% $OpenXM: OpenXM/doc/Papers/dag-noro.tex,v 1.5 2001/10/12 05:11:36 noro Exp $ \documentclass{slides} \usepackage{color} \usepackage{rgb} \usepackage{graphicx} \usepackage{epsfig} \newcommand{\qed}{$\Box$} \newcommand{\mred}[1]{\smash{\mathop{\hbox{\rightarrowfill}}\limits_{\scriptstyle #1}}} \newcommand{\tmred}[1]{\smash{\mathop{\hbox{\rightarrowfill}}\limits_{\scriptstyle #1}\limits^{\scriptstyle *}}} \def\gr{Gr\"obner basis } \def\st{\, s.t. \,} \def\ni{\noindent} \def\ve{\vfill\eject} \textwidth 9.2in \textheight 7.2in \columnsep 0.33in \topmargin -1in \def\tc{\color{red}} \def\fbc{\bf\color{MediumBlue}} \def\itc{\color{brown}} \def\urlc{\bf\color{DarkGreen}} \def\bc{\color{LightGoldenrod1}} \title{\tc A computer algebra system Risa/Asir and OpenXM} \author{Masayuki Noro\\ Kobe University, Japan} \begin{document} \setlength{\parskip}{10pt} \maketitle %\begin{slide}{} %\begin{center} %\fbox{\fbc \large Part I : OpenXM and Risa/Asir --- overview and history} %\end{center} %\end{slide} %\begin{slide}{} %\fbox{\fbc Integration of mathematical software systems} % %\begin{itemize} %\item Data integration % %\begin{itemize} %\item OpenMath ({\urlc \tt http://www.openmath.org}) , MP [GRAY98] %\end{itemize} % %Standards for representing mathematical objects % %\item Control integration % %\begin{itemize} %\item MCP [WANG99], OMEI [LIAO01] %\end{itemize} % %Protocols for remote subroutine calls or session management % %\item Combination of two integrations % %\begin{itemize} %\item MathLink, OpenMath+MCP, MP+MCP % %and OpenXM ({\urlc \tt http://www.openxm.org}) %\end{itemize} % %Both are necessary for practical implementation % %\end{itemize} %\end{slide} \begin{slide}{} \fbox{\fbc A computer algebra system Risa/Asir} \begin{itemize} \item {\itc Software mainly for polynomial computation} Polynomial factorization, Groebner basis computation \item {\itc User language with C-like syntax} C language without type declaration, with list processing \item {\itc Builtin {\tt gdb}-like debugger for user programs} \item {\itc Open source} ({\urlc \tt http://www.math.kobe-u.ac.jp/Asir/asir.html}) The source and binaries are available via ftp or CVS See {\urlc \tt http://www.openxm.org} to get the latest version \item {\itc OpenXM interface} \begin{itemize} \item OpenXM ({\urlc \tt http://www.openxm.org}) An infrastructure for exchanging mathematical data \item Risa/Asir is a main client in OpenXM package \item {\tt ox\_asir} is an OpenXM server \item {\tt libasir.a} provides OpenXM interface via function call \end{itemize} \end{itemize} \end{slide} \begin{slide}{} \fbox{\fbc Goal of developing Risa/Asir} \begin{itemize} \item {\itc Testing new algorithms} \begin{itemize} \item Development started in Fujitsu labs Polynomial factorization, Groebner basis related computation, cryptosystems , quantifier elimination , $\ldots$ \end{itemize} \item {\itc To be a general purpose, open system} Since 1997, we have been developing OpenXM package containing various servers and clients Risa/Asir is a component of OpenXM \item {\itc Environment for parallel and distributed computation} \end{itemize} \end{slide} %\begin{slide}{} %\fbox{\fbc Capability for polynomial computation} % %\begin{itemize} %\item Fundamental polynomial arithmetics % %recursive representation and distributed representation % %\item Polynomial factorization % %\begin{itemize} %\item Univariate : over {\bf Q}, algebraic number fields and finite fields % %\item Multivariate : over {\bf Q} %\end{itemize} % %\item Groebner basis computation % %\begin{itemize} %\item Buchberger and $F_4$ [FAUG99] algorithm % %\item Change of ordering/RUR [ROUI96] of 0-dimensional ideals % %\item Primary ideal decomposition % %\item Computation of $b$-function (in Weyl Algebra) %\end{itemize} %\end{itemize} %\end{slide} \begin{slide}{} \fbox{\fbc History of development : Polynomial factorization} \begin{itemize} \item {\itc 1989} Start of Risa/Asir with Boehm's conservative GC ({\urlc \tt http://www.hpl.hp.com/personal/Hans\_Boehm/gc}) \item {\itc 1989-1992} Univariate and multivariate factorizers over {\bf Q} \item {\itc 1992-1994} Univariate factorization over algebraic number fields Intensive use of successive extension, non-squarefree norms Application to splitting field and Galois group computation \item {\itc 1996-1998} Univariate factorization over large finite fields Motivated by a reseach project in Fujitsu on cryptography \item {\itc 2000-current} Multivariate factorization over small finite fields (in progress) \end{itemize} \end{slide} \begin{slide}{} \fbox{\fbc History of development : Groebner basis} \begin{itemize} \item {\itc 1992-1994} User language $\Rightarrow$ C version; trace lifting [TRAV88] \item {\itc 1994-1996} Trace lifting with homogenization Omitting GB check by compatible prime [NOYO99] Modular change of ordering/RUR[ROUI96] [NOYO99] Primary ideal decomposition [SHYO96] \item {\itc 1996-1998} Efficient content reduction during NF computation [NORO97] Solved {\it McKay} system for the first time \item {\itc 1998-2000} Test implementation of $F_4$ [FAUG99] \item {\itc 2000-current} Buchberger algorithm in Weyl algebra Efficient $b$-function computation[OAKU97] by a modular method \end{itemize} \end{slide} \begin{slide}{} \fbox{\fbc Timing data --- Factorization} \underline{\itc Univariate; over {\bf Q}} $N_{i,j}$ : a norm of a polynomial, $\deg(N_i) = i$ with $j$ modular factor \begin{center} \begin{tabular}{|c||c|c|c|c|} \hline & $N_{105,23}$ & $N_{120,20}$ & $N_{168,24}$ & $N_{210,54}$ \\ \hline {\tc Asir} & {\tc 0.86} & {\tc 59} & {\tc 840} & {\tc hard} \\ \hline Asir NormFactor & 1.6 & 2.2& 6.1& hard \\ \hline %Singular& hard? & hard?& hard? & hard? \\ \hline CoCoA 4 & 0.2 & 7.1 & 16 & 0.5 \\ \hline\hline NTL-5.2 & 0.16 & 0.9 & 1.4 & 0.4 \\ \hline \end{tabular} \end{center} \underline{\itc Multivariate; over {\bf Q}} $W_{i,j,k} = Wang[i]\cdot Wang[j]\cdot Wang[k]$ in {\tt asir2000/lib/fctrdata} \begin{center} \begin{tabular}{|c||c|c|c|c|c|} \hline & $W_{1,2,3}$ & $W_{4,5,6}$ & $W_{7,8,9}$ & $W_{10,11,12}$ & $W_{13,14,15}$ \\ \hline variables & 3 & 5 & 5 & 5 & 4 \\ \hline monomials & 905 & 41369 & 51940 & 30988 & 3344 \\ \hline\hline {\tc Asir} & {\tc 0.2} & {\tc 4.7} & {\tc 14} & {\tc 17} & {\tc 0.4} \\ \hline %Singular& $>$15min & --- & ---& ---& ---\\ \hline CoCoA 4 & 5.2 & $>$15min & $>$15min & $>$15min & 117 \\ \hline\hline Mathematica 4& 0.2 & 16 & 23 & 36 & 1.1 \\ \hline Maple 7& 0.5 & 18 & 967 & 48 & 1.3 \\ \hline \end{tabular} \end{center} %--- : not tested \end{slide} \begin{slide}{} \fbox{\fbc Timing data --- DRL Groebner basis computation} \underline{\itc Over $GF(32003)$} \begin{center} \begin{tabular}{|c||c|c|c|c|c|c|c|} \hline & $C_7$ & $C_8$ & $K_7$ & $K_8$ & $K_9$ & $K_{10}$ & $K_{11}$ \\ \hline {\tc Asir $Buchberger$} & {\tc 31} & {\tc 1687} & {\tc 2.6} & {\tc 27} & {\tc 294} & {\tc 4309} & --- \\ \hline Singular & 8.7 & 278 & 0.6 & 5.6 & 54 & 508 & 5510 \\ \hline CoCoA 4 & 241 & $>$ 5h & 3.8 & 35 & 402 &7021 & --- \\ \hline\hline {\tc Asir $F_4$} & {\tc 5.3} & {\tc 129} & {\tc 0.5} & {\tc 4.5} & {\tc 31} & {\tc 273} & {\tc 2641} \\ \hline FGb(estimated) & 0.9 & 23 & 0.1 & 0.8 & 6 & 51 & 366 \\ \hline \end{tabular} \end{center} \underline{\itc Over {\bf Q}} \begin{center} \begin{tabular}{|c||c|c|c|c|c|} \hline & $C_7$ & $Homog. C_7$ & $K_7$ & $K_8$ & $McKay$ \\ \hline {\tc Asir $Buchberger$} & {\tc 389} & {\tc 594} & {\tc 29} & {\tc 299} & {\tc 34950} \\ \hline Singular & --- & 15247 & 7.6 & 79 & $>$ 20h \\ \hline CoCoA 4 & --- & 13227 & 57 & 709 & --- \\ \hline\hline {\tc Asir $F_4$} & {\tc 989} & {\tc 456} & {\tc 90} & {\tc 991} & {\tc 4939} \\ \hline FGb(estimated) & 8 &11 & 0.6 & 5 & 10 \\ \hline \end{tabular} \end{center} --- : not tested \end{slide} \begin{slide}{} \fbox{\fbc Summary of performance} \begin{itemize} \item {\itc Factorizer} \begin{itemize} \item Multivariate : reasonable performance \item Univariate : obsoleted by M. van Hoeij's new algorithm [HOEI00] \end{itemize} \item {\itc Groebner basis computation} \begin{itemize} \item Buchberger Singular shows nice perfomance Trace lifting is efficient in some cases over {\bf Q} \item $F_4$ FGb is much faster than Risa/Asir But we observe that {\it McKay} is computed efficiently by $F_4$ \end{itemize} \end{itemize} \end{slide} \begin{slide}{} \fbox{\fbc What is the merit to use Risa/Asir?} \begin{itemize} \item {\itc Total performance is not excellent, but not bad} \item {\itc A completely open system} The whole source is available \item {\itc It serves as a test bench to try new ideas} Interactive debugger is very useful \item {\itc Interface compliant to OpenXM RFC-100} The interface is fully documented \end{itemize} \end{slide} %\begin{slide}{} %\fbox{\fbc CMO = Serialized representation of mathematical object} % %\begin{itemize} %\item primitive data %\begin{eqnarray*} %\mbox{Integer32} &:& ({\tt CMO\_INT32}, {\sl int32}\ \mbox{n}) \\ %\mbox{Cstring}&:& ({\tt CMO\_STRING},{\sl int32}\, \mbox{ n}, {\sl string}\, \mbox{s}) \\ %\mbox{List} &:& ({\tt CMO\_LIST}, {\sl int32}\, len, ob[0], \ldots,ob[m-1]) %\end{eqnarray*} % %\item numbers and polynomials %\begin{eqnarray*} %\mbox{ZZ} &:& ({\tt CMO\_ZZ},{\sl int32}\, {\rm f}, {\sl byte}\, \mbox{a[1]}, \ldots %{\sl byte}\, \mbox{a[$|$f$|$]} ) \\ %\mbox{Monomial32}&:& ({\tt CMO\_MONOMIAL32}, n, \mbox{e[1]}, \ldots, \mbox{e[n]}, \mbox{Coef}) \\ %\mbox{Coef}&:& \mbox{ZZ} | \mbox{Integer32} \\ %\mbox{Dpolynomial}&:& ({\tt CMO\_DISTRIBUTED\_POLYNOMIAL},\\ % & & m, \mbox{DringDefinition}, \mbox{Monomial32}, \ldots)\\ %\mbox{DringDefinition} % &:& \mbox{DMS of N variables} \\ % & & ({\tt CMO\_RING\_BY\_NAME}, name) \\ % & & ({\tt CMO\_DMS\_GENERIC}) \\ %\end{eqnarray*} %\end{itemize} %\end{slide} % %\begin{slide}{} %\fbox{\fbc Stack based communication} % %\begin{itemize} %\item Data arrived a client % %Pushed to the stack % %\item Result % %Pushd to the stack % %Written to the stream when requested by a command % %\item The reason why we use the stack % %\begin{itemize} %\item Stack = I/O buffer for (possibly large) objects % %Multiple requests can be sent before their execution % %A server does not get stuck in sending results %\end{itemize} %\end{itemize} %\end{slide} \begin{slide}{} \fbox{\fbc OpenXM (Open message eXchange protocol for Mathematics) } \begin{itemize} \item {\itc An environment for parallel distributed computation} Both for interactive, non-interactive environment \item {\itc OpenXM RFC-100 = Client-server architecture} Client $\Leftarrow$ OX (OpenXM) message $\Rightarrow$ Server OX (OpenXM) message : command and data \item {\itc Data} Encoding : CMO (Common Mathematical Object format) Serialized representation of mathematical object --- Main idea was borrowed from OpenMath ({\urlc \tt http://www.openmath.org}) \item {\itc Command} stack machine command --- server is a stackmachine + server's own command sequences --- hybrid server \end{itemize} \end{slide} \begin{slide}{} \fbox{\fbc Example of distributed computation --- $F_4$ vs. $Buchberger$ } \begin{verbatim} /* competitive Gbase computation over GF(M) */ /* Cf. A.28 in SINGULAR Manual */ /* Process list is specified as buch_vs_f4_mod(...|proc=P) */ def buch_vs_f4_mod(G,V,M,O) { P = getopt(proc); if ( type(P) == -1 ) return dp_f4_mod_main(G,V,M,O); P0 = P[0]; P1 = P[1]; P = [P0,P1]; map(ox_reset,P); /* resets the both servers */ ox_cmo_rpc(P0,"dp_f4_mod_main",G,V,M,O); /* for F4 */ ox_cmo_rpc(P1,"dp_gr_mod_main",G,V,0,M,O); /* for Buchberger */ map(ox_push_cmd,P,262); /* 262 = OX_popCMO */ F = ox_select(P); /* waits a server to return the result */ R = ox_get(F[0]); /* gets the result from the winner */ if ( F[0] == P0 ) { Win = "F4"; Lose = P1;} else { Win = "Buchberger"; Lose = P0; } ox_reset(Lose); /* simply resets the loser */ return [Win,R]; } \end{verbatim} \end{slide} \begin{slide}{} \fbox{\fbc Real speedup by parallelism --- polynomial multiplication} {\itc Product of dense univariate polynomials with 3000bit coefficients} {\itc Algorithm : FFT+Chinese remainder (by Shoup)} \epsfxsize=20cm \epsffile{3k.ps} {\itc Communication cost} \begin{itemize} \item $O(n{\color{red}\log L})$ with server-server communication (OX-RFC102) \item $O(n{\color{red}L})$ without server-server communication (OX-RFC100) \end{itemize} ($L$: number of processes, $n$: degree) \end{slide} \begin{slide}{} \fbox{\fbc References} [BERN97] L. Bernardin, On square-free factorization of multivariate polynomials over a finite field, Theoretical Computer Science 187 (1997), 105-116. [FAUG99] J.C. Faug\`ere, A new efficient algorithm for computing Groebner bases ($F_4$), Journal of Pure and Applied Algebra (139) 1-3 (1999), 61-88. [GRAY98] S. Gray et al, Design and Implementation of MP, A Protocol for Efficient Exchange of Mathematical Expression, J. Symb. Comp. {\bf 25} (1998), 213-238. [HOEI00] M. van Hoeij, Factoring polynomials and the knapsack problem, to appear in Journal of Number Theory (2000). [LIAO01] W. Liao et al, OMEI: An Open Mathematical Engine Interface, Proc. ASCM2001 (2001), 82-91. [NORO97] M. Noro, J. McKay, Computation of replicable functions on Risa/Asir. Proc. PASCO'97, ACM Press (1997), 130-138. \end{slide} \begin{slide}{} [NOYO99] M. Noro, K. Yokoyama, A Modular Method to Compute the Rational Univariate Representation of Zero-Dimensional Ideals. J. Symb. Comp. {\bf 28}/1 (1999), 243-263. [OAKU97] T. Oaku, Algorithms for $b$-functions, restrictions and algebraic local cohomology groups of $D$-modules. Advances in Applied Mathematics, 19 (1997), 61-105. [ROUI96] F. Rouillier, R\'esolution des syst\`emes z\'ero-dimensionnels. Doctoral Thesis(1996), University of Rennes I, France. [SHYO96] T. Shimoyama, K. Yokoyama, Localization and Primary Decomposition of Polynomial Ideals. J. Symb. Comp. {\bf 22} (1996), 247-277. [TRAV88] C. Traverso, \gr trace algorithms. Proc. ISSAC '88 (LNCS 358), 125-138. [WANG99] P. S. Wang, Design and Protocol for Internet Accessible Mathematical Computation, Proc. ISSAC '99 (1999), 291-298. \end{slide} \end{document}