Annotation of OpenXM_contrib2/asir2018/lib/bgk, Revision 1.1
1.1 ! noro 1: /*
! 2: * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
! 3: * All rights reserved.
! 4: *
! 5: * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
! 6: * non-exclusive and royalty-free license to use, copy, modify and
! 7: * redistribute, solely for non-commercial and non-profit purposes, the
! 8: * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
! 9: * conditions of this Agreement. For the avoidance of doubt, you acquire
! 10: * only a limited right to use the SOFTWARE hereunder, and FLL or any
! 11: * third party developer retains all rights, including but not limited to
! 12: * copyrights, in and to the SOFTWARE.
! 13: *
! 14: * (1) FLL does not grant you a license in any way for commercial
! 15: * purposes. You may use the SOFTWARE only for non-commercial and
! 16: * non-profit purposes only, such as academic, research and internal
! 17: * business use.
! 18: * (2) The SOFTWARE is protected by the Copyright Law of Japan and
! 19: * international copyright treaties. If you make copies of the SOFTWARE,
! 20: * with or without modification, as permitted hereunder, you shall affix
! 21: * to all such copies of the SOFTWARE the above copyright notice.
! 22: * (3) An explicit reference to this SOFTWARE and its copyright owner
! 23: * shall be made on your publication or presentation in any form of the
! 24: * results obtained by use of the SOFTWARE.
! 25: * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
! 26: * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
! 27: * for such modification or the source code of the modified part of the
! 28: * SOFTWARE.
! 29: *
! 30: * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
! 31: * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
! 32: * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
! 33: * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
! 34: * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
! 35: * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
! 36: * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
! 37: * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
! 38: * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
! 39: * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
! 40: * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
! 41: * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
! 42: * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
! 43: * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
! 44: * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
! 45: * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
! 46: * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
! 47: *
! 48: * $OpenXM$
! 49: */
! 50: /* examples for groebner basis computations by Boege, Gebauer, Kredel */
! 51:
! 52: /* $(hairer,runge-kutta 1,05.11.83)
! 53: d=q
! 54: r=d(c2,c3,b3,b2,b1,a21,a32,a31)
! 55: opt=10 */
! 56: Hairer1 = [
! 57: [a31,a32,a21,b1,b2,b3,c3,c2],[
! 58: (+c2-a21),
! 59: (+c3-a31-a32),
! 60: (+b1+b2+b3-1),
! 61: (+b2*c2+b3*c3-1/2),
! 62: (+b2*c2^2+b3*c3^2-1/3),
! 63: (+b3*a32*c2-1/6)
! 64: ]]$
! 65:
! 66: /*$(hairer,runge-kutta*2,05.11.1983)
! 67: d=q
! 68: r=d(c2,c3,c4,b4,b3,b2,b1,a21,a31,a32,a41,a42,a43)
! 69: opt=10*/
! 70: Hairer2 = [
! 71: /* [a43,a42,a41,a32,a31,a21,b1,b2,b3,b4,c4,c3,c2],[ */
! 72: [a21,a31,a41,b1,b2,a42,a32,a43,b3,b4,c4,c3,c2],[
! 73: (+b1+b2+b3+b4-1),
! 74: (+b2*c2+b3*c3+b4*c4-1/2),
! 75: (+b2*c2^2+b3*c3^2+b4*c4^2-1/3),
! 76: (+b3*a32*c2+b4*a42*c2+b4*a43*c3-1/6),
! 77: (+b2*c2^3+b3*c3^3+b4*c4^3-1/4),
! 78: (+b3*c3*a32*c2+b4*c4*a42*c2+b4*c4*a43*c3-1/8),
! 79: (+b3*a32*c2^2+b4*a42*c2^2+b4*a43*c3^2-1/12),
! 80: (+b4*a43*a32*c2-1/24),
! 81: (+c2-a21),
! 82: (+c3-a31-a32),
! 83: (+c4-a41-a42-a43)
! 84: ]]$
! 85:
! 86:
! 87: /*$(hairer,runge-kutta 3,10.11.1983)
! 88: d=q
! 89: r=d(c2,c3,c4,c5,b2,b3,b4,b5,a32,a42,a43,a52,a53,a54)
! 90: opt=g10*/
! 91: Hairer3 = [
! 92: /* [a54,a53,a52,a43,a42,a32,b5,b4,b3,b2,c5,c4,c3,c2], */
! 93: [b2,b3,b4,b5,a52,a53,a42,a54,a32,a43,c5,c4,c3,c2],
! 94: [
! 95: (+b2*c2+b3*c3+b4*c4+b5*c5-1/2),
! 96: (+b2*c2^2+b3*c3^2+b4*c4^2+b5*c5^2-1/3),
! 97: (+b3*a32*c2+b4*a42*c2+b4*a43*c3+b5*a52*c2+b5*a53*c3+b5*a54*c4-1/6),
! 98: (+b2*c2^3+b3*c3^3+b4*c4^3+b5*c5^3-1/4),
! 99: (+b3*c3*a32*c2+b4*c4*a42*c2+b4*c4*a43*c3+b5*c5*a52*c2+b5*c5*a53*c3+b5*c5*a54*c4-1/8),
! 100: (+b3*a32*c2^2+b4*a42*c2^2+b4*a43*c3^2+b5*a52*c2^2+b5*a53*c3^2+b5*a54*c4^2-1/12),
! 101: (+b4*a43*a32*c2+b5*a53*a32*c2+b5*a54*a42*c2+b5*a54*a43*c3-1/24),
! 102: (+b2*c2^4+b3*c3^4+b4*c4^4+b5*c5^4-1/5),
! 103: (+b3*c3^2*a32*c2+b4*c4^2*a42*c2+b4*c4^2*a43*c3+b5*c5^2*a52*c2+b5*c5^2*a53*c3+b5*c5^2*a54*c4-1/10),
! 104: (+b3*c2^2*a32*c3+b4*c2^2*a42*c4+b4*c3^2*a43*c4+b5*c2^2*a52*c2+b5*c3^2*a53*c5+b5*c4^2*a54*c5-1/15),
! 105: (+b4*c4*a43*a32*c2+b5*c5*a53*a32*c2+b5*c5*a54*a42*c2+b5*c5*a54*a43*c3-1/30),
! 106: (+b3*a32^2*c2^2+b4*a42^2*c2^2+2*b4*a42*c2*a43*c3+b4*a43^2*c3^2+b5*a52^2*c2^2+b5*a53^2*c3^2+b5*a54^2*c4^2+2*b5*a52*c2*a53*c3+2*b5*a52*c2*a54*c4+2*b5*a53*c3*a54*c4-1/20),
! 107: (+b3*a32*c2^3+b4*a42*c2^3+b4*a43*c3^3+b5*a52*c2^3+b5*a53*c3^3+b5*a54*c4^3-1/20),
! 108: (+b4*a43*c3*a32*c2+b5*a53*c3*a32*c2+b5*a54*c4*a42*c2+b5*a54*c4*a43*c3-1/40),
! 109: (+b4*a43*a32*c2^2+b5*a53*a32*c2^2+b5*a54*a42*c2^2+b5*a54*a43*c3^2-1/60),
! 110: (+b5*a54*a43*a32*c2-1/120)
! 111: ]]$
! 112:
! 113: /*$(hairer,runge-kutta 4,p=5 s=6,20.12.1983)
! 114: d=q
! 115: r=d(c2,c3,c4,c5,c6,b2,b3,b4,b5,b6,a32,a42,a43,a52,a53,
! 116: a54,a62,a63,a64,a65)
! 117: opt=oil*/
! 118: Hairer4 = [
! 119: [a65,a64,a63,a62,a54,a53,a52,a43,a42,a32,b6,b5,b4,b3,b2,c6,c5,c4,c3,c2,c51],[
! 120: (+b2*c2+b3*c3+b4*c4+b5*c5+b6*c6-1/2),
! 121: (+b2*c2^2+b3*c3^2+b4*c4^2+b5*c5^2+b6*c6^2-1/3),
! 122: (+b3*a32*c2+b4*a42*c2+b4*a43*c3+b5*a52*c2+b5*a53*c3+b6*a62*c2+b6*a63*c3+b6*a64*c4+b6*a65*c5+b5*a54*c4-1/6),
! 123: (+b2*c2^3+b3*c3^3+b4*c4^3+b5*c51^3+b6*c6^3-1/4),
! 124: (+b3*c3*a32*c2+b4*c4*a42*c2+b4*c4*a43*c3+b5*c5*a52*c2+b6*c6*a62*c2+b6*c6*a63*c3+b6*c6*a64*c4+b6*c6*a65*c5+b5*c5*a53*c3+b5*c5*a54*c4-1/8),
! 125: (+b3*a32*c2^2+b4*a42*c2^2+b4*a43*c3^2+b5*a52*c2^2+b6*a62*c2^2+b6*a63*c3^2+b6*a64*c4^2+b6*a65*c5^2+b5*a53*c3^2+b5*a54*c4^2-1/12),
! 126: (+b4*a43*a32*c2+b5*a53*a32*c2+b5*a54*a42*c2+b5*a54*a43*c3+b6*a63*a32*c2+b6*a64*a42*c2+b6*a64*a43*c3+b6*a65*a52*c2+b6*a65*a53*c3+b6*a65*a54*c4-1/24),
! 127: (+b2*c2^4+b3*c3^4+b4*c4^4+b5*c5^4+b6*c6^4-1/5),
! 128: (+b3*c3^2*a32*c2+b4*c4^2*a42*c2+b4*c4^2*a43*c3+b5*c5^2*a52*c2+b5*c5^2*a53*c3+b5*c5^2*a54*c4+b6*c6^2*a62*c2+b6*c6^2*a63*c3+b6*c6^2*a64*c4+b6*c6^2*a65*c5-1/10),
! 129: (+b3*c2^2*a32*c3+b4*c2^2*a42*c4+b4*c3^2*a43*c4+b5*c2^2*a52*c5+b5*c3^2*a53*c5+b5*c4^2*a54*c5+b6*c2^2*a62*c6+b6*c3^2*a63*c6+b6*c4^2*a64*c6+b6*c5^2*a65*c6-1/15),
! 130: (+b4*c4*a43*a32*c2+b5*c5*a53*a32*c2+b5*c5*a54*a42*c2+b5*c5*a54*a43*c3+b6*c6*a63*a32*c2+b6*c6*a64*a42*c2+b6*c6*a64*a43*c2+b6*c6*a65*a52*c2+b6*c6*a65*a53*c3+b6*c6*a65*a54*c4-1/30),
! 131: (+b3*a32^2*c2^2+b4*a42^2*c2^2+2*b4*a42*c2*a43*c3+b4*a43^2*c3^2+b5*a52^2*c2^2+b5*a53^2*c3^2+b5*a54^2*c4^2+2*b5*a52*c2*a53*c3+2*b5*a52*c2*a54*c4+2*b5*a53*c3*a54*c4+b6*a62^2*c2^2+b6*a63^2*c3^2+b6*a64^2*c4^2+b6*a65^2*c5^2+2*b6*a62*c2*a63*c3+2*b6*a62*c2*a64*c4+2*b6*a62*c2*a65*c5+2*b6*a63*c3*a64*c4+2*b6*a63*c3*a65*c5+2*b6*a64*c4*a65*c5-1/20),
! 132: (+b3*a32*c2^3+b4*a42*c2^3+b4*a43*c3^3+b5*a52*c2^3+b5*a53*c3^3+b5*a54*c4^3+b6*a62*c2^3+b6*a63*c3^3+b6*a64*c4^3+b6*a65*c5^3-1/20),
! 133: (+b4*a43*c3*a32*c2+b5*a53*c3*a32*c2+b5*a54*c4*a42*c2+b5*a54*c4*a43*c3+b6*a63*c3*a32*c2+b6*a64*c4*a42*c2+b6*a64*c4*a43*c3+b6*a65*c5*a52*c2+b6*a65*c5*a53*c3+b6*a65*c5*a54*c4-1/40),
! 134: (+b4*a43*a32*c2^2+b5*a53*a32*c2^2+b5*a54*a42*c2^2+b5*a54*a43*c3^2+b6*a63*a32*c2^2+b6*a63*a42*c2^2+b6*a64*a43*c3^2+b6*a65*a52*c2^2+b6*a65*a53*c3^2+b6*a65*a54*c4^2-1/60),
! 135: (+b5*a54*a43*a32*c2+b6*a64*a43*a32*c2+b6*a65*a53*a32*c2+b6*a65*a54*a42*c2+b6*a65*a54*a43*c3-1/20)
! 136: ]]$
! 137:
! 138: /*$(butcher,runge-kutta,20 1 1984 s=3 pt=4)
! 139: d=q
! 140: r=d(b,c2,c3,a,b3,b2,a32,b1)
! 141: opt=liope10*/
! 142: Butcher = [
! 143: [b1,a32,b2,b3,a,c3,c2,b],[
! 144: (b1+b2+b3
! 145: -(a+b)),
! 146: (b2*c2+b3*c3
! 147: -(1/2+1/2*b+b^2-a*b)),
! 148: (b2*c2^2+b3*c3^2
! 149: -(a*(1/3+b^2)-4/3*b-b^2-b^3)),
! 150: (b3*a32*c2
! 151: -(a*(1/6+1/2*b+b^2)-2/3*b-b^2-b^3)),
! 152: (b2*c2^3+b3*c3^3
! 153: -(1/4+1/4*b+5/2*b^2+3/2*b^3+b^4
! 154: -a*(b+b^3))),
! 155: (b3*c3*a32*c2
! 156: -(1/8+3/8*b+7/4*b^2+3/2*b^3+b^4
! 157: -a*(1/2*b+1/2*b^2+b^3))),
! 158: (b3*a32*c2^2
! 159: -(1/12+1/12*b+7/6*b^2+3/2*b^3+b^4
! 160: -a*(2/3*b+b^2+b^3))),
! 161: (1/24+7/24*b+13/12*b^2+3/2*b^3+b^4
! 162: -a*(1/3*b+b^2+b^3))
! 163: ]]$
! 164:
! 165: /*$(gerdt,10.10.84)
! 166: d=q
! 167: r=d(l1,l2,l3,l4,l5,l6,l7)
! 168: opt=oil pe10*/
! 169: Gerdt = [
! 170: [l7,l6,l5,l4,l3,l2,l1],[
! 171: (l1*(l4-1/2*l5+l6)),
! 172: ((2/7*l1^2-l4)*(-10*l1+5*l2-l3)),
! 173: ((2/7*l1^2-l4)*(3*l4-l5+l6)),
! 174: ((-2*l1^2+l1*l2+2*l1*l3-l2^2-7*l5+21*l6) *(-3*l1+2*l2)+21*(7*l7-2*l1*l4+3/7*l1^3)),
! 175: ((-2*l1^2+l1*l2+2*l1*l3-l2^2-7*l5+21*l6) *(2*l4-2*l5)+(7*l7-2*l1*l4+3/7*l1^3) *(-45*l1+15*l2-3*l3)),
! 176: (2*(-2*l1^2+l1*l2+2*l1*l3-l2^2-7*l5+21*l6) *l7+(7*l7-2*l1*l4+3/7*l1^3)* (12*l4-3*l5+2*l6)),
! 177: ((l1*(5*l1-3*l2+l3))* (2*l2-l1) +7*(l1*(2*l6-4*l4))),
! 178: ((l1*(5*l1-3*l2+l3))* l3+7*(l1*(2*l6-4*l4))),
! 179: ((l1*(5*l1-3*l2+l3))* (-2*l4-2*l5)+(l1*(2*l6-4*l4))* (2*l2-8*l1)+84*1/2*l1*l7),
! 180: ((l1*(5*l1-3*l2+l3))* (8/3*l5+6*l6)+(l1*(2*l6-4*l4))* (11*l1-17/3*l2+5/3*l3)-168*1/2*l1*l7),
! 181: (15*l7* (l1*(5*l1-3*l2+l3)) +(l1*(2*l6-4*l4))*(5*l4-2*l5) +1/2*l1*l7*(-120*l1+30*l2-6*l3)),
! 182: (-3*(l1*(5*l1-3*l2+l3))* l7+(l1*(2*l6-4*l4))* (-1/2*l4+1/4*l5-1/2*l6)+1/2*l1*l7* (24*l1-6*l2)),
! 183: (3*(l1*(2*l6-4*l4))* l7+1/2*l1*l7* (40*l4-8*l5+4*l6))
! 184: ]]$
! 185:
! 186:
! 187: /*$(raksanyi 1,1983 rational*functions.)
! 188: d=f(a1,a2,a3,a4)
! 189: r=(x1,x2,x3,x4)
! 190: opt=oil*/
! 191: Raksanyi = [
! 192: [x4,x3,x2,x1],[
! 193: (x4-(a4-a2)),
! 194: (x1+x2+x3+x4-(a1+a3+a4)),
! 195: (x1*x3+x1*x4+x2*x3+x3*x4-(a1*a4+a1*a3+a3*a4)),
! 196: (x1*x3*x4-(a1*a3*a4))
! 197: ]]$
! 198:
! 199:
! 200: /*$(rose,general equilibrium model,1984)
! 201: d=q
! 202: r=d(u3,u4,a46)
! 203: opt=iog*/
! 204: Rose = [
! 205: [u3,u4,a46],[
! 206: /*[a46,u4,u3],[*/
! 207: (u4^4-20/7*a46^2),
! 208: (a46^2*u3^4+7/10*a46*u3^4+7/48*u3^4-50/27
! 209: *a46^2-35/27*a46-49/216),
! 210: (a46^5*u4^3+7/5*a46^4*u4^3+609/1000*a46^3
! 211: *u4^3+49/1250*a46^2*u4^3-27391/800000*a46*u4^3
! 212: -1029/160000*u4^3+3/7*a46^5*u3*u4^2+3/5*a46^6
! 213: *u3*u4^2+63/200*a46^3*u3*u4^2+147/2000*a46^2
! 214: *u3*u4^2+4137/800000*a46*u3*u4^2-7/20*a46^4
! 215: *u3^2*u4-77/125*a46^3*u3^2*u4-23863/60000*a46^2
! 216: *u3^2*u4-1078/9375*a46*u3^2*u4-24353/1920000
! 217: *u3^2*u4-3/20*a46^4*u3^3-21/100*a46^3*u3^3
! 218: -91/800*a46^2*u3^3-5887/200000*a46*u3^3
! 219: -343/128000*u3^3)
! 220: ]]$
! 221:
! 222:
! 223:
! 224: /*$(university of waterloo,19.03,1984)
! 225: d=q
! 226: r=d(a0,a2,a3,a4,a5,b0,b1,b2,b3,b4,b5,c0,c1,c2,c3,c4,c5)
! 227: opt=oil*pe10*/
! 228: Waterloo = [
! 229: [c5,c4,c3,c2,c1,c0,b5,b4,b3,b2,b1,b0,a5,a4,a3,a2,a0],[
! 230: (a4*b4),
! 231: (a5*b1+b5+a4*b3+a3*b4),
! 232: (a2*b2),
! 233: (a5*b5),
! 234: (a0*b2+b2+a4*b2+a2*b4+c2+a2*b0+a2*b1),
! 235: (a0*b0+a0*b1+a0*b4+a3*b2+b0+b1+b4+a4*b0 +a4*b1 +a2*b5+a4*b4+c1+c4+a5*b2+a2*b3+c0),
! 236: (a3*b0+a0*b3+a0*b5+a5*b0+b3+b5+a5*b4+a4*b3+ a4*b5+a3*b4+a5*b1+a3*b1+c3+c5-1),
! 237: (a5*b3+a5*b5+a3*b5+a3*b3),
! 238: (a5*b3+2*a5*b5+a3*b5),
! 239: (a0*b5+a5*b0+a3*b4+2*a5*b4+a5*b1+b5+a4*b3 +2*a4*b5+c5),
! 240: (a4*b0+2*a4*b4+a2*b5+b4+a4*b1+a5*b2+a0*b4 +c4),
! 241: (a2*b4+a4*b2),
! 242: (a4*b5+a5*b4),
! 243: (2*a3*b3+a5*b3+a3*b5),
! 244: (c3+a0*b3+2*b3+b5+a4*b3+a3*b0+2*a3*b1+ a5*b1+a3*b4),
! 245: (c1+a0*b1+2*b1+a4*b1+a2*b3+b0+a3*b2+b4),
! 246: (a2*b1+b2),
! 247: (a5*b3+a3*b5),
! 248: (b4+a4*b1)
! 249: ]]$
! 250:
! 251:
! 252: /*$(trinks 1,ideal a. 09.12.1983)
! 253: d=q
! 254: r=d(b,s,t,z,p,w)
! 255: opt=1*/
! 256: Trinks1 = [
! 257: /*[z,t,w,b,p,s],[*/
! 258: [w,p,z,t,s,b],[
! 259: (+45*p+35*s-165*b-36),
! 260: (+35*p+40*z+25*t-27*s),
! 261: (+15*w+25*p*s+30*z-18*t-165*b^2),
! 262: (-9*w+15*p*t+20*z*s),
! 263: (w*p+2*z*t-11*b^3),
! 264: (99*w-11*s*b+3*b^2)
! 265: ]]$
! 266:
! 267:
! 268: /*$(trinks 2,ideal p=a+f7lr.10.12.1983)
! 269: d=q
! 270: r=d(b,s,t,z,p,w)
! 271: opt=il*/
! 272: Trinks2 = [
! 273: [w,p,z,t,s,b],[
! 274: +45*p+35*s-165*b-36,
! 275: +35*p+40*z+25*t-27*s,
! 276: +15*w+25*p*s+30*z-18*t-165*b^2,
! 277: -9*w+15*p*t+20*z*s,
! 278: w*p+2*z*t-11*b^3,
! 279: 99*w-11*s*b+3*b^2,
! 280: b^2+33/50*b+2673/10000
! 281: ]]$
! 282:
! 283: Ge = [
! 284: [x,y,z,t,u,v,w],[
! 285: (w*(t-1/2*z+y)),
! 286: ((2/7*w^2-t)*(-10*w+5*v-u)),
! 287: ((2/7*w^2-t)*(3*t-z+y)),
! 288: ((-2*w^2+w*v+2*w*u-v^2-7*z+21*y) *(-3*w+2*v)+21*(7*x-2*w*t+3/7*w^3)),
! 289: ((-2*w^2+w*v+2*w*u-v^2-7*z+21*y) *(2*t-2*z)+(7*x-2*w*t+3/7*w^3) *(-45*w+15*v-3*u)),
! 290: (2*(-2*w^2+w*v+2*w*u-v^2-7*z+21*y) *x+(7*x-2*w*t+3/7*w^3)* (12*t-3*z+2*y)),
! 291: ((w*(5*w-3*v+u))* (2*v-w) +7*(w*(2*y-4*t))),
! 292: ((w*(5*w-3*v+u))* u+7*(w*(2*y-4*t))),
! 293: ((w*(5*w-3*v+u))* (-2*t-2*z)+(w*(2*y-4*t))* (2*v-8*w)+84*1/2*w*x),
! 294: ((w*(5*w-3*v+u))* (8/3*z+6*y)+(w*(2*y-4*t))* (11*w-17/3*v+5/3*u)-168*1/2*w*x),
! 295: (15*x* (w*(5*w-3*v+u)) +(w*(2*y-4*t))*(5*t-2*z) +1/2*w*x*(-120*w+30*v-6*u)),
! 296: (-3*(w*(5*w-3*v+u))* x+(w*(2*y-4*t))* (-1/2*t+1/4*z-1/2*y)+1/2*w*x* (24*w-6*v)),
! 297: (3*(w*(2*y-4*t))* x+1/2*w*x* (40*t-8*z+4*y))
! 298: ]]$
! 299: end$
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>