[BACK]Return to num CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2018 / lib

Annotation of OpenXM_contrib2/asir2018/lib/num, Revision 1.1

1.1     ! noro        1: /*
        !             2:  * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
        !             3:  * All rights reserved.
        !             4:  *
        !             5:  * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
        !             6:  * non-exclusive and royalty-free license to use, copy, modify and
        !             7:  * redistribute, solely for non-commercial and non-profit purposes, the
        !             8:  * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
        !             9:  * conditions of this Agreement. For the avoidance of doubt, you acquire
        !            10:  * only a limited right to use the SOFTWARE hereunder, and FLL or any
        !            11:  * third party developer retains all rights, including but not limited to
        !            12:  * copyrights, in and to the SOFTWARE.
        !            13:  *
        !            14:  * (1) FLL does not grant you a license in any way for commercial
        !            15:  * purposes. You may use the SOFTWARE only for non-commercial and
        !            16:  * non-profit purposes only, such as academic, research and internal
        !            17:  * business use.
        !            18:  * (2) The SOFTWARE is protected by the Copyright Law of Japan and
        !            19:  * international copyright treaties. If you make copies of the SOFTWARE,
        !            20:  * with or without modification, as permitted hereunder, you shall affix
        !            21:  * to all such copies of the SOFTWARE the above copyright notice.
        !            22:  * (3) An explicit reference to this SOFTWARE and its copyright owner
        !            23:  * shall be made on your publication or presentation in any form of the
        !            24:  * results obtained by use of the SOFTWARE.
        !            25:  * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
        !            26:  * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
        !            27:  * for such modification or the source code of the modified part of the
        !            28:  * SOFTWARE.
        !            29:  *
        !            30:  * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
        !            31:  * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
        !            32:  * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
        !            33:  * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
        !            34:  * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
        !            35:  * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
        !            36:  * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
        !            37:  * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
        !            38:  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
        !            39:  * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
        !            40:  * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
        !            41:  * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
        !            42:  * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
        !            43:  * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
        !            44:  * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
        !            45:  * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
        !            46:  * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
        !            47:  *
        !            48:  * $OpenXM$
        !            49: */
        !            50: /* factorial */
        !            51:
        !            52: def f(N)
        !            53: {
        !            54:        for ( I = 1, M = 1; I <= N; I++ )
        !            55:                M *= I;
        !            56:        return M;
        !            57: }
        !            58:
        !            59: /* factorial by recursion */
        !            60:
        !            61: def recf(X) {
        !            62:        if ( X == 0 )
        !            63:                return ( 1 );
        !            64:        else
        !            65:                return ( X * recf(X-1) );
        !            66: }
        !            67:
        !            68: /* Catalan's constant */
        !            69:
        !            70: def cat(D) {
        !            71:        tstart;
        !            72:        for ( S = T = P = idiv(10^D,2), I = 1, J = 3; T; I++, J += 2 ) {
        !            73:                P = idiv(P*I,J); T = idiv(T*I+P,J); S += T;
        !            74:        }
        !            75:        tstop;
        !            76:        return S;
        !            77: }
        !            78:
        !            79: /* Napier's constant */
        !            80:
        !            81: def e(D,N)
        !            82: {
        !            83:        for ( F = 1, S = 1, I = 1; I <= N; I++ ) {
        !            84:                S = S*I + 1;
        !            85:                F *= I;
        !            86:        }
        !            87:        T = red(S/F);
        !            88:        return idiv(nm(T)*10^D,dn(T));
        !            89: }
        !            90:
        !            91: /* atan */
        !            92:
        !            93: def at0(X,D)
        !            94: {
        !            95:        for ( S = T = idiv(D,X), I = 1, Y = X^2, Sgn = -1;
        !            96:                T;
        !            97:                I += 2, Sgn *= -1 ) {
        !            98:                T = idiv(T*I,Y*(I+2)); S += (Sgn*T);
        !            99:        }
        !           100:        return S;
        !           101: }
        !           102:
        !           103: /* pi */
        !           104:
        !           105: def pi(D)
        !           106: {
        !           107:        tstart; Y = 10^D; X = 16*at0(5,Y)-4*at0(239,Y); tstop;
        !           108:        return X;
        !           109: }
        !           110:
        !           111: def at1(M,D) {
        !           112: for (N = 1, SGN = 1, MM = M*M, A = 0, XN = idiv(D,M);
        !           113:        XN;
        !           114:        N += 2, XN = idiv(XN,MM), SGN *= -1)
        !           115:                A += (SGN*idiv(XN,N));
        !           116:        return A;
        !           117: }
        !           118:
        !           119: def pi1(D) {
        !           120:        tstart; Y = 10^D; X = 16*at1(5,Y)-4*at1(239,Y); tstop;
        !           121:        return X;
        !           122: }
        !           123:
        !           124: def pi2(D) {
        !           125:        tstart; Y = 10^D;
        !           126:        X = 48*at1(49,Y)+128*at1(57,Y)-20*at1(239,Y)+48*at1(110443,Y);
        !           127:        tstop;
        !           128:        return X;
        !           129: }
        !           130:
        !           131: /* Bernoulli number */
        !           132: def bn(N)
        !           133: {
        !           134:        B = newvect(N+1); C = c2(N+1);
        !           135:        for ( I = 1, B[0] = 1; I <= N; I++ ) {
        !           136:                for ( D = C[I+1], J = 0, S = 0; J < I; J++ )
        !           137:                        S += D[J]*B[J];
        !           138:                B[I] = red(-S/(I+1));
        !           139:        }
        !           140:        return [B,C];
        !           141: }
        !           142:
        !           143: def bp(N,B,C,V)
        !           144: {
        !           145:        for ( I = 0, S = 0; I <= N; I++ )
        !           146:                S += C[I]*B[N-I]*V^I;
        !           147:        return S;
        !           148: }
        !           149:
        !           150: /*
        !           151:  * sum(N) = 1^N+2^N+...+n^N
        !           152:  */
        !           153:
        !           154: def sum(N)
        !           155: {
        !           156:        L = bn(N+1);
        !           157:        R = car(L); C = car(cdr(L));
        !           158:        S = bp(N+1,R,C[N+1],n);
        !           159:        return red((subst(S,n,n+1)-subst(S,n,1))/(N+1));
        !           160: }
        !           161:
        !           162: /* nCi */
        !           163:
        !           164: def c(N,I)
        !           165: {
        !           166:        for ( M = 1, J = 0; J < I; J++ )
        !           167:                M *= N-J;
        !           168:        return red(M/f(I));
        !           169: }
        !           170:
        !           171: def c1(N)
        !           172: {
        !           173:        A = newvect(N+1); B = newvect(N+1); A[0] = 1;
        !           174:        for ( K = 1; K <= N; K++ ) {
        !           175:                B[0] = B[K] = 1;
        !           176:                for ( J = 1; J < K; J++ ) B[J] = A[J-1]+A[J];
        !           177:                T = A; A = B; B = T;
        !           178:        }
        !           179:        return A;
        !           180: }
        !           181:
        !           182: def c2(N)
        !           183: {
        !           184:        A = newvect(N+1); A[0] = B = newvect(1); B[0] = 1;
        !           185:        for ( K = 1; K <= N; K++ ) {
        !           186:                A[K] = B = newvect(K+1); B[0] = B[K] = 1;
        !           187:                for ( P = A[K-1], J = 1; J < K; J++ )
        !           188:                        B[J] = P[J-1]+P[J];
        !           189:        }
        !           190:        return A;
        !           191: }
        !           192:
        !           193: def sumd(N,M)
        !           194: {
        !           195:        for ( I = 1, S = 0; I <= M; I++ )
        !           196:                S += I^N;
        !           197:        return S;
        !           198: }
        !           199:
        !           200: #if 0
        !           201: def sqrt(A,N) {
        !           202:        for ( I = 0, X = 1, B = A; I < N; I++, B *= 100, X *= 10 ) {
        !           203:                while ( 1 ) {
        !           204:                        T = idiv(idiv(B,X) + X,2);
        !           205: /*
        !           206:                        if ((Y = T - X)== 0)
        !           207:                                if ( B == X^2) return (X/(10^I));
        !           208:                                else break;
        !           209:                        else if ( (Y == 1) || (Y == -1) ) break;
        !           210: */
        !           211:                        if ( ( (Y = T - X) == 0 ) || (Y == 1) || (Y == -1) ) break;
        !           212:                        X = T;
        !           213:                }
        !           214:        }
        !           215:        return (X/(10^I));
        !           216: }
        !           217: #endif
        !           218:
        !           219: def sqrt(A) {
        !           220:        for ( J = 0, T = A; T >= 2^27; J++ ) {
        !           221:                T = idiv(T,2^27)+1;
        !           222:        }
        !           223:        for ( I = 0; T >= 2; I++ ) {
        !           224:                S = idiv(T,2);
        !           225:                if ( T = S+S )
        !           226:                        T = S;
        !           227:                else
        !           228:                        T = S+1;
        !           229:        }
        !           230:        X = (2^27)^idiv(J,2)*2^idiv(I,2);
        !           231:        while ( 1 ) {
        !           232:                if ( (Y=X^2) < A )
        !           233:                        X += X;
        !           234:                else if ( Y == A )
        !           235:                        return X;
        !           236:                else
        !           237:                        break;
        !           238:        }
        !           239:        while ( 1 )
        !           240:                if ( (Y = X^2) <= A )
        !           241:                        return X;
        !           242:                else
        !           243:                        X = idiv(A + Y,2*X);
        !           244: }
        !           245:
        !           246: /* internal -> hexadecimal */
        !           247:
        !           248: def hex(N) {
        !           249:        C = newvect(6,["a","b","c","d","e","f"]);
        !           250:        for ( I = 0, T = 1; T < N; T *= 16, I++ );
        !           251:        B = newvect(I+1);
        !           252:        for ( I = 0; N >= 16; I++ ) {
        !           253:                B[I] = irem(N,16);
        !           254:                N = idiv(N,16);
        !           255:        }
        !           256:        B[I] = N;
        !           257:        for ( ; I >= 0; I-- )
        !           258:                if ( (T = B[I]) < 10 )
        !           259:                        print(T,0);
        !           260:                else
        !           261:                        print(C[B[I]-10],0);
        !           262:        print("");
        !           263: }
        !           264:
        !           265: /* internal -> binary */
        !           266:
        !           267: def bin(N) {
        !           268:        for ( I = 0, T = 1; T < N; T *= 2, I++ );
        !           269:        B = newvect(I+1);
        !           270:        for ( I = 0; N >= 2; I++ ) {
        !           271:                B[I] = irem(N,2);
        !           272:                N = idiv(N,2);
        !           273:        }
        !           274:        B[I] = N;
        !           275:        for ( ; I >= 0; I-- ) {
        !           276:                if ( B[I] )
        !           277:                        print("1",0);
        !           278:                else
        !           279:                        print("0",0);
        !           280:        }
        !           281:        print("");
        !           282: }
        !           283: end$

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>