Annotation of OpenXM_contrib2/asir2018/lib/bfct, Revision 1.1
1.1 ! noro 1: /*
! 2: * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
! 3: * All rights reserved.
! 4: *
! 5: * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
! 6: * non-exclusive and royalty-free license to use, copy, modify and
! 7: * redistribute, solely for non-commercial and non-profit purposes, the
! 8: * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
! 9: * conditions of this Agreement. For the avoidance of doubt, you acquire
! 10: * only a limited right to use the SOFTWARE hereunder, and FLL or any
! 11: * third party developer retains all rights, including but not limited to
! 12: * copyrights, in and to the SOFTWARE.
! 13: *
! 14: * (1) FLL does not grant you a license in any way for commercial
! 15: * purposes. You may use the SOFTWARE only for non-commercial and
! 16: * non-profit purposes only, such as academic, research and internal
! 17: * business use.
! 18: * (2) The SOFTWARE is protected by the Copyright Law of Japan and
! 19: * international copyright treaties. If you make copies of the SOFTWARE,
! 20: * with or without modification, as permitted hereunder, you shall affix
! 21: * to all such copies of the SOFTWARE the above copyright notice.
! 22: * (3) An explicit reference to this SOFTWARE and its copyright owner
! 23: * shall be made on your publication or presentation in any form of the
! 24: * results obtained by use of the SOFTWARE.
! 25: * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
! 26: * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
! 27: * for such modification or the source code of the modified part of the
! 28: * SOFTWARE.
! 29: *
! 30: * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
! 31: * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
! 32: * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
! 33: * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
! 34: * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
! 35: * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
! 36: * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
! 37: * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
! 38: * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
! 39: * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
! 40: * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
! 41: * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
! 42: * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
! 43: * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
! 44: * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
! 45: * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
! 46: * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
! 47: *
! 48: * $OpenXM$
! 49: */
! 50: /* requires 'primdec' */
! 51:
! 52: #define TMP_S ssssssss
! 53: #define TMP_DS dssssssss
! 54: #define TMP_T dtttttttt
! 55: #define TMP_DT tttttttt
! 56: #define TMP_Y1 yyyyyyyy1
! 57: #define TMP_DY1 dyyyyyyyy1
! 58: #define TMP_Y2 yyyyyyyy2
! 59: #define TMP_DY2 dyyyyyyyy2
! 60:
! 61: if (!module_definedp("gr")) load("gr")$ else{ }$
! 62: if (!module_definedp("primdec")) load("primdec")$ else{ }$
! 63: module bfct $
! 64: /* Empty for now. It will be used in a future. */
! 65: endmodule $
! 66:
! 67: /* toplevel */
! 68:
! 69: def bfunction(F)
! 70: {
! 71: V = vars(F);
! 72: N = length(V);
! 73: D = newvect(N);
! 74:
! 75: for ( I = 0; I < N; I++ )
! 76: D[I] = [deg(F,V[I]),V[I]];
! 77: qsort(D,compare_first);
! 78: for ( V = [], I = 0; I < N; I++ )
! 79: V = cons(D[I][1],V);
! 80: return bfct_via_gbfct_weight(F,V);
! 81: }
! 82:
! 83: /* annihilating ideal of F^s */
! 84:
! 85: def ann(F)
! 86: {
! 87: if ( member(s,vars(F)) )
! 88: error("ann : the variable 's' is reserved.");
! 89: V = vars(F);
! 90: N = length(V);
! 91: D = newvect(N);
! 92:
! 93: for ( I = 0; I < N; I++ )
! 94: D[I] = [deg(F,V[I]),V[I]];
! 95: qsort(D,compare_first);
! 96: for ( V = [], I = N-1; I >= 0; I-- )
! 97: V = cons(D[I][1],V);
! 98:
! 99: for ( I = N-1, DV = []; I >= 0; I-- )
! 100: DV = cons(strtov("d"+rtostr(V[I])),DV);
! 101:
! 102: W = append([TMP_Y1,TMP_Y2,TMP_T],V);
! 103: DW = append([TMP_DY1,TMP_DY2,TMP_DT],DV);
! 104:
! 105: B = [1-TMP_Y1*TMP_Y2,TMP_T-TMP_Y1*F];
! 106: for ( I = 0; I < N; I++ ) {
! 107: B = cons(DV[I]+TMP_Y1*diff(F,V[I])*TMP_DT,B);
! 108: }
! 109:
! 110: /* homogenized (heuristics) */
! 111: dp_nelim(2);
! 112: G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6);
! 113: G1 = [];
! 114: for ( T = G0; T != []; T = cdr(T) ) {
! 115: E = car(T); VL = vars(E);
! 116: if ( !member(TMP_Y1,VL) && !member(TMP_Y2,VL) )
! 117: G1 = cons(E,G1);
! 118: }
! 119: G2 = map(psi,G1,TMP_T,TMP_DT);
! 120: G3 = map(subst,G2,TMP_T,-1-s);
! 121: return G3;
! 122: }
! 123:
! 124: /*
! 125: * compute J_f|s=r, where r = the minimal integral root of global b_f(s)
! 126: * ann0(F) returns [MinRoot,Ideal]
! 127: */
! 128:
! 129: def ann0(F)
! 130: {
! 131: F = subst(F,s,TMP_S);
! 132: Ann = ann(F);
! 133: Bf = bfunction(F);
! 134:
! 135: FList = cdr(fctr(Bf));
! 136: for ( T = FList, Min = 0; T != []; T = cdr(T) ) {
! 137: LF = car(car(T));
! 138: Root = -coef(LF,0)/coef(LF,1);
! 139: if ( dn(Root) == 1 && Root < Min )
! 140: Min = Root;
! 141: }
! 142: return [Min,map(subst,Ann,s,Min,TMP_S,s,TMP_DS,ds)];
! 143: }
! 144:
! 145: def psi(F,T,DT)
! 146: {
! 147: D = dp_ptod(F,[T,DT]);
! 148: Wmax = weight(D);
! 149: D1 = dp_rest(D);
! 150: for ( ; D1; D1 = dp_rest(D1) )
! 151: if ( weight(D1) > Wmax )
! 152: Wmax = weight(D1);
! 153: for ( D1 = D, Dmax = 0; D1; D1 = dp_rest(D1) )
! 154: if ( weight(D1) == Wmax )
! 155: Dmax += dp_hm(D1);
! 156: if ( Wmax >= 0 )
! 157: Dmax = dp_weyl_mul(<<Wmax,0>>,Dmax);
! 158: else
! 159: Dmax = dp_weyl_mul(<<0,-Wmax>>,Dmax);
! 160: Rmax = dp_dtop(Dmax,[T,DT]);
! 161: R = b_subst(subst(Rmax,DT,1),T);
! 162: return R;
! 163: }
! 164:
! 165: def weight(D)
! 166: {
! 167: V = dp_etov(D);
! 168: return V[1]-V[0];
! 169: }
! 170:
! 171: def compare_first(A,B)
! 172: {
! 173: A0 = car(A);
! 174: B0 = car(B);
! 175: if ( A0 > B0 )
! 176: return 1;
! 177: else if ( A0 < B0 )
! 178: return -1;
! 179: else
! 180: return 0;
! 181: }
! 182:
! 183: /* generic b-function w.r.t. weight vector W */
! 184:
! 185: def generic_bfct(F,V,DV,W)
! 186: {
! 187: N = length(V);
! 188: N2 = N*2;
! 189:
! 190: /* If W is a list, convert it to a vector */
! 191: if ( type(W) == 4 )
! 192: W = newvect(length(W),W);
! 193: dp_weyl_set_weight(W);
! 194:
! 195: /* create a term order M in D<x,d> (DRL) */
! 196: M = newmat(N2,N2);
! 197: for ( J = 0; J < N2; J++ )
! 198: M[0][J] = 1;
! 199: for ( I = 1; I < N2; I++ )
! 200: M[I][N2-I] = -1;
! 201:
! 202: VDV = append(V,DV);
! 203:
! 204: /* create a non-term order MW in D<x,d> */
! 205: MW = newmat(N2+1,N2);
! 206: for ( J = 0; J < N; J++ )
! 207: MW[0][J] = -W[J];
! 208: for ( ; J < N2; J++ )
! 209: MW[0][J] = W[J-N];
! 210: for ( I = 1; I <= N2; I++ )
! 211: for ( J = 0; J < N2; J++ )
! 212: MW[I][J] = M[I-1][J];
! 213:
! 214: /* create a homogenized term order MWH in D<x,d,h> */
! 215: MWH = newmat(N2+2,N2+1);
! 216: for ( J = 0; J <= N2; J++ )
! 217: MWH[0][J] = 1;
! 218: for ( I = 1; I <= N2+1; I++ )
! 219: for ( J = 0; J < N2; J++ )
! 220: MWH[I][J] = MW[I-1][J];
! 221:
! 222: /* homogenize F */
! 223: VDVH = append(VDV,[h]);
! 224: FH = map(dp_dtop,map(dp_homo,map(dp_ptod,F,VDV)),VDVH);
! 225:
! 226: /* compute a groebner basis of FH w.r.t. MWH */
! 227: dp_gr_flags(["Top",1,"NoRA",1]);
! 228: GH = dp_weyl_gr_main(FH,VDVH,0,1,11);
! 229: dp_gr_flags(["Top",0,"NoRA",0]);
! 230:
! 231: /* dehomigenize GH */
! 232: G = map(subst,GH,h,1);
! 233:
! 234: /* G is a groebner basis w.r.t. a non term order MW */
! 235: /* take the initial part w.r.t. (-W,W) */
! 236: GIN = map(initial_part,G,VDV,MW,W);
! 237:
! 238: /* GIN is a groebner basis w.r.t. a term order M */
! 239: /* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */
! 240:
! 241: /* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */
! 242: for ( I = 0, T = 0; I < N; I++ )
! 243: T += W[I]*V[I]*DV[I];
! 244: B = weyl_minipoly(GIN,VDV,0,T); /* M represents DRL order */
! 245: return B;
! 246: }
! 247:
! 248: /* all term reduction + interreduce */
! 249: def generic_bfct_1(F,V,DV,W)
! 250: {
! 251: N = length(V);
! 252: N2 = N*2;
! 253:
! 254: /* If W is a list, convert it to a vector */
! 255: if ( type(W) == 4 )
! 256: W = newvect(length(W),W);
! 257: dp_weyl_set_weight(W);
! 258:
! 259: /* create a term order M in D<x,d> (DRL) */
! 260: M = newmat(N2,N2);
! 261: for ( J = 0; J < N2; J++ )
! 262: M[0][J] = 1;
! 263: for ( I = 1; I < N2; I++ )
! 264: M[I][N2-I] = -1;
! 265:
! 266: VDV = append(V,DV);
! 267:
! 268: /* create a non-term order MW in D<x,d> */
! 269: MW = newmat(N2+1,N2);
! 270: for ( J = 0; J < N; J++ )
! 271: MW[0][J] = -W[J];
! 272: for ( ; J < N2; J++ )
! 273: MW[0][J] = W[J-N];
! 274: for ( I = 1; I <= N2; I++ )
! 275: for ( J = 0; J < N2; J++ )
! 276: MW[I][J] = M[I-1][J];
! 277:
! 278: /* create a homogenized term order MWH in D<x,d,h> */
! 279: MWH = newmat(N2+2,N2+1);
! 280: for ( J = 0; J <= N2; J++ )
! 281: MWH[0][J] = 1;
! 282: for ( I = 1; I <= N2+1; I++ )
! 283: for ( J = 0; J < N2; J++ )
! 284: MWH[I][J] = MW[I-1][J];
! 285:
! 286: /* homogenize F */
! 287: VDVH = append(VDV,[h]);
! 288: FH = map(dp_dtop,map(dp_homo,map(dp_ptod,F,VDV)),VDVH);
! 289:
! 290: /* compute a groebner basis of FH w.r.t. MWH */
! 291: /* dp_gr_flags(["Top",1,"NoRA",1]); */
! 292: GH = dp_weyl_gr_main(FH,VDVH,0,1,11);
! 293: /* dp_gr_flags(["Top",0,"NoRA",0]); */
! 294:
! 295: /* dehomigenize GH */
! 296: G = map(subst,GH,h,1);
! 297:
! 298: /* G is a groebner basis w.r.t. a non term order MW */
! 299: /* take the initial part w.r.t. (-W,W) */
! 300: GIN = map(initial_part,G,VDV,MW,W);
! 301:
! 302: /* GIN is a groebner basis w.r.t. a term order M */
! 303: /* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */
! 304:
! 305: /* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */
! 306: for ( I = 0, T = 0; I < N; I++ )
! 307: T += W[I]*V[I]*DV[I];
! 308: B = weyl_minipoly(GIN,VDV,0,T); /* M represents DRL order */
! 309: return B;
! 310: }
! 311:
! 312: def initial_part(F,V,MW,W)
! 313: {
! 314: N2 = length(V);
! 315: N = N2/2;
! 316: dp_ord(MW);
! 317: DF = dp_ptod(F,V);
! 318: R = dp_hm(DF);
! 319: DF = dp_rest(DF);
! 320:
! 321: E = dp_etov(R);
! 322: for ( I = 0, TW = 0; I < N; I++ )
! 323: TW += W[I]*(-E[I]+E[N+I]);
! 324: RW = TW;
! 325:
! 326: for ( ; DF; DF = dp_rest(DF) ) {
! 327: E = dp_etov(DF);
! 328: for ( I = 0, TW = 0; I < N; I++ )
! 329: TW += W[I]*(-E[I]+E[N+I]);
! 330: if ( TW == RW )
! 331: R += dp_hm(DF);
! 332: else if ( TW < RW )
! 333: break;
! 334: else
! 335: error("initial_part : cannot happen");
! 336: }
! 337: return dp_dtop(R,V);
! 338:
! 339: }
! 340:
! 341: /* b-function of F ? */
! 342:
! 343: def bfct(F)
! 344: {
! 345: /* XXX */
! 346: F = replace_vars_f(F);
! 347:
! 348: V = vars(F);
! 349: N = length(V);
! 350: D = newvect(N);
! 351:
! 352: for ( I = 0; I < N; I++ )
! 353: D[I] = [deg(F,V[I]),V[I]];
! 354: qsort(D,compare_first);
! 355: for ( V = [], I = 0; I < N; I++ )
! 356: V = cons(D[I][1],V);
! 357: for ( I = N-1, DV = []; I >= 0; I-- )
! 358: DV = cons(strtov("d"+rtostr(V[I])),DV);
! 359: V1 = cons(s,V); DV1 = cons(ds,DV);
! 360:
! 361: G0 = indicial1(F,reverse(V));
! 362: G1 = dp_weyl_gr_main(G0,append(V1,DV1),0,1,0);
! 363: Minipoly = weyl_minipoly(G1,append(V1,DV1),0,s);
! 364: return Minipoly;
! 365: }
! 366:
! 367: /* called from bfct() only */
! 368:
! 369: def indicial1(F,V)
! 370: {
! 371: W = append([y1,t],V);
! 372: N = length(V);
! 373: B = [t-y1*F];
! 374: for ( I = N-1, DV = []; I >= 0; I-- )
! 375: DV = cons(strtov("d"+rtostr(V[I])),DV);
! 376: DW = append([dy1,dt],DV);
! 377: for ( I = 0; I < N; I++ ) {
! 378: B = cons(DV[I]+y1*diff(F,V[I])*dt,B);
! 379: }
! 380: dp_nelim(1);
! 381:
! 382: /* homogenized (heuristics) */
! 383: G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6);
! 384: G1 = map(subst,G0,y1,1);
! 385: G2 = map(psi,G1,t,dt);
! 386: G3 = map(subst,G2,t,-s-1);
! 387: return G3;
! 388: }
! 389:
! 390: /* b-function computation via generic_bfct() (experimental) */
! 391:
! 392: def bfct_via_gbfct(F)
! 393: {
! 394: V = vars(F);
! 395: N = length(V);
! 396: D = newvect(N);
! 397:
! 398: for ( I = 0; I < N; I++ )
! 399: D[I] = [deg(F,V[I]),V[I]];
! 400: qsort(D,compare_first);
! 401: for ( V = [], I = 0; I < N; I++ )
! 402: V = cons(D[I][1],V);
! 403: V = reverse(V);
! 404: for ( I = N-1, DV = []; I >= 0; I-- )
! 405: DV = cons(strtov("d"+rtostr(V[I])),DV);
! 406:
! 407: B = [TMP_T-F];
! 408: for ( I = 0; I < N; I++ ) {
! 409: B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
! 410: }
! 411: V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV);
! 412: W = newvect(N+1);
! 413: W[0] = 1;
! 414: R = generic_bfct(B,V1,DV1,W);
! 415:
! 416: return subst(R,s,-s-1);
! 417: }
! 418:
! 419: /* use an order s.t. [t,x,y,z,...,dt,dx,dy,dz,...,h] */
! 420:
! 421: def bfct_via_gbfct_weight(F,V)
! 422: {
! 423: N = length(V);
! 424: D = newvect(N);
! 425: Wt = getopt(weight);
! 426: if ( type(Wt) != 4 ) {
! 427: for ( I = 0, Wt = []; I < N; I++ )
! 428: Wt = cons(1,Wt);
! 429: }
! 430: Tdeg = w_tdeg(F,V,Wt);
! 431: WtV = newvect(2*(N+1)+1);
! 432: WtV[0] = Tdeg;
! 433: WtV[N+1] = 1;
! 434: /* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */
! 435: for ( I = 1; I <= N; I++ ) {
! 436: WtV[I] = Wt[I-1];
! 437: WtV[N+1+I] = Tdeg-Wt[I-1]+1;
! 438: }
! 439: WtV[2*(N+1)] = 1;
! 440: dp_set_weight(WtV);
! 441: for ( I = N-1, DV = []; I >= 0; I-- )
! 442: DV = cons(strtov("d"+rtostr(V[I])),DV);
! 443:
! 444: B = [TMP_T-F];
! 445: for ( I = 0; I < N; I++ ) {
! 446: B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
! 447: }
! 448: V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV);
! 449: W = newvect(N+1);
! 450: W[0] = 1;
! 451: R = generic_bfct_1(B,V1,DV1,W);
! 452: dp_set_weight(0);
! 453: return subst(R,s,-s-1);
! 454: }
! 455:
! 456: /* use an order s.t. [x,y,z,...,t,dx,dy,dz,...,dt,h] */
! 457:
! 458: def bfct_via_gbfct_weight_1(F,V)
! 459: {
! 460: N = length(V);
! 461: D = newvect(N);
! 462: Wt = getopt(weight);
! 463: if ( type(Wt) != 4 ) {
! 464: for ( I = 0, Wt = []; I < N; I++ )
! 465: Wt = cons(1,Wt);
! 466: }
! 467: Tdeg = w_tdeg(F,V,Wt);
! 468: WtV = newvect(2*(N+1)+1);
! 469: /* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */
! 470: for ( I = 0; I < N; I++ ) {
! 471: WtV[I] = Wt[I];
! 472: WtV[N+1+I] = Tdeg-Wt[I]+1;
! 473: }
! 474: WtV[N] = Tdeg;
! 475: WtV[2*N+1] = 1;
! 476: WtV[2*(N+1)] = 1;
! 477: dp_set_weight(WtV);
! 478: for ( I = N-1, DV = []; I >= 0; I-- )
! 479: DV = cons(strtov("d"+rtostr(V[I])),DV);
! 480:
! 481: B = [TMP_T-F];
! 482: for ( I = 0; I < N; I++ ) {
! 483: B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
! 484: }
! 485: V1 = append(V,[TMP_T]); DV1 = append(DV,[TMP_DT]);
! 486: W = newvect(N+1);
! 487: W[N] = 1;
! 488: R = generic_bfct_1(B,V1,DV1,W);
! 489: dp_set_weight(0);
! 490: return subst(R,s,-s-1);
! 491: }
! 492:
! 493: def bfct_via_gbfct_weight_2(F,V)
! 494: {
! 495: N = length(V);
! 496: D = newvect(N);
! 497: Wt = getopt(weight);
! 498: if ( type(Wt) != 4 ) {
! 499: for ( I = 0, Wt = []; I < N; I++ )
! 500: Wt = cons(1,Wt);
! 501: }
! 502: Tdeg = w_tdeg(F,V,Wt);
! 503:
! 504: /* a weight for the first GB computation */
! 505: /* [t,x1,...,xn,dt,dx1,...,dxn,h] */
! 506: WtV = newvect(2*(N+1)+1);
! 507: WtV[0] = Tdeg;
! 508: WtV[N+1] = 1;
! 509: WtV[2*(N+1)] = 1;
! 510: /* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */
! 511: for ( I = 1; I <= N; I++ ) {
! 512: WtV[I] = Wt[I-1];
! 513: WtV[N+1+I] = Tdeg-Wt[I-1]+1;
! 514: }
! 515: dp_set_weight(WtV);
! 516:
! 517: /* a weight for the second GB computation */
! 518: /* [x1,...,xn,t,dx1,...,dxn,dt,h] */
! 519: WtV2 = newvect(2*(N+1)+1);
! 520: WtV2[N] = Tdeg;
! 521: WtV2[2*N+1] = 1;
! 522: WtV2[2*(N+1)] = 1;
! 523: for ( I = 0; I < N; I++ ) {
! 524: WtV2[I] = Wt[I];
! 525: WtV2[N+1+I] = Tdeg-Wt[I]+1;
! 526: }
! 527:
! 528: for ( I = N-1, DV = []; I >= 0; I-- )
! 529: DV = cons(strtov("d"+rtostr(V[I])),DV);
! 530:
! 531: B = [TMP_T-F];
! 532: for ( I = 0; I < N; I++ ) {
! 533: B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
! 534: }
! 535: V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV);
! 536: V2 = append(V,[TMP_T]); DV2 = append(DV,[TMP_DT]);
! 537: W = newvect(N+1,[1]);
! 538: dp_weyl_set_weight(W);
! 539:
! 540: VDV = append(V1,DV1);
! 541: N1 = length(V1);
! 542: N2 = N1*2;
! 543:
! 544: /* create a non-term order MW in D<x,d> */
! 545: MW = newmat(N2+1,N2);
! 546: for ( J = 0; J < N1; J++ ) {
! 547: MW[0][J] = -W[J]; MW[0][N1+J] = W[J];
! 548: }
! 549: for ( J = 0; J < N2; J++ ) MW[1][J] = 1;
! 550: for ( I = 2; I <= N2; I++ ) MW[I][N2-I+1] = -1;
! 551:
! 552: /* homogenize F */
! 553: VDVH = append(VDV,[h]);
! 554: FH = map(dp_dtop,map(dp_homo,map(dp_ptod,B,VDV)),VDVH);
! 555:
! 556: /* compute a groebner basis of FH w.r.t. MWH */
! 557: GH = dp_weyl_gr_main(FH,VDVH,0,1,11);
! 558:
! 559: /* dehomigenize GH */
! 560: G = map(subst,GH,h,1);
! 561:
! 562: /* G is a groebner basis w.r.t. a non term order MW */
! 563: /* take the initial part w.r.t. (-W,W) */
! 564: GIN = map(initial_part,G,VDV,MW,W);
! 565:
! 566: /* GIN is a groebner basis w.r.t. a term order M */
! 567: /* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */
! 568:
! 569: /* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */
! 570: for ( I = 0, T = 0; I < N1; I++ )
! 571: T += W[I]*V1[I]*DV1[I];
! 572:
! 573: /* change of ordering from VDV to VDV2 */
! 574: VDV2 = append(V2,DV2);
! 575: dp_set_weight(WtV2);
! 576: for ( Pind = 0; ; Pind++ ) {
! 577: Prime = lprime(Pind);
! 578: GIN2 = dp_weyl_gr_main(GIN,VDV2,0,-Prime,0);
! 579: if ( GIN2 ) break;
! 580: }
! 581:
! 582: R = weyl_minipoly(GIN2,VDV2,0,T); /* M represents DRL order */
! 583: dp_set_weight(0);
! 584: return subst(R,s,-s-1);
! 585: }
! 586:
! 587: /* minimal polynomial of s; modular computation */
! 588:
! 589: def weyl_minipolym(G,V,O,M,V0)
! 590: {
! 591: N = length(V);
! 592: Len = length(G);
! 593: dp_ord(O);
! 594: setmod(M);
! 595: PS = newvect(Len);
! 596: PS0 = newvect(Len);
! 597:
! 598: for ( I = 0, T = G; T != []; T = cdr(T), I++ )
! 599: PS0[I] = dp_ptod(car(T),V);
! 600: for ( I = 0, T = G; T != []; T = cdr(T), I++ )
! 601: PS[I] = dp_mod(dp_ptod(car(T),V),M,[]);
! 602:
! 603: for ( I = Len - 1, GI = []; I >= 0; I-- )
! 604: GI = cons(I,GI);
! 605:
! 606: U = dp_mod(dp_ptod(V0,V),M,[]);
! 607: U = dp_weyl_nf_mod(GI,U,PS,1,M);
! 608:
! 609: T = dp_mod(<<0>>,M,[]);
! 610: TT = dp_mod(dp_ptod(1,V),M,[]);
! 611: G = H = [[TT,T]];
! 612:
! 613: for ( I = 1; ; I++ ) {
! 614: if ( dp_gr_print() )
! 615: print(".",2);
! 616: T = dp_mod(<<I>>,M,[]);
! 617:
! 618: TT = dp_weyl_nf_mod(GI,dp_weyl_mul_mod(TT,U,M),PS,1,M);
! 619: H = cons([TT,T],H);
! 620: L = dp_lnf_mod([TT,T],G,M);
! 621: if ( !L[0] ) {
! 622: if ( dp_gr_print() )
! 623: print("");
! 624: return dp_dtop(L[1],[t]); /* XXX */
! 625: } else
! 626: G = insert(G,L);
! 627: }
! 628: }
! 629:
! 630: /* minimal polynomial of s over Q */
! 631:
! 632: def weyl_minipoly(G0,V0,O0,P)
! 633: {
! 634: HM = hmlist(G0,V0,O0);
! 635:
! 636: N = length(V0);
! 637: Len = length(G0);
! 638: dp_ord(O0);
! 639: PS = newvect(Len);
! 640: for ( I = 0, T = G0, HL = []; T != []; T = cdr(T), I++ )
! 641: PS[I] = dp_ptod(car(T),V0);
! 642: for ( I = Len - 1, GI = []; I >= 0; I-- )
! 643: GI = cons(I,GI);
! 644: PSM = newvect(Len);
! 645: DP = dp_ptod(P,V0);
! 646:
! 647: for ( Pind = 0; ; Pind++ ) {
! 648: Prime = lprime(Pind);
! 649: if ( !valid_modulus(HM,Prime) )
! 650: continue;
! 651: setmod(Prime);
! 652: for ( I = 0, T = G0, HL = []; T != []; T = cdr(T), I++ )
! 653: PSM[I] = dp_mod(dp_ptod(car(T),V0),Prime,[]);
! 654:
! 655: NFP = weyl_nf(GI,DP,1,PS);
! 656: NFPM = dp_mod(NFP[0],Prime,[])/ptomp(NFP[1],Prime);
! 657:
! 658: NF = [[dp_ptod(1,V0),1]];
! 659: LCM = 1;
! 660:
! 661: TM = dp_mod(<<0>>,Prime,[]);
! 662: TTM = dp_mod(dp_ptod(1,V0),Prime,[]);
! 663: GM = NFM = [[TTM,TM]];
! 664:
! 665: for ( D = 1; ; D++ ) {
! 666: if ( dp_gr_print() )
! 667: print(".",2);
! 668: NFPrev = car(NF);
! 669: NFJ = weyl_nf(GI,
! 670: dp_weyl_mul(NFP[0],NFPrev[0]),NFP[1]*NFPrev[1],PS);
! 671: NFJ = remove_cont(NFJ);
! 672: NF = cons(NFJ,NF);
! 673: LCM = ilcm(LCM,NFJ[1]);
! 674:
! 675: /* modular computation */
! 676: TM = dp_mod(<<D>>,Prime,[]);
! 677: TTM = dp_mod(NFJ[0],Prime,[])/ptomp(NFJ[1],Prime);
! 678: NFM = cons([TTM,TM],NFM);
! 679: LM = dp_lnf_mod([TTM,TM],GM,Prime);
! 680: if ( !LM[0] )
! 681: break;
! 682: else
! 683: GM = insert(GM,LM);
! 684: }
! 685:
! 686: if ( dp_gr_print() )
! 687: print("");
! 688: U = NF[0][0]*idiv(LCM,NF[0][1]);
! 689: Coef = [];
! 690: for ( J = D-1; J >= 0; J-- ) {
! 691: Coef = cons(strtov("u"+rtostr(J)),Coef);
! 692: U += car(Coef)*NF[D-J][0]*idiv(LCM,NF[D-J][1]);
! 693: }
! 694:
! 695: for ( UU = U, Eq = []; UU; UU = dp_rest(UU) )
! 696: Eq = cons(dp_hc(UU),Eq);
! 697: M = etom([Eq,Coef]);
! 698: B = henleq(M,Prime);
! 699: if ( dp_gr_print() )
! 700: print("");
! 701: if ( B ) {
! 702: R = 0;
! 703: for ( I = 0; I < D; I++ )
! 704: R += B[0][I]*s^I;
! 705: R += B[1]*s^D;
! 706: return R;
! 707: }
! 708: }
! 709: }
! 710:
! 711: def weyl_nf(B,G,M,PS)
! 712: {
! 713: for ( D = 0; G; ) {
! 714: for ( U = 0, L = B; L != []; L = cdr(L) ) {
! 715: if ( dp_redble(G,R=PS[car(L)]) > 0 ) {
! 716: GCD = igcd(dp_hc(G),dp_hc(R));
! 717: CG = idiv(dp_hc(R),GCD); CR = idiv(dp_hc(G),GCD);
! 718: U = CG*G-dp_weyl_mul(CR*dp_subd(G,R),R);
! 719: if ( !U )
! 720: return [D,M];
! 721: D *= CG; M *= CG;
! 722: break;
! 723: }
! 724: }
! 725: if ( U )
! 726: G = U;
! 727: else {
! 728: D += dp_hm(G); G = dp_rest(G);
! 729: }
! 730: }
! 731: return [D,M];
! 732: }
! 733:
! 734: def weyl_nf_mod(B,G,PS,Mod)
! 735: {
! 736: for ( D = 0; G; ) {
! 737: for ( U = 0, L = B; L != []; L = cdr(L) ) {
! 738: if ( dp_redble(G,R=PS[car(L)]) > 0 ) {
! 739: CR = dp_hc(G)/dp_hc(R);
! 740: U = G-dp_weyl_mul_mod(CR*dp_mod(dp_subd(G,R),Mod,[]),R,Mod);
! 741: if ( !U )
! 742: return D;
! 743: break;
! 744: }
! 745: }
! 746: if ( U )
! 747: G = U;
! 748: else {
! 749: D += dp_hm(G); G = dp_rest(G);
! 750: }
! 751: }
! 752: return D;
! 753: }
! 754:
! 755: def remove_zero(L)
! 756: {
! 757: for ( R = []; L != []; L = cdr(L) )
! 758: if ( car(L) )
! 759: R = cons(car(L),R);
! 760: return R;
! 761: }
! 762:
! 763: def z_subst(F,V)
! 764: {
! 765: for ( ; V != []; V = cdr(V) )
! 766: F = subst(F,car(V),0);
! 767: return F;
! 768: }
! 769:
! 770: def flatmf(L) {
! 771: for ( S = []; L != []; L = cdr(L) )
! 772: if ( type(F=car(car(L))) != NUM )
! 773: S = append(S,[F]);
! 774: return S;
! 775: }
! 776:
! 777: def intersection(A,B)
! 778: {
! 779: for ( L = []; A != []; A = cdr(A) )
! 780: if ( member(car(A),B) )
! 781: L = cons(car(A),L);
! 782: return L;
! 783: }
! 784:
! 785: def b_subst(F,V)
! 786: {
! 787: D = deg(F,V);
! 788: C = newvect(D+1);
! 789: for ( I = D; I >= 0; I-- )
! 790: C[I] = coef(F,I,V);
! 791: for ( I = 0, R = 0; I <= D; I++ )
! 792: if ( C[I] )
! 793: R += C[I]*v_factorial(V,I);
! 794: return R;
! 795: }
! 796:
! 797: def v_factorial(V,N)
! 798: {
! 799: for ( J = N-1, R = 1; J >= 0; J-- )
! 800: R *= V-J;
! 801: return R;
! 802: }
! 803:
! 804: def w_tdeg(F,V,W)
! 805: {
! 806: dp_set_weight(newvect(length(W),W));
! 807: T = dp_ptod(F,V);
! 808: for ( R = 0; T; T = cdr(T) ) {
! 809: D = dp_td(T);
! 810: if ( D > R ) R = D;
! 811: }
! 812: return R;
! 813: }
! 814:
! 815: def replace_vars_f(F)
! 816: {
! 817: return subst(F,s,TMP_S,t,TMP_T,y1,TMP_Y1,y2,TMP_Y2);
! 818: }
! 819:
! 820: def replace_vars_v(V)
! 821: {
! 822: V = replace_var(V,s,TMP_S);
! 823: V = replace_var(V,t,TMP_T);
! 824: V = replace_var(V,y1,TMP_Y1);
! 825: V = replace_var(V,y2,TMP_Y2);
! 826: return V;
! 827: }
! 828:
! 829: def replace_var(V,X,Y)
! 830: {
! 831: V = reverse(V);
! 832: for ( R = []; V != []; V = cdr(V) ) {
! 833: Z = car(V);
! 834: if ( Z == X )
! 835: R = cons(Y,R);
! 836: else
! 837: R = cons(Z,R);
! 838: }
! 839: return R;
! 840: }
! 841: end$
! 842:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>