[BACK]Return to ratint CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2018 / lib

Annotation of OpenXM_contrib2/asir2018/lib/ratint, Revision 1.1

1.1     ! noro        1: /*
        !             2:  * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
        !             3:  * All rights reserved.
        !             4:  *
        !             5:  * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
        !             6:  * non-exclusive and royalty-free license to use, copy, modify and
        !             7:  * redistribute, solely for non-commercial and non-profit purposes, the
        !             8:  * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
        !             9:  * conditions of this Agreement. For the avoidance of doubt, you acquire
        !            10:  * only a limited right to use the SOFTWARE hereunder, and FLL or any
        !            11:  * third party developer retains all rights, including but not limited to
        !            12:  * copyrights, in and to the SOFTWARE.
        !            13:  *
        !            14:  * (1) FLL does not grant you a license in any way for commercial
        !            15:  * purposes. You may use the SOFTWARE only for non-commercial and
        !            16:  * non-profit purposes only, such as academic, research and internal
        !            17:  * business use.
        !            18:  * (2) The SOFTWARE is protected by the Copyright Law of Japan and
        !            19:  * international copyright treaties. If you make copies of the SOFTWARE,
        !            20:  * with or without modification, as permitted hereunder, you shall affix
        !            21:  * to all such copies of the SOFTWARE the above copyright notice.
        !            22:  * (3) An explicit reference to this SOFTWARE and its copyright owner
        !            23:  * shall be made on your publication or presentation in any form of the
        !            24:  * results obtained by use of the SOFTWARE.
        !            25:  * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
        !            26:  * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
        !            27:  * for such modification or the source code of the modified part of the
        !            28:  * SOFTWARE.
        !            29:  *
        !            30:  * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
        !            31:  * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
        !            32:  * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
        !            33:  * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
        !            34:  * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
        !            35:  * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
        !            36:  * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
        !            37:  * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
        !            38:  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
        !            39:  * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
        !            40:  * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
        !            41:  * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
        !            42:  * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
        !            43:  * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
        !            44:  * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
        !            45:  * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
        !            46:  * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
        !            47:  *
        !            48:  * $OpenXM$
        !            49: */
        !            50: /*
        !            51:  * rational function integration (Trager's algorithm)
        !            52:  * load("gr"); load("sp");
        !            53:  * toplevel : ratint(F,V)
        !            54:  * returns a complicated list s.t.
        !            55:  * [<rational part>, [[root*log(poly),defpoly],...].
        !            56:  */
        !            57:
        !            58: #define FIRST(a) car(a)
        !            59: #define SECOND(a) car(cdr(a))
        !            60: #define THIRD(a) car(cdr(cdr(a)))
        !            61:
        !            62:
        !            63: def substv(P,Sl)
        !            64: {
        !            65:        for ( A = P; Sl != []; Sl = cdr(Sl) )
        !            66:                A = subst(A,FIRST(car(Sl)),SECOND(car(Sl)));
        !            67:        return A;
        !            68: }
        !            69:
        !            70: def co(X,V,D)
        !            71: {
        !            72:        for ( I = 0; I < D; I++ )
        !            73:                X = diff(X,V);
        !            74:        return sdiv(subst(X,V,0),fac(D));
        !            75: }
        !            76:
        !            77: def solve(El,Vl)
        !            78: /*
        !            79:  * El : list of linear forms
        !            80:  * Vl : list of variable
        !            81:  */
        !            82: {
        !            83:        N = length(El); M = length(Vl);
        !            84:        Mat = newmat(N,M+1);
        !            85:        W = newvect(M+1); Index = newvect(N); Vs = newvect(M);
        !            86:        for ( I = 0, Tl = Vl; I < M; Tl = cdr(Tl), I++ )
        !            87:                Vs[I] = car(Tl);
        !            88:        for ( I = 0, Tl = El; I < N; Tl = cdr(Tl), I++ ) {
        !            89:                ltov(car(Tl),Vl,W);
        !            90:                for ( J = 0; J <= M; J++ )
        !            91:                        Mat[I][J] = W[J];
        !            92:        }
        !            93:        Tl = solvemain(Mat,Index,N,M); L = car(Tl); D = car(cdr(Tl));
        !            94:        if ( L < 0 )
        !            95:                return [];
        !            96:        for ( I = L - 1, S = []; I >= 0; I-- ) {
        !            97:                for ( J = Index[I]+1, A = 0; J < M; J++ ) {
        !            98:                        A += Mat[I][J]*Vs[J];
        !            99:                }
        !           100:                S = cons([Vs[Index[I]],-red((A+Mat[I][M])/D)],S);
        !           101:        }
        !           102:        return S;
        !           103: }
        !           104:
        !           105: def solvemain(Mat,Index,N,M)
        !           106: /*
        !           107:  *     Mat : matrix of size Nx(M+1)
        !           108:  *     Index : vector of length N
        !           109:  */
        !           110: {
        !           111:        for ( J = 0, L = 0, D = 1; J < M; J++ ) {
        !           112:                for ( I = L; I < N && !Mat[I][J]; I++ );
        !           113:                if ( I == N )
        !           114:                        continue;
        !           115:                Index[L] = J;
        !           116:                for ( K = 0; K <= M; K++ ) {
        !           117:                        T = Mat[I][K]; Mat[I][K] = Mat[L][K]; Mat[L][K] = T;
        !           118:                }
        !           119:                for ( I = L + 1, V = Mat[L][J]; I < N; I++ )
        !           120:                        for ( K = J, U = Mat[I][J]; K <= M; K++ )
        !           121:                                Mat[I][K] = sdiv(Mat[I][K]*V-Mat[L][K]*U,D);
        !           122:                D = V; L++;
        !           123:        }
        !           124:        for ( I = L; I < N; I++ )
        !           125:                for ( J = 0; J <= M; J++ )
        !           126:                        if ( Mat[I][J] )
        !           127:                                return -1;
        !           128:        for ( I = L - 2, W = newvect(M+1); I >= 0; I-- ) {
        !           129:                for ( J = 0; J <= M; J++ )
        !           130:                        W[J] = 0;
        !           131:                for ( G = I + 1; G < L; G++ )
        !           132:                        for ( H = Index[G], U = Mat[I][H]; H <= M; H++ )
        !           133:                                W[H] += Mat[G][H]*U;
        !           134:                for ( J = Index[I], U = Mat[I][J]; J <= M; J++ )
        !           135:                        Mat[I][J] = sdiv(Mat[I][J]*D-W[J],U);
        !           136:        }
        !           137:        return [L,D];
        !           138: }
        !           139:
        !           140: def ltov(P,VL,W)
        !           141: {
        !           142:        for ( I = 0, L = VL; L != []; L = cdr(L), I++ ) {
        !           143:                W[I] = co(P,car(L),1); P -= W[I]*car(L);
        !           144:        }
        !           145:        W[I] = P;
        !           146: }
        !           147:
        !           148: def makeucp(N,V) {
        !           149:        for ( UCV = [], I = 0; I <= N; I++ )
        !           150:                UCV = cons(uc(),UCV);
        !           151:        for ( L = UCV, I = P = 0; I <= N; I++, L = cdr(L) )
        !           152:                P += car(L)*V^I;
        !           153:        return [P,UCV];
        !           154: }
        !           155:
        !           156: def ratint(F,V) {
        !           157:        L = ratintsep(F,V);
        !           158:        Rat = FIRST(L);
        !           159:        if ( !SECOND(L) )
        !           160:                return L;
        !           161:        else {
        !           162:                Pf = ratintpf(SECOND(L),V);
        !           163:                for ( T = Pf, S = []; T != []; T = cdr(T) )
        !           164:                        S = cons(ratintlog(car(T),V),S);
        !           165:                return [Rat,S];
        !           166:        }
        !           167: }
        !           168:
        !           169: def ratintlog(F,V) {
        !           170:        Nm = nm(F); Dn = dn(F);
        !           171:        C = uc();
        !           172:        R = res(V,ptozp(Nm-C*diff(Dn,V)),ptozp(Dn));
        !           173:        Rc = FIRST(SECOND(fctr(R)));
        !           174:        if ( deg(Rc,C) == 1 ) {
        !           175:                VC = -co(Rc,C,0)/co(Rc,C,1);
        !           176:                A = gcd(Nm-VC*diff(Dn,V),Dn);
        !           177:                return [VC*log(A),0];
        !           178:        } else {
        !           179:                Root = newalg(Rc);
        !           180:                A = gcda(subst(ptozp(Nm-C*diff(Dn,V)),C,Root),subst(ptozp(Dn),C,Root));
        !           181:                return [Root*log(A),defpoly(Root)];
        !           182:        }
        !           183: }
        !           184:
        !           185: def ratintsep(F,V) {
        !           186:        B = dn(F); A = srem(nm(F),B); P = sdiv(nm(F)-R,B);
        !           187:        IP = polyint(P,V);
        !           188:        G = gcd(B,diff(B,x));
        !           189:        if ( type(G) == 1 )
        !           190:                return [IP,red(A/B)];
        !           191:        H = sdiv(B,G);
        !           192:        N = deg(B,V); M = deg(H,V);
        !           193:        CL = makeucp(N-M-1,V); DL = makeucp(M-1,V);
        !           194:        C = car(CL); CV = car(cdr(CL));
        !           195:        D = car(DL); DV = car(cdr(DL));
        !           196:        UCV = append(CV,DV);
        !           197:        S = solveuc(A-(diff(C,V)*H-C*sdiv(H*diff(G,V),G)+D*G),V,UCV);
        !           198:        C = substv(C,S); D = substv(D,S);
        !           199:        return [IP+C/G,red(D/H)];
        !           200: }
        !           201:
        !           202: def polyint(P,V) {
        !           203:        if ( !P )
        !           204:                return 0;
        !           205:        if ( type(P) == 1 )
        !           206:                return P*V;
        !           207:        for ( I = deg(P,V), T = 0; I >= 0; I-- )
        !           208:                T += coef(P,I)/(I+1)*V^(I+1);
        !           209:        return T;
        !           210: }
        !           211:
        !           212: def ratintpf(P,V) {
        !           213:        NmP = nm(P); DnP = dn(P);
        !           214:        DnPf = fctr(DnP);
        !           215:        L = length(DnPf) - 1;
        !           216:        if ( L == 1 )
        !           217:                return [P];
        !           218:
        !           219:        Lc = FIRST(car(DnPf)); DnPf = cdr(DnPf);
        !           220:        NmP = sdiv(NmP,Lc); DnP = sdiv(DnP,Lc);
        !           221:        Nm = newvect(L); Dn = newvect(L);
        !           222:        for ( I = 0, F = DnPf; I < L; I++, F = cdr(F) )
        !           223:                Dn[I] = FIRST(car(F));
        !           224:
        !           225:        for ( I = 0, U = -NmP, Vl = []; I < L; I++ ) {
        !           226:                CL = makeucp(deg(Dn[I],V)-1,V);
        !           227:                Nm[I] = FIRST(CL); Vl = append(Vl,SECOND(CL));
        !           228:                U += sdiv(DnP,Dn[I])*Nm[I];
        !           229:        }
        !           230:
        !           231:        S = solveuc(U,V,Vl);
        !           232:        for ( I = 0, F = []; I < L; I++ )
        !           233:                if ( T = substv(Nm[I],S) )
        !           234:                        F = cons(T/Dn[I],F);
        !           235:        return F;
        !           236: }
        !           237:
        !           238: def solveuc(P,V,L) {
        !           239:        for ( N = deg(P,V), E = [], I = N; I >= 0; I-- )
        !           240:                if ( C = coef(P,I) )
        !           241:                        E = cons(C,E);
        !           242:        EVG = eqsimp(E,L);
        !           243:        if ( FIRST(EVG) == [] )
        !           244:                return THIRD(EVG);
        !           245:        else {
        !           246:                S = solve(FIRST(EVG),SECOND(EVG));
        !           247:                for ( T = S, G = THIRD(EVG); G != []; G = cdr(G) ) {
        !           248:                        VV = car(G);
        !           249:                        T = cons([FIRST(VV),substv(SECOND(VV),S)],T);
        !           250:                }
        !           251:                return T;
        !           252:        }
        !           253:
        !           254: }
        !           255:
        !           256: #if 0
        !           257: def append(A,B) {
        !           258:        return A == [] ? B : cons(car(A),append(cdr(A),B));
        !           259: }
        !           260: #endif
        !           261:
        !           262: def eqsimp(E,Vs) {
        !           263:        for ( Got = []; ; ) {
        !           264:                if ( (VV = searchmonic(E,Vs)) == [] )
        !           265:                        return [E,Vs,Got];
        !           266:                V = FIRST(VV); Val = SECOND(VV);
        !           267:                Vs = subtract(Vs,V);
        !           268:                for ( T = []; E != []; E = cdr(E) )
        !           269:                        if ( S = subst(car(E),V,Val) )
        !           270:                                T = cons(S,T);
        !           271:                E = T;
        !           272:                for ( T = [VV]; Got != []; Got = cdr(Got) ) {
        !           273:                        VV1 = car(Got);
        !           274:                        T = cons([FIRST(VV1),subst(SECOND(VV1),V,Val)],T);
        !           275:                }
        !           276:                Got = T;
        !           277:        }
        !           278: }
        !           279:
        !           280: def searchmonic(E,Vs) {
        !           281:        for ( ; E != []; E = cdr(E) )
        !           282:                for ( P = car(E), T = Vs; T != []; T = cdr(T) ) {
        !           283:                        V = car(T); C = diff(P,V);
        !           284:                        if ( C == 1 )
        !           285:                                return [V,-(P-V)];
        !           286:                        else if ( C == -1 )
        !           287:                                return [V,P+V];
        !           288:                }
        !           289:        return [];
        !           290: }
        !           291:
        !           292: def subtract(S,E) {
        !           293:        for ( T = []; S != []; S = cdr(S) )
        !           294:                if ( car(S) == E )
        !           295:                        return append(T,cdr(S));
        !           296:                else
        !           297:                        T = cons(car(S),T);
        !           298: }
        !           299: end$

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>