[BACK]Return to sturm CVS log [TXT][DIR] Up to [local] / OpenXM_contrib2 / asir2018 / lib

Annotation of OpenXM_contrib2/asir2018/lib/sturm, Revision 1.1

1.1     ! noro        1: /*
        !             2:  * Copyright (c) 1994-2000 FUJITSU LABORATORIES LIMITED
        !             3:  * All rights reserved.
        !             4:  *
        !             5:  * FUJITSU LABORATORIES LIMITED ("FLL") hereby grants you a limited,
        !             6:  * non-exclusive and royalty-free license to use, copy, modify and
        !             7:  * redistribute, solely for non-commercial and non-profit purposes, the
        !             8:  * computer program, "Risa/Asir" ("SOFTWARE"), subject to the terms and
        !             9:  * conditions of this Agreement. For the avoidance of doubt, you acquire
        !            10:  * only a limited right to use the SOFTWARE hereunder, and FLL or any
        !            11:  * third party developer retains all rights, including but not limited to
        !            12:  * copyrights, in and to the SOFTWARE.
        !            13:  *
        !            14:  * (1) FLL does not grant you a license in any way for commercial
        !            15:  * purposes. You may use the SOFTWARE only for non-commercial and
        !            16:  * non-profit purposes only, such as academic, research and internal
        !            17:  * business use.
        !            18:  * (2) The SOFTWARE is protected by the Copyright Law of Japan and
        !            19:  * international copyright treaties. If you make copies of the SOFTWARE,
        !            20:  * with or without modification, as permitted hereunder, you shall affix
        !            21:  * to all such copies of the SOFTWARE the above copyright notice.
        !            22:  * (3) An explicit reference to this SOFTWARE and its copyright owner
        !            23:  * shall be made on your publication or presentation in any form of the
        !            24:  * results obtained by use of the SOFTWARE.
        !            25:  * (4) In the event that you modify the SOFTWARE, you shall notify FLL by
        !            26:  * e-mail at risa-admin@sec.flab.fujitsu.co.jp of the detailed specification
        !            27:  * for such modification or the source code of the modified part of the
        !            28:  * SOFTWARE.
        !            29:  *
        !            30:  * THE SOFTWARE IS PROVIDED AS IS WITHOUT ANY WARRANTY OF ANY KIND. FLL
        !            31:  * MAKES ABSOLUTELY NO WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY, AND
        !            32:  * EXPRESSLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS
        !            33:  * FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF THIRD PARTIES'
        !            34:  * RIGHTS. NO FLL DEALER, AGENT, EMPLOYEES IS AUTHORIZED TO MAKE ANY
        !            35:  * MODIFICATIONS, EXTENSIONS, OR ADDITIONS TO THIS WARRANTY.
        !            36:  * UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, TORT, CONTRACT,
        !            37:  * OR OTHERWISE, SHALL FLL BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY
        !            38:  * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL
        !            39:  * DAMAGES OF ANY CHARACTER, INCLUDING, WITHOUT LIMITATION, DAMAGES
        !            40:  * ARISING OUT OF OR RELATING TO THE SOFTWARE OR THIS AGREEMENT, DAMAGES
        !            41:  * FOR LOSS OF GOODWILL, WORK STOPPAGE, OR LOSS OF DATA, OR FOR ANY
        !            42:  * DAMAGES, EVEN IF FLL SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF
        !            43:  * SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. EVEN IF A PART
        !            44:  * OF THE SOFTWARE HAS BEEN DEVELOPED BY A THIRD PARTY, THE THIRD PARTY
        !            45:  * DEVELOPER SHALL HAVE NO LIABILITY IN CONNECTION WITH THE USE,
        !            46:  * PERFORMANCE OR NON-PERFORMANCE OF THE SOFTWARE.
        !            47:  *
        !            48:  * $OpenXM$
        !            49: */
        !            50: /* find intervals which include roots of a polynomial */
        !            51:
        !            52: #include "defs.h"
        !            53:
        !            54: def slice(P,XR,YR,WH) {
        !            55:        X = FIRST(XR); XMIN = SECOND(XR); XMAX = THIRD(XR);
        !            56:        Y = FIRST(YR); YMIN = SECOND(YR); YMAX = THIRD(YR);
        !            57:        W = FIRST(WH); H = SECOND(WH);
        !            58:        XS = (XMAX-XMIN)/W; YS = (YMAX-YMIN)/H;
        !            59:        T = ptozp(subst(P,X,X*XS+XMIN,Y,Y*YS+YMIN));
        !            60:        R = newvect(W+1);
        !            61:        for ( I = 0; I <= W; I++ ) {
        !            62:                S = sturm(subst(T,X,I));
        !            63:                R[I] = numch(S,Y,0)-numch(S,Y,H);
        !            64:        }
        !            65:        return R;
        !            66: }
        !            67:
        !            68: def slice1(P,XR,YR,WH) {
        !            69:        X = FIRST(XR); XMIN = SECOND(XR); XMAX = THIRD(XR);
        !            70:        Y = FIRST(YR); YMIN = SECOND(YR); YMAX = THIRD(YR);
        !            71:        W = FIRST(WH); H = SECOND(WH);
        !            72:        XS = (XMAX-XMIN)/W; YS = (YMAX-YMIN)/H;
        !            73:        T = ptozp(subst(P,X,X*XS+XMIN,Y,Y*YS+YMIN));
        !            74:        R = newvect(W+1);
        !            75:        for ( I = 0; I <= W; I++ ) {
        !            76:                S = sturm(subst(T,X,I));
        !            77:                R[I] = newvect(H+1);
        !            78:                seproot(S,Y,0,H,R[I]);
        !            79:        }
        !            80:        return R;
        !            81: }
        !            82:
        !            83: def seproot(S,X,MI,MA,R) {
        !            84:        N = car(size(S));
        !            85:        for ( I = MI; I <= MA; I++ )
        !            86:                if ( !(T = subst(S[0],X,I)) )
        !            87:                        R[I] = -1;
        !            88:                else
        !            89:                        break;
        !            90:        if ( I > MA )
        !            91:                return;
        !            92:        for ( J = MA; J >= MI; J-- )
        !            93:                if ( !(T = subst(S[0],X,J)) )
        !            94:                        R[J] = -1;
        !            95:                else
        !            96:                        break;
        !            97:        R[I] = numch(S,X,I); R[J] = numch(S,X,J);
        !            98:        if ( J <= I+1  )
        !            99:                return;
        !           100:        if ( R[I] == R[J] ) {
        !           101:                for ( K = I + 1; K < J; K++ )
        !           102:                        R[K] = R[I];
        !           103:                return;
        !           104:        }
        !           105:        T = idiv(I+J,2);
        !           106:        seproot(S,X,I,T,R);
        !           107:        seproot(S,X,T,J,R);
        !           108: }
        !           109:
        !           110: /* compute the sturm sequence of P */
        !           111:
        !           112: def sturm(P) {
        !           113:        V = var(P); N = deg(P,V); T = newvect(N+1);
        !           114:        G1 = T[0] = P; G2 = T[1] = ptozp(diff(P,var(P)));
        !           115:        for ( I = 1, H = 1, X = 1; ; ) {
        !           116:                if ( !deg(G2,V) )
        !           117:                        break;
        !           118:                D = deg(G1,V)-deg(G2,V);
        !           119:                if ( (L = LCOEF(G2)) < 0 )
        !           120:                        L = -L;
        !           121:                if ( !(R = -srem(L^(D+1)*G1,G2)) )
        !           122:                        break;
        !           123:                if ( type(R) == 1 ) {
        !           124:                        T[++I] = (R>0?1:-1); break;
        !           125:                }
        !           126:                M = H^D; G1 = G2;
        !           127:                G2 = T[++I] = sdiv(R,M*X);
        !           128:                if ( (X = LCOEF(G1)) < 0 )
        !           129:                        X = -X;
        !           130:                H = X^D*H/M;
        !           131:        }
        !           132:        S = newvect(I+1);
        !           133:        for ( J = 0; J <= I; J++ )
        !           134:                S[J] = T[J];
        !           135:        return S;
        !           136: }
        !           137:
        !           138: def numch(S,V,A) {
        !           139:        N = car(size(S));
        !           140:        for ( T = subst(S[0],V,A), I = 1, C = 0; I < N; I++ ) {
        !           141:                T1 = subst(S[I],V,A);
        !           142:                if ( !T1 )
        !           143:                        continue;
        !           144:                if ( (T1 > 0 && T < 0) || (T1 < 0 && T > 0) )
        !           145:                        C++;
        !           146:                T = T1;
        !           147:        }
        !           148:        return C;
        !           149: }
        !           150:
        !           151: def numch0(S,V,A,T) {
        !           152:        N = car(size(S));
        !           153:        for ( I = 1, C = 0; I < N; I++ ) {
        !           154:                T1 = subst(S[I],V,A);
        !           155:                if ( !T1 )
        !           156:                        continue;
        !           157:                if ( (T1 > 0 && T < 0) || (T1 < 0 && T > 0) )
        !           158:                        C++;
        !           159:                T = T1;
        !           160:        }
        !           161:        return C;
        !           162: }
        !           163:
        !           164: def count_real_roots(F)
        !           165: {
        !           166:        if ( type(F) == 1 )
        !           167:                return 0;
        !           168:        V = var(F);
        !           169:        R = 0;
        !           170:        /* remove three roots : -1, 0, 1 */
        !           171:        if ( Q = tdiv(F,V) ) {
        !           172:                F = Q; R++;
        !           173:                while ( Q = tdiv(F,V) )
        !           174:                        F = Q;
        !           175:        }
        !           176:        if ( Q = tdiv(F,V-1) ) {
        !           177:                F = Q; R++;
        !           178:                while ( Q = tdiv(F,V-1) )
        !           179:                        F = Q;
        !           180:        }
        !           181:        if ( Q = tdiv(F,V+1) ) {
        !           182:                F = Q; R++;
        !           183:                while ( Q = tdiv(F,V+1) )
        !           184:                        F = Q;
        !           185:        }
        !           186:        if ( type(F) == 1 )
        !           187:                return R;
        !           188:        S = sturm(F);
        !           189:        /* number of roots in [-1,1] */
        !           190:        R += numch(S,V,-1)-numch(S,V,1);
        !           191:        RS = sturm(ureverse(F));
        !           192:        /* number of roots in [-inf,-1] \cup [1,inf] */
        !           193:        R += numch(RS,V,-1)-numch(RS,V,1);
        !           194:        return R;
        !           195: }
        !           196: end;

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>