of s; modular computation */
        !           588:
        !           589: def weyl_minipolym(G,V,O,M,V0)
        !           590: {
        !           591:        N = length(V);
        !           592:        Len = length(G);
        !           593:        dp_ord(O);
        !           594:        setmod(M);
        !           595:        PS = newvect(Len);
        !           596:        PS0 = newvect(Len);
        !           597:
        !           598:        for ( I = 0, T = G; T != []; T = cdr(T), I++ )
        !           599:                PS0[I] = dp_ptod(car(T),V);
        !           600:        for ( I = 0, T = G; T != []; T = cdr(T), I++ )
        !           601:                PS[I] = dp_mod(dp_ptod(car(T),V),M,[]);
        !           602:
        !           603:        for ( I = Len - 1, GI = []; I >= 0; I-- )
        !           604:                GI = cons(I,GI);
        !           605:
        !           606:        U = dp_mod(dp_ptod(V0,V),M,[]);
        !           607:        U = dp_weyl_nf_mod(GI,U,PS,1,M);
        !           608:
        !           609:        T = dp_mod(<<0>>,M,[]);
        !           610:        TT = dp_mod(dp_ptod(1,V),M,[]);
        !           611:        G = H = [[TT,T]];
        !           612:
        !           613:        for ( I = 1; ; I++ ) {
        !           614:                if ( dp_gr_print() )
        !           615:                        print(".",2);
        !           616:                T = dp_mod(<<I>>,M,[]);
        !           617:
        !           618:                TT = dp_weyl_nf_mod(GI,dp_weyl_mul_mod(TT,U,M),PS,1,M);
        !           619:                H = cons([TT,T],H);
        !           620:                L = dp_lnf_mod([TT,T],G,M);
        !           621:                if ( !L[0] ) {
        !           622:                        if ( dp_gr_print() )
        !           623:                                print("");
        !           624:                        return dp_dtop(L[1],[t]); /* XXX */
        !           625:                } else
        !           626:                        G = insert(G,L);
        !           627:        }
        !           628: }
        !           629:
        !           630: /* minimal polynomial of s over Q */
        !           631:
        !           632: def weyl_minipoly(G0,V0,O0,P)
        !           633: {
        !           634:        HM = hmlist(G0,V0,O0);
        !           635:
        !           636:        N = length(V0);
        !           637:        Len = length(G0);
        !           638:        dp_ord(O0);
        !           639:        PS = newvect(Len);
        !           640:        for ( I = 0, T = G0, HL = []; T != []; T = cdr(T), I++ )
        !           641:                PS[I] = dp_ptod(car(T),V0);
        !           642:        for ( I = Len - 1, GI = []; I >= 0; I-- )
        !           643:                GI = cons(I,GI);
        !           644:        PSM = newvect(Len);
        !           645:        DP = dp_ptod(P,V0);
        !           646:
        !           647:        for ( Pind = 0; ; Pind++ ) {
        !           648:                Prime = lprime(Pind);
        !           649:                if ( !valid_modulus(HM,Prime) )
        !           650:                        continue;
        !           651:                setmod(Prime);
        !           652:                for ( I = 0, T = G0, HL = []; T != []; T = cdr(T), I++ )
        !           653:                        PSM[I] = dp_mod(dp_ptod(car(T),V0),Prime,[]);
        !           654:
        !           655:                NFP = weyl_nf(GI,DP,1,PS);
        !           656:                NFPM = dp_mod(NFP[0],Prime,[])/ptomp(NFP[1],Prime);
        !           657:
        !           658:                NF = [[dp_ptod(1,V0),1]];
        !           659:                LCM = 1;
        !           660:
        !           661:                TM = dp_mod(<<0>>,Prime,[]);
        !           662:                TTM = dp_mod(dp_ptod(1,V0),Prime,[]);
        !           663:                GM = NFM = [[TTM,TM]];
        !           664:
        !           665:                for ( D = 1; ; D++ ) {
        !           666:                        if ( dp_gr_print() )
        !           667:                                print(".",2);
        !           668:                        NFPrev = car(NF);
        !           669:                        NFJ = weyl_nf(GI,
        !           670:                                dp_weyl_mul(NFP[0],NFPrev[0]),NFP[1]*NFPrev[1],PS);
        !           671:                        NFJ = remove_cont(NFJ);
        !           672:                        NF = cons(NFJ,NF);
        !           673:                        LCM = ilcm(LCM,NFJ[1]);
        !           674:
        !           675:                        /* modular computation */
        !           676:                        TM = dp_mod(<<D>>,Prime,[]);
        !           677:                        TTM = dp_mod(NFJ[0],Prime,[])/ptomp(NFJ[1],Prime);
        !           678:                        NFM = cons([TTM,TM],NFM);
        !           679:                        LM = dp_lnf_mod([TTM,TM],GM,Prime);
        !           680:                        if ( !LM[0] )
        !           681:                                break;
        !           682:                        else
        !           683:                                GM = insert(GM,LM);
        !           684:                }
        !           685:
        !           686:                if ( dp_gr_print() )
        !           687:                        print("");
        !           688:                U = NF[0][0]*idiv(LCM,NF[0][1]);
        !           689:                Coef = [];
        !           690:                for ( J = D-1; J >= 0; J-- ) {
        !           691:                        Coef = cons(strtov("u"+rtostr(J)),Coef);
        !           692:                        U += car(Coef)*NF[D-J][0]*idiv(LCM,NF[D-J][1]);
        !           693:                }
        !           694:
        !           695:                for ( UU = U, Eq = []; UU; UU = dp_rest(UU) )
        !           696:                        Eq = cons(dp_hc(UU),Eq);
        !           697:                M = etom([Eq,Coef]);
        !           698:                B = henleq(M,Prime);
        !           699:                if ( dp_gr_print() )
        !           700:                        print("");
        !           701:                if ( B ) {
        !           702:                        R = 0;
        !           703:                        for ( I = 0; I < D; I++ )
        !           704:                                R += B[0][I]*s^I;
        !           705:                        R += B[1]*s^D;
        !           706:                        return R;
        !           707:                }
        !           708:        }
        !           709: }
        !           710:
        !           711: def weyl_nf(B,G,M,PS)
        !           712: {
        !           713:        for ( D = 0; G; ) {
        !           714:                for ( U = 0, L = B; L != []; L = cdr(L) ) {
        !           715:                        if ( dp_redble(G,R=PS[car(L)]) > 0 ) {
        !           716:                                GCD = igcd(dp_hc(G),dp_hc(R));
        !           717:                                CG = idiv(dp_hc(R),GCD); CR = idiv(dp_hc(G),GCD);
        !           718:                                U = CG*G-dp_weyl_mul(CR*dp_subd(G,R),R);
        !           719:                                if ( !U )
        !           720:                                        return [D,M];
        !           721:                                D *= CG; M *= CG;
        !           722:                                break;
        !           723:                        }
        !           724:                }
        !           725:                if ( U )
        !           726:                        G = U;
        !           727:                else {
        !           728:                        D += dp_hm(G); G = dp_rest(G);
        !           729:                }
        !           730:        }
        !           731:        return [D,M];
        !           732: }
        !           733:
        !           734: def weyl_nf_mod(B,G,PS,Mod)
        !           735: {
        !           736:        for ( D = 0; G; ) {
        !           737:                for ( U = 0, L = B; L != []; L = cdr(L) ) {
        !           738:                        if ( dp_redble(G,R=PS[car(L)]) > 0 ) {
        !           739:                                CR = dp_hc(G)/dp_hc(R);
        !           740:                                U = G-dp_weyl_mul_mod(CR*dp_mod(dp_subd(G,R),Mod,[]),R,Mod);
        !           741:                                if ( !U )
        !           742:                                        return D;
        !           743:                                break;
        !           744:                        }
        !           745:                }
        !           746:                if ( U )
        !           747:                        G = U;
        !           748:                else {
        !           749:                        D += dp_hm(G); G = dp_rest(G);
        !           750:                }
        !           751:        }
        !           752:        return D;
        !           753: }
        !           754:
        !           755: def remove_zero(L)
        !           756: {
        !           757:        for ( R = []; L != []; L = cdr(L) )
        !           758:                if ( car(L) )
        !           759:                        R = cons(car(L),R);
        !           760:        return R;
        !           761: }
        !           762:
        !           763: def z_subst(F,V)
        !           764: {
        !           765:        for ( ; V != []; V = cdr(V) )
        !           766:                F = subst(F,car(V),0);
        !           767:        return F;
        !           768: }
        !           769:
        !           770: def flatmf(L) {
        !           771:     for ( S = []; L != []; L = cdr(L) )
        !           772:                if ( type(F=car(car(L))) != NUM )
        !           773:                        S = append(S,[F]);
        !           774:        return S;
        !           775: }
        !           776:
        !           777: def intersection(A,B)
        !           778: {
        !           779:        for ( L = []; A != []; A = cdr(A) )
        !           780:        if ( member(car(A),B) )
        !           781:                L = cons(car(A),L);
        !           782:        return L;
        !           783: }
        !           784:
        !           785: def b_subst(F,V)
        !           786: {
        !           787:        D = deg(F,V);
        !           788:        C = newvect(D+1);
        !           789:        for ( I = D; I >= 0; I-- )
        !           790:                C[I] = coef(F,I,V);
        !           791:        for ( I = 0, R = 0; I <= D; I++ )
        !           792:                if ( C[I] )
        !           793:                        R += C[I]*v_factorial(V,I);
        !           794:        return R;
        !           795: }
        !           796:
        !           797: def v_factorial(V,N)
        !           798: {
        !           799:        for ( J = N-1, R = 1; J >= 0; J-- )
        !           800:                R *= V-J;
        !           801:        return R;
        !           802: }
        !           803:
        !           804: def w_tdeg(F,V,W)
        !           805: {
        !           806:        dp_set_weight(newvect(length(W),W));
        !           807:        T = dp_ptod(F,V);
        !           808:        for ( R = 0; T; T = cdr(T) ) {
        !           809:                D = dp_td(T);
        !           810:                if ( D > R ) R = D;
        !           811:        }
        !           812:        return R;
        !           813: }
        !           814:
        !           815: def replace_vars_f(F)
        !           816: {
        !           817:        return subst(F,s,TMP_S,t,TMP_T,y1,TMP_Y1,y2,TMP_Y2);
        !           818: }
        !           819:
        !           820: def replace_vars_v(V)
        !           821: {
        !           822:        V = replace_var(V,s,TMP_S);
        !           823:        V = replace_var(V,t,TMP_T);
        !           824:        V = replace_var(V,y1,TMP_Y1);
        !           825:        V = replace_var(V,y2,TMP_Y2);
        !           826:        return V;
        !           827: }
        !           828:
        !           829: def replace_var(V,X,Y)
        !           830: {
        !           831:        V = reverse(V);
        !           832:        for ( R = []; V != []; V = cdr(V) ) {
        !           833:                Z = car(V);
        !           834:                if ( Z == X )
        !           835:                        R = cons(Y,R);
        !           836:                else
        !           837:                        R = cons(Z,R);
        !           838:        }
        !           839:        return R;
        !           840: }
        !           841: end$
        !           842:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>