[BACK]Return to dmul102 CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2018 / lib

File: [local] / OpenXM_contrib2 / asir2018 / lib / dmul102 (download)

Revision 1.1, Wed Sep 19 05:45:08 2018 UTC (5 years, 6 months ago) by noro
Branch: MAIN
CVS Tags: HEAD

Added asir2018 for implementing full-gmp asir.

/* $OpenXM: OpenXM_contrib2/asir2018/lib/dmul102,v 1.1 2018/09/19 05:45:08 noro Exp $ */
#define MAX(a,b) ((a)>(b)?(a):(b))
#define MIN(a,b) ((a)>(b)?(b):(a))

/* CAUTION: functions in this file are experimental. */

Hosts = [
"iyokan-0-g","iyokan-0-g",
"iyokan-1-g","iyokan-1-g",
"iyokan-2-g","iyokan-2-g",
"iyokan-3-g","iyokan-3-g"
]$

def spawn102(Hosts,N)
"spawn102(hostlist,nserver|debug=1)\n\
hostlist : [\"iyokan-0\",\"iyokan-1\",...]\n\
nserver : number of servers to be used in hostlist\n\
If debug is specified, the debug windows will appear."
{
	Debug = getopt(debug);
	if ( type(Debug) == -1 )
		Debug = 0;
	else if ( Debug )
		Debug = 1;
	Procs = newvect(N);
	for ( I = 0; I < N; I++ ) {
		if ( Debug )
			Procs[I] = ox_launch(Hosts[I],get_rootdir(),"ox_asir");
		else
			Procs[I] = ox_launch_nox(Hosts[I],get_rootdir(),"ox_asir");
		ox_set_rank_102(Procs[I],N,I);
		sleep(1000);
	}
	for ( I = 0; I < N; I++ )
		for ( J = I+1; J < N; J++ ) {
			P = generate_port();
			ox_tcp_accept_102(Procs[I],P,J);
			ox_tcp_connect_102(Procs[J],Hosts[I],P,I);
		}
	return Procs;
}

def spawn102_local(N)
"spawn102_local(nserver|debug=1)\n\
nserver : number of servers to be used in hostlist\n\
If debug is specified, the debug windows will appear."
{
	Debug = getopt(debug);
	if ( type(Debug) == -1 )
		Debug = 0;
	else if ( Debug )
		Debug = 1;
	Procs = newvect(N);
	for ( I = 0; I < N; I++ ) {
		if ( Debug )
			Procs[I] = ox_launch();
		else
			Procs[I] = ox_launch_nox();
		ox_set_rank_102(Procs[I],N,I);
		sleep(1000);
	}
	for ( I = 0; I < N; I++ )
		for ( J = I+1; J < N; J++ ) {
			P = generate_port(1);
			ox_tcp_accept_102(Procs[I],P,J);
			ox_tcp_connect_102(Procs[J],0,P,I);
		}
	return Procs;
}

def urandompoly(N,D)
"urandompoly(N,D)\n\
 generate a univariate random polynomial of degree N,\n\
 with D bit random coefficients."
{
	for(I=0,R=0;I<=N;I++)R+= lrandom(D)*x^I; return R;
}	

/*
	return: F1*F2
	if option 'proc' is supplied as a list of server id's, 
	F1*F2 is calculated by distributed computation.
*/

def d_mul(F1,F2)
"d_mul(F1,F2|proc=ProcList)\n\
 computes the product of F1 and F2.\n\
 If ProcList is specified, the product is computed in parallel."
{
	Procs = getopt(proc);
	if ( type(Procs) == -1 ) return umul(F1,F2);
	if ( !var(F1) || !var(F2) ) return F1*F2;
	NP = length(Procs);
	ox_push_cmo(Procs[0],[F1,F2]);
	for ( I = 0; I < NP; I++ )
		ox_cmo_rpc(Procs[I],"d_mul_main",0);
	R = ox_pop_cmo(Procs[0]);
	return R;
}

def d_mul_main(Root)
{
	Id = ox_get_rank_102();
	NP = Id[0]; Rank = Id[1];
	Arg = ox_bcast_102(Root);
	F1 = Arg[0]; F2 = Arg[1];
	L = setup_modarrays(F1,F2,NP);
 	Marray = L[0]; MIarray = L[1]; M = L[2];
	R = umul_chrem(F1,F2,MIarray[Rank],Marray[Rank],M);
	Arg = 0; F1 = 0; F2 = 0;
	R = ox_reduce_102(Root,"+",R);
	if ( Rank == Root )
		R = uadj_coef(R%M,M,ishift(M,1));
	return R;
}

/* 
 * Marray[J] = FFTprime[Marray[J][0]]*...*FFTprime[Marray[J][...]]
 * M = Marray[0]*...*Marray[NP-1]
 */

def setup_modarrays(F1,F2,NP)
{
	V = var(F1);
	D1 = deg(F1,V); D2 = deg(F2,V);
	Dmin = MIN(D1,D2);
	Dfft = p_mag(D1+D2+1)+1;
	Bound = maxblen(F1)+maxblen(F2)+p_mag(Dmin)+1;
	if ( Bound < 32 ) Bound = 32;
	Marray = newvect(NP); MIarray = newvect(NP);
	for ( I = 0; I < NP; I++ ) {
		Marray[I] = 1; MIarray[I] = [];
	}
	for ( M = 1, I = 0, J = 0; p_mag(M) <= Bound; J = (J+1)%NP ) {
		T = get_next_fft_prime(I,Dfft);
		if ( !T )
			error("fft_mul_d : fft_prime exhausted.");
		Marray[J] *= T[1];
		MIarray[J] = cons(T[0],MIarray[J]);
		M *= T[1];
		I = T[0]+1;
	}
	return [Marray,MIarray,M];
}

def umul_chrem(F1,F2,Ind,M1,M)
{
	T0 = time();
	C = umul_specialmod(F1,F2,Ind);
	Mhat = idiv(M,M1);
	MhatInv = inv(Mhat,M1);
	R = Mhat*((MhatInv*C)%M1);
	return R;
}
end$