[BACK]Return to dmul CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2018 / lib

Annotation of OpenXM_contrib2/asir2018/lib/dmul, Revision 1.1

1.1     ! noro        1: /*
        !             2:  * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
        !             3:  * All rights reserved.
        !             4:  *
        !             5:  * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
        !             6:  * non-exclusive and royalty-free license to use, copy, modify and
        !             7:  * redistribute, solely for non-commercial and non-profit purposes, the
        !             8:  * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
        !             9:  * conditions of this Agreement. For the avoidance of doubt, you acquire
        !            10:  * only a limited right to use the SOFTWARE hereunder, and FLL or any
        !            11:  * third party developer retains all rights, including but not limited to
        !            12:  * copyrights, in and to the SOFTWARE.
        !            13:  *
        !            14:  * (1) FLL does not grant you a license in any way for commercial
        !            15:  * purposes. You may use the SOFTWARE only for non-commercial and
        !            16:  * non-profit purposes only, such as academic, research and internal
        !            17:  * business use.
        !            18:  * (2) The SOFTWARE is protected by the Copyright Law of Japan and
        !            19:  * international copyright treaties. If you make copies of the SOFTWARE,
        !            20:  * with or without modification, as permitted hereunder, you shall affix
        !            21:  * to all such copies of the SOFTWARE the above copyright notice.
        !            22:  * (3) An explicit reference to this SOFTWARE and its copyright owner
        !            23:  * shall be made on your publication or presentation in any form of the
        !            24:  * results obtained by use of the SOFTWARE.
        !            25:  * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
        !            26:  * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
        !            27:  * for such modification or the source code of the modified part of the
        !            28:  * SOFTWARE.
        !            29:  *
        !            30:  * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
        !            31:  * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
        !            32:  * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
        !            33:  * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
        !            34:  * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
        !            35:  * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
        !            36:  * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
        !            37:  * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
        !            38:  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
        !            39:  * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
        !            40:  * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
        !            41:  * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
        !            42:  * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
        !            43:  * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
        !            44:  * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
        !            45:  * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
        !            46:  * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
        !            47:  *
        !            48:  * $OpenXM$
        !            49: */
        !            50: #define MAX(a,b) ((a)>(b)?(a):(b))
        !            51: #define MIN(a,b) ((a)>(b)?(b):(a))
        !            52:
        !            53: /* CAUTION: functions in this file are experimental. */
        !            54:
        !            55: /*
        !            56:        return: F1*F2
        !            57:        if option 'proc' is supplied as a list of server id's,
        !            58:        F1*F2 is calculated by distributed computation.
        !            59: */
        !            60:
        !            61: def d_mul(F1,F2)
        !            62: {
        !            63:        Procs = getopt(proc);
        !            64:        if ( type(Procs) == -1 )
        !            65:                Procs = [];
        !            66:        Mod = getopt(mod);
        !            67:        if ( type(Mod) == -1 )
        !            68:                Mod = 0;
        !            69:        NP = length(Procs)+1;
        !            70:        V =var(F1);
        !            71:        if ( !V ) {
        !            72:                T = F1*F2;
        !            73:                if ( Mod )
        !            74:                        return T % Mod;
        !            75:                else
        !            76:                        return T;
        !            77:        }
        !            78:        D1 = deg(F1,V);
        !            79:        D2 = deg(F2,V);
        !            80:        Dmin = MIN(D1,D2);
        !            81:        Dfft = p_mag(D1+D2+1)+1;
        !            82:        Bound = maxblen(F1)+maxblen(F2)+p_mag(Dmin)+1;
        !            83:        if ( Bound < 32 )
        !            84:                Bound = 32;
        !            85:        Marray = newvect(NP);
        !            86:        MIarray = newvect(NP);
        !            87:        for ( I = 0; I < NP; I++ ) {
        !            88:                Marray[I] = 1;
        !            89:                MIarray[I] = [];
        !            90:        }
        !            91:
        !            92:        for ( M = 1, I = 0, J = 0; p_mag(M) <= Bound; J = (J+1)%NP ) {
        !            93:                T = get_next_fft_prime(I,Dfft);
        !            94:                if ( !T )
        !            95:                        error("fft_mul_d : fft_prime exhausted.");
        !            96:                Marray[J] *= T[1];
        !            97:                MIarray[J] = cons(T[0],MIarray[J]);
        !            98:                M *= T[1];
        !            99:                I = T[0]+1;
        !           100:        }
        !           101:        /* Now,
        !           102:                Marray[J] = FFTprime[Marray[J][0]]*...*FFTprime[Marray[J][...]]
        !           103:                M = Marray[0]*...*Marray[NP-1]
        !           104:        */
        !           105:        C = newvect(NP);
        !           106:        T0 = time();
        !           107:        for ( J = 0; J < NP-1; J++ )
        !           108:                ox_cmo_rpc(Procs[J],"call_umul",F1,F2,MIarray[J],Marray[J],M);
        !           109:        T1 = time();
        !           110:        R = call_umul(F1,F2,MIarray[NP-1],Marray[NP-1],M);
        !           111:        T2 = time();
        !           112:        for ( J = 0; J < NP-1; J++ )
        !           113:                R += ox_pop_cmo(Procs[J]);
        !           114:        T3 = time();
        !           115: /*     print(["send",T1[3]-T0[3],"self",T2[3]-T1[3],"recv",T3[3]-T2[3]]); */
        !           116:        if ( Mod )
        !           117:                return (R%M)%Mod;
        !           118:        else
        !           119:                return uadj_coef(R%M,M,ishift(M,1));
        !           120: }
        !           121:
        !           122: /*
        !           123:        return: F1^2
        !           124:        if option 'proc' is supplied as a list of server id's,
        !           125:        F1^2 is calculated by distributed computation.
        !           126: */
        !           127:
        !           128: def d_square(F1)
        !           129: {
        !           130:        Procs = getopt(proc);
        !           131:        if ( type(Procs) == -1 )
        !           132:                Procs = [];
        !           133:        Mod = getopt(mod);
        !           134:        if ( type(Mod) == -1 )
        !           135:                Mod = 0;
        !           136:        NP = length(Procs)+1;
        !           137:        V =var(F1);
        !           138:        if ( !V ) {
        !           139:                T = F1^2;
        !           140:                if ( Mod )
        !           141:                        return T % Mod;
        !           142:                else
        !           143:                        return T;
        !           144:        }
        !           145:        D1 = deg(F1,V);
        !           146:        Dfft = p_mag(2*D1+1)+1;
        !           147:        Bound = 2*maxblen(F1)+p_mag(D1)+1;
        !           148:        if ( Bound < 32 )
        !           149:                Bound = 32;
        !           150:        Marray = newvect(NP);
        !           151:        MIarray = newvect(NP);
        !           152:        for ( I = 0; I < NP; I++ ) {
        !           153:                Marray[I] = 1;
        !           154:                MIarray[I] = [];
        !           155:        }
        !           156:
        !           157:        for ( M = 1, I = 0, J = 0; p_mag(M) <= Bound; J = (J+1)%NP ) {
        !           158:                T = get_next_fft_prime(I,Dfft);
        !           159:                if ( !T )
        !           160:                        error("fft_mul_d : fft_prime exhausted.");
        !           161:                Marray[J] *= T[1];
        !           162:                MIarray[J] = cons(T[0],MIarray[J]);
        !           163:                M *= T[1];
        !           164:                I = T[0]+1;
        !           165:        }
        !           166:        /* Now,
        !           167:                Marray[J] = FFTprime[Marray[J][0]]*...*FFTprime[Marray[J][...]]
        !           168:                M = Marray[0]*...*Marray[NP-1]
        !           169:        */
        !           170:        C = newvect(NP);
        !           171:        T0 = time();
        !           172:        for ( J = 0; J < NP-1; J++ )
        !           173:                ox_cmo_rpc(Procs[J],"call_usquare",F1,MIarray[J],Marray[J],M);
        !           174:        T1 = time();
        !           175:        R = call_usquare(F1,MIarray[NP-1],Marray[NP-1],M);
        !           176:        T2 = time();
        !           177:        for ( J = 0; J < NP-1; J++ )
        !           178:                R += ox_pop_cmo(Procs[J]);
        !           179:        T3 = time();
        !           180: /*     print(["send",T1[3]-T0[3],"self",T2[3]-T1[3],"recv",T3[3]-T2[3]]); */
        !           181:        if ( Mod )
        !           182:                return (R%M)%Mod;
        !           183:        else
        !           184:                return uadj_coef(R%M,M,ishift(M,1));
        !           185: }
        !           186:
        !           187: /*
        !           188:        return: F1^2 mod V^(D+1)
        !           189:        if option 'proc' is supplied as a list of server id's,
        !           190:        F1*F2 mod V^(D+1) is calculated by distributed computation.
        !           191: */
        !           192:
        !           193: def d_tmul(F1,F2,D)
        !           194: {
        !           195:        Procs = getopt(proc);
        !           196:        if ( type(Procs) == -1 )
        !           197:                Procs = [];
        !           198:        Mod = getopt(mod);
        !           199:        if ( type(Mod) == -1 )
        !           200:                Mod = 0;
        !           201:        NP = length(Procs)+1;
        !           202:        V =var(F1);
        !           203:        if ( !V ) {
        !           204:                T = utrunc(F1*F2,D);
        !           205:                if ( Mod )
        !           206:                        return T % Mod;
        !           207:                else
        !           208:                        return T;
        !           209:        }
        !           210:        D1 = deg(F1,V);
        !           211:        D2 = deg(F2,V);
        !           212:        Dmin = MIN(D1,D2);
        !           213:        Dfft = p_mag(D1+D2+1)+1;
        !           214:        Bound = maxblen(F1)+maxblen(F2)+p_mag(Dmin)+1;
        !           215:        if ( Bound < 32 )
        !           216:                Bound = 32;
        !           217:        Marray = newvect(NP);
        !           218:        MIarray = newvect(NP);
        !           219:        for ( I = 0; I < NP; I++ ) {
        !           220:                Marray[I] = 1;
        !           221:                MIarray[I] = [];
        !           222:        }
        !           223:
        !           224:        for ( M = 1, I = 0, J = 0; p_mag(M) <= Bound; J = (J+1)%NP ) {
        !           225:                T = get_next_fft_prime(I,Dfft);
        !           226:                if ( !T )
        !           227:                        error("fft_mul_d : fft_prime exhausted.");
        !           228:                Marray[J] *= T[1];
        !           229:                MIarray[J] = cons(T[0],MIarray[J]);
        !           230:                M *= T[1];
        !           231:                I = T[0]+1;
        !           232:        }
        !           233:        /* Now,
        !           234:                Marray[J] = FFTprime[Marray[J][0]]*...*FFTprime[Marray[J][...]]
        !           235:                M = Marray[0]*...*Marray[NP-1]
        !           236:        */
        !           237:        C = newvect(NP);
        !           238:        T0 = time();
        !           239:        for ( J = 0; J < NP-1; J++ )
        !           240:                ox_cmo_rpc(Procs[J],"call_utmul",F1,F2,D,MIarray[J],Marray[J],M);
        !           241:        T1 = time();
        !           242:        R = call_utmul(F1,F2,D,MIarray[NP-1],Marray[NP-1],M);
        !           243:        T2 = time();
        !           244:        for ( J = 0; J < NP-1; J++ )
        !           245:                R += ox_pop_cmo(Procs[J]);
        !           246:        T3 = time();
        !           247: /*     print(["send",T1[3]-T0[3],"self",T2[3]-T1[3],"recv",T3[3]-T2[3]]); */
        !           248:        if ( Mod )
        !           249:                return (R%M)%Mod;
        !           250:        else
        !           251:                return uadj_coef(R%M,M,ishift(M,1));
        !           252: }
        !           253:
        !           254: def d_rembymul(F1,F2,INVF2)
        !           255: {
        !           256:        Procs = getopt(proc);
        !           257:        if ( type(Procs) == -1 )
        !           258:                Procs = [];
        !           259:        Mod = getopt(mod);
        !           260:        if ( type(Mod) == -1 )
        !           261:                Mod = 0;
        !           262:        NP = length(Procs)+1;
        !           263:        if ( !F2 )
        !           264:                error("d_rembymul : division by 0");
        !           265:        V =var(F1);
        !           266:        if ( !V ) {
        !           267:                T = srem(F1,F2);
        !           268:                if ( Mod )
        !           269:                        return T % Mod;
        !           270:                else
        !           271:                        return T;
        !           272:        }
        !           273:        D1 = deg(F1,V);
        !           274:        D2 = deg(F2,V);
        !           275:        if ( !F1 || !D2 )
        !           276:                return 0;
        !           277:        if ( D1 < D2 )
        !           278:                return F1;
        !           279:        D = D1-D2;
        !           280:        R1 = utrunc(ureverse(F1),D);
        !           281:        Q = ureverse(utrunc(d_tmul(R1,INVF2,D|proc=Procs,mod=Mod),D));
        !           282:        if ( Mod )
        !           283:                return (utrunc(F1,D2-1)-d_tmul(Q,F2,D2-1|proc=Procs,mod=Mod))%Mod;
        !           284:        else
        !           285:                return utrunc(F1,D2-1)-d_tmul(Q,F2,D2-1|proc=Procs);
        !           286: }
        !           287:
        !           288: def call_umul(F1,F2,Ind,M1,M)
        !           289: {
        !           290:        C = umul_specialmod(F1,F2,Ind);
        !           291:        Mhat = idiv(M,M1);
        !           292:        MhatInv = inv(Mhat,M1);
        !           293:        return Mhat*((MhatInv*C)%M1);
        !           294: }
        !           295:
        !           296: def call_usquare(F1,Ind,M1,M)
        !           297: {
        !           298:        C = usquare_specialmod(F1,Ind);
        !           299:        Mhat = idiv(M,M1);
        !           300:        MhatInv = inv(Mhat,M1);
        !           301:        return Mhat*((MhatInv*C)%M1);
        !           302: }
        !           303:
        !           304: def call_utmul(F1,F2,D,Ind,M1,M)
        !           305: {
        !           306:        C = utmul_specialmod(F1,F2,D,Ind);
        !           307:        Mhat = idiv(M,M1);
        !           308:        MhatInv = inv(Mhat,M1);
        !           309:        return Mhat*((MhatInv*C)%M1);
        !           310: }
        !           311: end$

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>