[BACK]Return to mat CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2018 / lib

Annotation of OpenXM_contrib2/asir2018/lib/mat, Revision 1.1

1.1     ! noro        1: /*
        !             2:  * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
        !             3:  * All rights reserved.
        !             4:  *
        !             5:  * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
        !             6:  * non-exclusive and royalty-free license to use, copy, modify and
        !             7:  * redistribute, solely for non-commercial and non-profit purposes, the
        !             8:  * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
        !             9:  * conditions of this Agreement. For the avoidance of doubt, you acquire
        !            10:  * only a limited right to use the SOFTWARE hereunder, and FLL or any
        !            11:  * third party developer retains all rights, including but not limited to
        !            12:  * copyrights, in and to the SOFTWARE.
        !            13:  *
        !            14:  * (1) FLL does not grant you a license in any way for commercial
        !            15:  * purposes. You may use the SOFTWARE only for non-commercial and
        !            16:  * non-profit purposes only, such as academic, research and internal
        !            17:  * business use.
        !            18:  * (2) The SOFTWARE is protected by the Copyright Law of Japan and
        !            19:  * international copyright treaties. If you make copies of the SOFTWARE,
        !            20:  * with or without modification, as permitted hereunder, you shall affix
        !            21:  * to all such copies of the SOFTWARE the above copyright notice.
        !            22:  * (3) An explicit reference to this SOFTWARE and its copyright owner
        !            23:  * shall be made on your publication or presentation in any form of the
        !            24:  * results obtained by use of the SOFTWARE.
        !            25:  * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
        !            26:  * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
        !            27:  * for such modification or the source code of the modified part of the
        !            28:  * SOFTWARE.
        !            29:  *
        !            30:  * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
        !            31:  * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
        !            32:  * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
        !            33:  * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
        !            34:  * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
        !            35:  * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
        !            36:  * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
        !            37:  * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
        !            38:  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
        !            39:  * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
        !            40:  * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
        !            41:  * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
        !            42:  * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
        !            43:  * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
        !            44:  * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
        !            45:  * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
        !            46:  * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
        !            47:  *
        !            48:  * $OpenXM$
        !            49: */
        !            50: /* fraction free gaussian elimination; detructive */
        !            51:
        !            52: def deter(MAT)
        !            53: {
        !            54:        S = size(MAT);
        !            55:        if ( car(S) != car(cdr(S)) )
        !            56:                return 0;
        !            57:        N = car(S);
        !            58:        for ( J = 0, D = 1; J < N; J++ ) {
        !            59:                for ( I = J; (I<N)&&(MAT[I][J] == 0); I++ );
        !            60:                if ( I != N ) {
        !            61:                        for ( L = I; L < N; L++ )
        !            62:                                if ( MAT[L][J] && (nmono(MAT[L][J]) < nmono(MAT[I][J])) )
        !            63:                                        I = L;
        !            64:                        if ( J != I )
        !            65:                                for ( K = 0; K < N; K++ ) {
        !            66:                                        B = MAT[J][K]; MAT[J][K] = MAT[I][K]; MAT[I][K] = B;
        !            67:                                }
        !            68:
        !            69:                        for ( I = J + 1, V = MAT[J][J]; I < N; I++ )
        !            70:                                for ( K = J + 1, U = MAT[I][J]; K < N; K++ )
        !            71:                                        MAT[I][K] = sdiv(MAT[I][K]*V-MAT[J][K]*U,D);
        !            72:                        D = V;
        !            73:                } else
        !            74:                        return ( 0 );
        !            75:        }
        !            76:        return (D);
        !            77: }
        !            78:
        !            79: /* characteristic polynomial */
        !            80:
        !            81: def cp(M)
        !            82: {
        !            83:        tstart;
        !            84:        S = size(M);
        !            85:        if ( car(S) != car(cdr(S)) )
        !            86:                return 0;
        !            87:        N = car(S);
        !            88:        MAT = newmat(N,N);
        !            89:        for ( I = 0; I < N; I++ )
        !            90:                for ( J = 0; J < N; J++ )
        !            91:                        if ( I == J )
        !            92:                                MAT[I][J] = red(M[I][J]-x);
        !            93:                        else
        !            94:                                MAT[I][J] = red(M[I][J]);
        !            95:        D = deter(MAT);
        !            96:        tstop;
        !            97:        return (D);
        !            98: }
        !            99:
        !           100: /* calculation of charpoly by danilevskii's method */
        !           101:
        !           102: def da(MAT)
        !           103: {
        !           104:        tstart;
        !           105:        S = size(MAT);
        !           106:        if ( car(S) != car(cdr(S)) )
        !           107:                return 0;
        !           108:        N = car(S);
        !           109:        M = newmat(N,N);
        !           110:        for ( I = 0; I < N; I++ )
        !           111:                for ( J = 0; J < N; J++ )
        !           112:                        M[I][J] = red(MAT[I][J]);
        !           113:
        !           114:        for ( W = newvect(N), J = 0, K = 0, D = 1; J < N; J++ ) {
        !           115:                for ( I = J + 1; (I<N) && (M[I][J] == 0); I++ );
        !           116:                if ( I == N ) {
        !           117:                        for ( L = J, S = 1; L >= K; L-- )
        !           118:                                S = S*x-M[L][J];
        !           119:                        D *= S;
        !           120:                        K = J + 1;
        !           121:                } else {
        !           122:                        B = J + 1;
        !           123:                        for ( L = 0; L < N; L++ ) {
        !           124:                                T = M[I][L]; M[I][L] = M[B][L]; M[B][L] = T;
        !           125:                        }
        !           126:                        for ( L = 0; L < N; L++ ) {
        !           127:                                T = M[L][B]; M[L][B] = M[L][I]; M[L][I] = T;
        !           128:                                W[L] = M[L][J];
        !           129:                        }
        !           130:                        for ( L = K, T = red(1/M[B][J]); L < N; L++ )
        !           131:                                M[B][L] *= T;
        !           132:                        for ( L = K; L < N; L++ )
        !           133:                                if ( W[L] && (L != J + 1) )
        !           134:                                        for ( B = K, T = W[L]; B < N; B++ )
        !           135:                                                M[L][B] -= M[J+1][B]*T;
        !           136:                        for ( L = K; L < N; L++ ) {
        !           137:                                for ( B = 0, T = 0; B < N ; B++ )
        !           138:                                        T += M[L][B] * W[B];
        !           139:                                M[L][J + 1] = T;
        !           140:                        }
        !           141:                }
        !           142:        }
        !           143:        tstop;
        !           144:        return ( D );
        !           145: }
        !           146:
        !           147: def newvmat(N) {
        !           148:        M = newmat(N,N);
        !           149:        for ( I = 0; I < N; I++ )
        !           150:                for ( J = 0; J < N; J++ )
        !           151:                        M[I][J] = strtov(rtostr(x)+rtostr(I))^J;
        !           152:        return M;
        !           153: }
        !           154:
        !           155: def newssmat(N) {
        !           156:        M = newmat(N,N);
        !           157:        for ( I = 0; I < N; I++ )
        !           158:                for ( J = 0; J < N; J++ )
        !           159:                        M[I][J] = strtov(rtostr(x)+rtostr(I)+"_"+rtostr(J));
        !           160:        return M;
        !           161: }
        !           162:
        !           163: def newasssmat(N) {
        !           164:        N *= 2;
        !           165:        M = newmat(N,N);
        !           166:        for ( I = 0; I < N; I++ )
        !           167:                for ( J = 0; J < I; J++ )
        !           168:                        M[I][J] = strtov(rtostr(x)+rtostr(I)+"_"+rtostr(J));
        !           169:        for ( I = 0; I < N; I++ )
        !           170:                for ( J = I + 1; J < N; J++ )
        !           171:                        M[I][J] = -M[J][I];
        !           172:        return M;
        !           173: }
        !           174:
        !           175: /* calculation of determinant by minor expansion */
        !           176:
        !           177: def edet(M) {
        !           178:        S = size(M);
        !           179:        if ( S[0] == 1 )
        !           180:                return M[0][0];
        !           181:        else {
        !           182:                N = S[0];
        !           183:                L = newmat(N-1,N-1);
        !           184:                for ( I = 0, R = 0; I < N; I++ ) {
        !           185:                        for ( J = 1; J < N; J++ ) {
        !           186:                                for ( K = 0; K < I; K++ )
        !           187:                                        L[J-1][K] = M[J][K];
        !           188:                                for ( K = I+1; K < N; K++ )
        !           189:                                        L[J-1][K-1] = M[J][K];
        !           190:                        }
        !           191:                        R += (-1)^I*edet(L)*M[0][I];
        !           192:                }
        !           193:                return R;
        !           194:        }
        !           195: }
        !           196:
        !           197: /* sylvester's matrix */
        !           198:
        !           199: def syl(V,P1,P2) {
        !           200:        D1 = deg(P1,V); D2 = deg(P2,V);
        !           201:        M = newmat(D1+D2,D1+D2);
        !           202:        for ( J = 0; J <= D2; J++ )
        !           203:                M[0][J] = coef(P2,D2-J,V);
        !           204:        for ( I = 1; I < D1; I++ )
        !           205:                for ( J = 0; J <= D2; J++ )
        !           206:                M[I][I+J] = M[0][J];
        !           207:        for ( J = 0; J <= D1; J++ )
        !           208:                M[D1][J] = coef(P1,D1-J,V);
        !           209:        for ( I = 1; I < D2; I++ )
        !           210:                for ( J = 0; J <= D1; J++ )
        !           211:                M[D1+I][I+J] = M[D1][J];
        !           212:        return M;
        !           213: }
        !           214:
        !           215: /* calculation of resultant by edet() */
        !           216:
        !           217: def res_minor(V,P1,P2)
        !           218: {
        !           219:        D1 = deg(P1,V); D2 = deg(P2,V);
        !           220:        M = newmat(D1+D2,D1+D2);
        !           221:        for ( J = 0; J <= D2; J++ )
        !           222:                M[0][J] = coef(P2,D2-J,V);
        !           223:        for ( I = 1; I < D1; I++ )
        !           224:                for ( J = 0; J <= D2; J++ )
        !           225:                M[I][I+J] = M[0][J];
        !           226:        for ( J = 0; J <= D1; J++ )
        !           227:                M[D1][J] = coef(P1,D1-J,V);
        !           228:        for ( I = 1; I < D2; I++ )
        !           229:                for ( J = 0; J <= D1; J++ )
        !           230:                M[D1+I][I+J] = M[D1][J];
        !           231:        return edet(M);
        !           232: }
        !           233: end$

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>